I am looking for a way to force the groupSeparator symbol of a doublespinbox.
For context, one of my programs uses an numerical input (doublespinbox) + unit choices (radio buttons) to form a number. It looks roughly like this:
voltage [ 5 ] o V
o mV
o µV
I use a group separator to make reading easier. On a French machine I get a satisfying display, where for example 1 thousand and 1 look like so: 1 000 or 1,000. On an English machine, I get 1,000 and 1.000 which can be easily confused. How could I force the group separator to be always a space?
Alternatively, I believe that a solution could be to force the locale of the program as answered here but I'm always interested in seeing if custom solutions are possible. Otherwise, I'll stick to
self.setLocale(QtCore.QLocale(QtCore.QLocale.French))
Another possibility is to reimplement your own subclass for the spinbox and override the textFromValue() function:
class SpaceSeparatorSpin(QtWidgets.QDoubleSpinBox):
def textFromValue(self, value):
text = self.locale().toString(float(value), 'f', self.decimals())
return text.replace(self.locale().groupSeparator(), ' ')
In this way, we use the current (default) locale to transform the value to a string and then return the string with the separator replaced with the space.
There are some issues with both approaches, though.
Using a custom locale for a single widget class can result in unexpected behavior when using copy&paste functions: if the user lives in a country that uses the point for the decimals, a simple "50.2" value that might be taken from another source will not be pasted, as the validator will not recognize that string as valid (for the French locale, it should be "50,2").
Using the textFromValue override has the opposite problem if the user wants to copy from a subclassed spinbox to another, as the space separator will make the validator ignore the string when the spinbox calls valueFromText().
To avoid all that, you could override the validate() function: if the base implementation returns a valid or intermediate value, return it, otherwise validate it on your own being careful about the current locale and the possibility of the "double input possibilities" (with or without spaces, inverted points/commas for decimals and group separators); note that while pasting a "space-separated" value on a locale that uses them works, QAbstractSpinBox doesn't accept spaces when typing.
Besides all that, keep in mind that using "de-localized" decimal points and separator is not a good thing. While it might seem fine for you, user with other types of punctuations will probably find it very annoying, especially for people that are used to the numeric pad: usually, the decimal point key of the pad is configured with that of the system locale, so users that have a locale that uses the point for decimals won't be able to type decimals from the pad, forcing them to move their hand away from it to type the comma.
Related
I would like to put an int into a string. This is what I am doing at the moment:
num = 40
plot.savefig('hanning40.pdf') #problem line
I have to run the program for several different numbers, so I'd like to do a loop. But inserting the variable like this doesn't work:
plot.savefig('hanning', num, '.pdf')
How do I insert a variable into a Python string?
See also
If you tried using + to concatenate a number with a string (or between strings, etc.) and got an error message, see How can I concatenate str and int objects?.
If you are trying to assemble a URL with variable data, do not use ordinary string formatting, because it is error-prone and more difficult than necessary. Specialized tools are available. See Add params to given URL in Python.
If you are trying to assemble a SQL query, do not use ordinary string formatting, because it is a major security risk. This is the cause of "SQL injection" which costs real companies huge amounts of money every year. See for example Python: best practice and securest way to connect to MySQL and execute queries for proper techniques.
If you just want to print (output) the string, you can prepare it this way first, or if you don't need the string for anything else, print each piece of the output individually using a single call to print. See How can I print multiple things (fixed text and/or variable values) on the same line, all at once? for details on both approaches.
Using f-strings:
plot.savefig(f'hanning{num}.pdf')
This was added in 3.6 and is the new preferred way.
Using str.format():
plot.savefig('hanning{0}.pdf'.format(num))
String concatenation:
plot.savefig('hanning' + str(num) + '.pdf')
Conversion Specifier:
plot.savefig('hanning%s.pdf' % num)
Using local variable names (neat trick):
plot.savefig('hanning%(num)s.pdf' % locals())
Using string.Template:
plot.savefig(string.Template('hanning${num}.pdf').substitute(locals()))
See also:
Fancier Output Formatting - The Python Tutorial
Python 3's f-Strings: An Improved String Formatting Syntax (Guide) - RealPython
With the introduction of formatted string literals ("f-strings" for short) in Python 3.6, it is now possible to write this with a briefer syntax:
>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
With the example given in the question, it would look like this
plot.savefig(f'hanning{num}.pdf')
plot.savefig('hanning(%d).pdf' % num)
The % operator, when following a string, allows you to insert values into that string via format codes (the %d in this case). For more details, see the Python documentation:
printf-style String Formatting
You can use + as the normal string concatenation function as well as str().
"hello " + str(10) + " world" == "hello 10 world"
In general, you can create strings using:
stringExample = "someString " + str(someNumber)
print(stringExample)
plot.savefig(stringExample)
If you would want to put multiple values into the string you could make use of format
nums = [1,2,3]
plot.savefig('hanning{0}{1}{2}.pdf'.format(*nums))
Would result in the string hanning123.pdf. This can be done with any array.
Special cases
Depending on why variable data is being used with strings, the general-purpose approaches may not be appropriate.
If you need to prepare an SQL query
Do not use any of the usual techniques for assembling a string. Instead, use your SQL library's functionality for parameterized queries.
A query is code, so it should not be thought about like normal text. Using the library will make sure that any inserted text is properly escaped. If any part of the query could possibly come from outside the program in any way, that is an opportunity for a malevolent user to perform SQL injection. This is widely considered one of the important computer security problems, costing real companies huge amounts of money every year and causing problems for countless customers. Even if you think you know the data is "safe", there is no real upside to using any other approach.
The syntax will depend on the library you are using and is outside the scope of this answer.
If you need to prepare a URL query string
See Add params to given URL in Python. Do not do it yourself; there is no practical reason to make your life harder.
Writing to a file
While it's possible to prepare a string ahead of time, it may be simpler and more memory efficient to just write each piece of data with a separate .write call. Of course, non-strings will still need to be converted to string before writing, which may complicate the code. There is not a one-size-fits-all answer here, but choosing badly will generally not matter very much.
If you are simply calling print
The built-in print function accepts a variable number of arguments, and can take in any object and stringify it using str. Before trying string formatting, consider whether simply passing multiple arguments will do what you want. (You can also use the sep keyword argument to control spacing between the arguments.)
# display a filename, as an example
print('hanning', num, '.pdf', sep='')
Of course, there may be other reasons why it is useful for the program to assemble a string; so by all means do so where appropriate.
It's important to note that print is a special case. The only functions that work this way are ones that are explicitly written to work this way. For ordinary functions and methods, like input, or the savefig method of Matplotlib plots, we need to prepare a string ourselves.
Concatenation
Python supports using + between two strings, but not between strings and other types. To work around this, we need to convert other values to string explicitly: 'hanning' + str(num) + '.pdf'.
Template-based approaches
Most ways to solve the problem involve having some kind of "template" string that includes "placeholders" that show where information should be added, and then using some function or method to add the missing information.
f-strings
This is the recommended approach when possible. It looks like f'hanning{num}.pdf'. The names of variables to insert appear directly in the string. It is important to note that there is not actually such a thing as an "f-string"; it's not a separate type. Instead, Python will translate the code ahead of time:
>>> def example(num):
... return f'hanning{num}.pdf'
...
>>> import dis
>>> dis.dis(example)
2 0 LOAD_CONST 1 ('hanning')
2 LOAD_FAST 0 (num)
4 FORMAT_VALUE 0
6 LOAD_CONST 2 ('.pdf')
8 BUILD_STRING 3
10 RETURN_VALUE
Because it's a special syntax, it can access opcodes that aren't used in other approaches.
str.format
This is the recommended approach when f-strings aren't possible - mainly, because the template string needs to be prepared ahead of time and filled in later. It looks like 'hanning{}.pdf'.format(num), or 'hanning{num}.pdf'.format(num=num)'. Here, format is a method built in to strings, which can accept arguments either by position or keyword.
Particularly for str.format, it's useful to know that the built-in locals, globals and vars functions return dictionaries that map variable names to the contents of those variables. Thus, rather than something like '{a}{b}{c}'.format(a=a, b=b, c=c), we can use something like '{a}{b}{c}'.format(**locals()), unpacking the locals() dict.
str.format_map
This is a rare variation on .format. It looks like 'hanning{num}.pdf'.format_map({'num': num}). Rather than accepting keyword arguments, it accepts a single argument which is a mapping.
That probably doesn't sound very useful - after all, rather than 'hanning{num}.pdf'.format_map(my_dict), we could just as easily write 'hanning{num}.pdf'.format(**my_dict). However, this is useful for mappings that determine values on the fly, rather than ordinary dicts. In these cases, unpacking with ** might not work, because the set of keys might not be determined ahead of time; and trying to unpack keys based on the template is unwieldy (imagine: 'hanning{num}.pdf'.format(num=my_mapping[num]), with a separate argument for each placeholder).
string.Formatter
The string standard library module contains a rarely used Formatter class. Using it looks like string.Formatter().format('hanning{num}.pdf', num=num). The template string uses the same syntax again. This is obviously clunkier than just calling .format on the string; the motivation is to allow users to subclass Formatter to define a different syntax for the template string.
All of the above approaches use a common "formatting language" (although string.Formatter allows changing it); there are many other things that can be put inside the {}. Explaining how it works is beyond the scope of this answer; please consult the documentation. Do keep in mind that literal { and } characters need to be escaped by doubling them up. The syntax is presumably inspired by C#.
The % operator
This is a legacy way to solve the problem, inspired by C and C++. It has been discouraged for a long time, but is still supported. It looks like 'hanning%s.pdf' % num, for simple cases. As you'd expect, literal '%' symbols in the template need to be doubled up to escape them.
It has some issues:
It seems like the conversion specifier (the letter after the %) should match the type of whatever is being interpolated, but that's not actually the case. Instead, the value is converted to the specified type, and then to string from there. This isn't normally necessary; converting directly to string works most of the time, and converting to other types first doesn't help most of the rest of the time. So 's' is almost always used (unless you want the repr of the value, using 'r'). Despite that, the conversion specifier is a mandatory part of the syntax.
Tuples are handled specially: passing a tuple on the right-hand side is the way to provide multiple arguments. This is an ugly special case that's necessary because we aren't using function-call syntax. As a result, if you actually want to format a tuple into a single placeholder, it must be wrapped in a 1-tuple.
Other sequence types are not handled specially, and the different behaviour can be a gotcha.
string.Template
The string standard library module contains a rarely used Template class. Instances provide substitute and safe_substitute methods that work similarly to the built-in .format (safe_substitute will leave placeholders intact rather than raising an exception when the arguments don't match). This should also be considered a legacy approach to the problem.
It looks like string.Template('hanning$num.pdf').substitute(num=num), and is inspired by traditional Perl syntax. It's obviously clunkier than the .format approach, since a separate class has to be used before the method is available. Braces ({}) can be used optionally around the name of the variable, to avoid ambiguity. Similarly to the other methods, literal '$' in the template needs to be doubled up for escaping.
I had a need for an extended version of this: instead of embedding a single number in a string, I needed to generate a series of file names of the form 'file1.pdf', 'file2.pdf' etc. This is how it worked:
['file' + str(i) + '.pdf' for i in range(1,4)]
You can make dict and substitute variables in your string.
var = {"name": "Abdul Jalil", "age": 22}
temp_string = "My name is %(name)s. I am %(age)s years old." % var
FIRST QUESTION
For example, if i want to print a lot of lines with the same width, i could use
print(f'{"INFO":=^50}')
print(f'{"some info":<50}')
print(f'{"another info":>50}')
And will get
=======================INFO=======================
some info
another info
But, what if I want to get something like this?
=======================INFO=======================
some info.............................another info
Ok.
I can do it
print(f'{"INFO":=^50}')
print('some info' + f'{"another info":.>{50-len("some info")}}')
Maybe python has another, the easiest way to do it?
SECOND QUESTION
For align we can use >, <, ^, and =
And = works only with numbers. And it works the same as >
For example
print(f'{13:.=5}')
print(f'{13:.>5}')
...13
...13
So Why do we need =, if it works the same? To be sure that the value is a number? What are the pluses it gives more?
For your second question, the answer is in Format Specification Mini-Language:
'='
Forces the padding to be placed after the sign (if any) but before the
digits. This is used for printing fields in the form ‘+000000120’.
This alignment option is only valid for numeric types. It becomes the
default when ‘0’ immediately precedes the field width.
This becomes clear when you have a signed number:
print(f'{-13:0=5}')
# -0013
print(f'{-13:0>5}')
# 00-13
What you are trying to do is an alignment inbetween two variables. That's quite specific. What then about alignment between three variables, four etc... ?
You can however approach it as an alignment problem for each of the two variables: split the 50 in two parts.
print(f'{"INFO":=^50}')
print(f'{"some info":.<25}{"another info":.>25}')
=======================INFO=======================
some info.............................another info
I would like to put an int into a string. This is what I am doing at the moment:
num = 40
plot.savefig('hanning40.pdf') #problem line
I have to run the program for several different numbers, so I'd like to do a loop. But inserting the variable like this doesn't work:
plot.savefig('hanning', num, '.pdf')
How do I insert a variable into a Python string?
See also
If you tried using + to concatenate a number with a string (or between strings, etc.) and got an error message, see How can I concatenate str and int objects?.
If you are trying to assemble a URL with variable data, do not use ordinary string formatting, because it is error-prone and more difficult than necessary. Specialized tools are available. See Add params to given URL in Python.
If you are trying to assemble a SQL query, do not use ordinary string formatting, because it is a major security risk. This is the cause of "SQL injection" which costs real companies huge amounts of money every year. See for example Python: best practice and securest way to connect to MySQL and execute queries for proper techniques.
If you just want to print (output) the string, you can prepare it this way first, or if you don't need the string for anything else, print each piece of the output individually using a single call to print. See How can I print multiple things (fixed text and/or variable values) on the same line, all at once? for details on both approaches.
Using f-strings:
plot.savefig(f'hanning{num}.pdf')
This was added in 3.6 and is the new preferred way.
Using str.format():
plot.savefig('hanning{0}.pdf'.format(num))
String concatenation:
plot.savefig('hanning' + str(num) + '.pdf')
Conversion Specifier:
plot.savefig('hanning%s.pdf' % num)
Using local variable names (neat trick):
plot.savefig('hanning%(num)s.pdf' % locals())
Using string.Template:
plot.savefig(string.Template('hanning${num}.pdf').substitute(locals()))
See also:
Fancier Output Formatting - The Python Tutorial
Python 3's f-Strings: An Improved String Formatting Syntax (Guide) - RealPython
With the introduction of formatted string literals ("f-strings" for short) in Python 3.6, it is now possible to write this with a briefer syntax:
>>> name = "Fred"
>>> f"He said his name is {name}."
'He said his name is Fred.'
With the example given in the question, it would look like this
plot.savefig(f'hanning{num}.pdf')
plot.savefig('hanning(%d).pdf' % num)
The % operator, when following a string, allows you to insert values into that string via format codes (the %d in this case). For more details, see the Python documentation:
printf-style String Formatting
You can use + as the normal string concatenation function as well as str().
"hello " + str(10) + " world" == "hello 10 world"
In general, you can create strings using:
stringExample = "someString " + str(someNumber)
print(stringExample)
plot.savefig(stringExample)
If you would want to put multiple values into the string you could make use of format
nums = [1,2,3]
plot.savefig('hanning{0}{1}{2}.pdf'.format(*nums))
Would result in the string hanning123.pdf. This can be done with any array.
Special cases
Depending on why variable data is being used with strings, the general-purpose approaches may not be appropriate.
If you need to prepare an SQL query
Do not use any of the usual techniques for assembling a string. Instead, use your SQL library's functionality for parameterized queries.
A query is code, so it should not be thought about like normal text. Using the library will make sure that any inserted text is properly escaped. If any part of the query could possibly come from outside the program in any way, that is an opportunity for a malevolent user to perform SQL injection. This is widely considered one of the important computer security problems, costing real companies huge amounts of money every year and causing problems for countless customers. Even if you think you know the data is "safe", there is no real upside to using any other approach.
The syntax will depend on the library you are using and is outside the scope of this answer.
If you need to prepare a URL query string
See Add params to given URL in Python. Do not do it yourself; there is no practical reason to make your life harder.
Writing to a file
While it's possible to prepare a string ahead of time, it may be simpler and more memory efficient to just write each piece of data with a separate .write call. Of course, non-strings will still need to be converted to string before writing, which may complicate the code. There is not a one-size-fits-all answer here, but choosing badly will generally not matter very much.
If you are simply calling print
The built-in print function accepts a variable number of arguments, and can take in any object and stringify it using str. Before trying string formatting, consider whether simply passing multiple arguments will do what you want. (You can also use the sep keyword argument to control spacing between the arguments.)
# display a filename, as an example
print('hanning', num, '.pdf', sep='')
Of course, there may be other reasons why it is useful for the program to assemble a string; so by all means do so where appropriate.
It's important to note that print is a special case. The only functions that work this way are ones that are explicitly written to work this way. For ordinary functions and methods, like input, or the savefig method of Matplotlib plots, we need to prepare a string ourselves.
Concatenation
Python supports using + between two strings, but not between strings and other types. To work around this, we need to convert other values to string explicitly: 'hanning' + str(num) + '.pdf'.
Template-based approaches
Most ways to solve the problem involve having some kind of "template" string that includes "placeholders" that show where information should be added, and then using some function or method to add the missing information.
f-strings
This is the recommended approach when possible. It looks like f'hanning{num}.pdf'. The names of variables to insert appear directly in the string. It is important to note that there is not actually such a thing as an "f-string"; it's not a separate type. Instead, Python will translate the code ahead of time:
>>> def example(num):
... return f'hanning{num}.pdf'
...
>>> import dis
>>> dis.dis(example)
2 0 LOAD_CONST 1 ('hanning')
2 LOAD_FAST 0 (num)
4 FORMAT_VALUE 0
6 LOAD_CONST 2 ('.pdf')
8 BUILD_STRING 3
10 RETURN_VALUE
Because it's a special syntax, it can access opcodes that aren't used in other approaches.
str.format
This is the recommended approach when f-strings aren't possible - mainly, because the template string needs to be prepared ahead of time and filled in later. It looks like 'hanning{}.pdf'.format(num), or 'hanning{num}.pdf'.format(num=num)'. Here, format is a method built in to strings, which can accept arguments either by position or keyword.
Particularly for str.format, it's useful to know that the built-in locals, globals and vars functions return dictionaries that map variable names to the contents of those variables. Thus, rather than something like '{a}{b}{c}'.format(a=a, b=b, c=c), we can use something like '{a}{b}{c}'.format(**locals()), unpacking the locals() dict.
str.format_map
This is a rare variation on .format. It looks like 'hanning{num}.pdf'.format_map({'num': num}). Rather than accepting keyword arguments, it accepts a single argument which is a mapping.
That probably doesn't sound very useful - after all, rather than 'hanning{num}.pdf'.format_map(my_dict), we could just as easily write 'hanning{num}.pdf'.format(**my_dict). However, this is useful for mappings that determine values on the fly, rather than ordinary dicts. In these cases, unpacking with ** might not work, because the set of keys might not be determined ahead of time; and trying to unpack keys based on the template is unwieldy (imagine: 'hanning{num}.pdf'.format(num=my_mapping[num]), with a separate argument for each placeholder).
string.Formatter
The string standard library module contains a rarely used Formatter class. Using it looks like string.Formatter().format('hanning{num}.pdf', num=num). The template string uses the same syntax again. This is obviously clunkier than just calling .format on the string; the motivation is to allow users to subclass Formatter to define a different syntax for the template string.
All of the above approaches use a common "formatting language" (although string.Formatter allows changing it); there are many other things that can be put inside the {}. Explaining how it works is beyond the scope of this answer; please consult the documentation. Do keep in mind that literal { and } characters need to be escaped by doubling them up. The syntax is presumably inspired by C#.
The % operator
This is a legacy way to solve the problem, inspired by C and C++. It has been discouraged for a long time, but is still supported. It looks like 'hanning%s.pdf' % num, for simple cases. As you'd expect, literal '%' symbols in the template need to be doubled up to escape them.
It has some issues:
It seems like the conversion specifier (the letter after the %) should match the type of whatever is being interpolated, but that's not actually the case. Instead, the value is converted to the specified type, and then to string from there. This isn't normally necessary; converting directly to string works most of the time, and converting to other types first doesn't help most of the rest of the time. So 's' is almost always used (unless you want the repr of the value, using 'r'). Despite that, the conversion specifier is a mandatory part of the syntax.
Tuples are handled specially: passing a tuple on the right-hand side is the way to provide multiple arguments. This is an ugly special case that's necessary because we aren't using function-call syntax. As a result, if you actually want to format a tuple into a single placeholder, it must be wrapped in a 1-tuple.
Other sequence types are not handled specially, and the different behaviour can be a gotcha.
string.Template
The string standard library module contains a rarely used Template class. Instances provide substitute and safe_substitute methods that work similarly to the built-in .format (safe_substitute will leave placeholders intact rather than raising an exception when the arguments don't match). This should also be considered a legacy approach to the problem.
It looks like string.Template('hanning$num.pdf').substitute(num=num), and is inspired by traditional Perl syntax. It's obviously clunkier than the .format approach, since a separate class has to be used before the method is available. Braces ({}) can be used optionally around the name of the variable, to avoid ambiguity. Similarly to the other methods, literal '$' in the template needs to be doubled up for escaping.
I had a need for an extended version of this: instead of embedding a single number in a string, I needed to generate a series of file names of the form 'file1.pdf', 'file2.pdf' etc. This is how it worked:
['file' + str(i) + '.pdf' for i in range(1,4)]
You can make dict and substitute variables in your string.
var = {"name": "Abdul Jalil", "age": 22}
temp_string = "My name is %(name)s. I am %(age)s years old." % var
I have a route:
#app.route("/login/<user>/<timestamp>")
def user(user, timestamp):.
But, I need it in this form -
#app.route("/login/<user><timestamp>")
def user(user, timestamp):.
i.e without the slash('/').
Is there any way to do it ?
Short answer: It is possible given the two parameters have a non-overlapping pattern. By giving it a wildcard-pattern however (you did not specify the converter). It will result in the fact that all content is handled to the user. That being said, it is advisable to have a clear separator.
As is specified in the documentation, you can define variables by writing them like HTML tags, like <var>, you can also specify a converter, like <converter:var>. If you do not specify a converter, the parameter is assumed to be a string that can not contain slashes.
There are however other converters, like int, float, path and uuid.
If the patterns are written in such way that it is clear when the first pattern ends, and the second pattern begins, then it this can be handled. For example:
#app.route("/login/<int:day><user>")
can work, given user can not start with a digit, since here once the sequence of digits ends, Flask will parse the <user> parameter.
By writing #app.route("/login/<user><timestamp>") however, the two patterns are overlapping: if we do not have a parsing strategy any split could be a valid one. Since the engine is greedy if I recall correctly, in practice it will result in the fact that user takes all characters, and timestamp none.
Since the default string does not include a slash, we know that the slash acts as a clear separator, since it is not included in both variables in your example.
I want to create a sane/safe app bundle name (i.e. somewhat readable, no "strange" characters, etc.) from some random Unicode string (mich might contain just anything).
(It doesn't matter for me wether the function is Cocoa, ObjC, Python, etc.)
(This is related to the filename question and the bundle name question but the bundle identifier is much more restrictive. I think it cannot even contain spaces and I also would want to strip out the dots and put my own prefix.)
I think Xcode also hase some function to do that automatically from the app name. Maybe there is some standard function in Cocoa to do that.
Bundle identifiers are meant to be in reverse URL form (guaranteeing global uniqueness):
com.apple.xcode, for example
So really you need a domain name, then you can invent whatever scheme you like below that.
Given this, and some knowledge of the characters in your input, you can either scan through your input composing a new string with only the bits you want, or use methods like stringByReplacingOccurrencesOfString: withString: and, if you like, lowercaseString.
The permitted characters in bundle identifiers are named in the Property List Documentation as:
The bundle ID string must be a uniform type identifier (UTI) that contains only alphanumeric (A-Z,a-z,0-9), hyphen (-), and period (.) characters. The string should also be in reverse-DNS format.