Python Multi Threading not working properly - python

I can't seem to get this Multi Threading code to work with my already structured Python script of a simple IP Pining script with a few other features.
After testing the Multi Threading code i though i was ready to implement onto my code, however i can't seem to be able to call a new thread correctly. I know this because if Multi Threading was working properly my GUI interface would not stop responding when the scanall() function gets executed upon pressing the Scan all IPs button on the GUI interface.
I'm also not getting anymore errors after finishing the implementation, so it's hard to know now what to proceed with. This extremely frustrating thank you for the help guys, i would love to tackle this one down!
This is the Multi Threading code:
class ThreadManager:
"""Multi Threading manager"""
def __init__(self):
pass
def start(self, threads):
thread_refs = []
for i in range(threads):
t = MyThread(i) # Thread(args=(1,)) # target=test(),
t.daemon = True
print('starting thread %i' % i)
t.start()
for t in thread_refs:
t.join()
class MyThread(Thread):
"""Multi Threading"""
def __init__(self, i):
Thread.__init__(self)
self.i = i
def run(self):
while True:
print('thread # {}'.format(self.i))
time.sleep(.25)
break
And This is the code that executes the multi threading:
print("[Debug] Main Thread has been started")
self.manager = ThreadManager()
self.manager.start(1)
This is the Github for the entire script code and the Multi Threading implementation.
https://github.com/Hontiris1/IPPing

As you are not adding the value of t to thread_refs array. Its empty and is not waiting for the threads to join.
Change you start function like this:
def start(self, threads):
thread_refs = []
for i in range(threads):
t = MyThread(i) # Thread(args=(1,)) # target=test(),
t.daemon = True
print('starting thread %i' % i)
t.start()
thread_refs.append(t)
for t in thread_refs:
t.join()
secondly you might want to remove the break statement from your while loop in the run function. Otherwise it will exit after printing thread 0 once.

Related

Stopping eval code dinamically on event fired [duplicate]

What's the proper way to tell a looping thread to stop looping?
I have a fairly simple program that pings a specified host in a separate threading.Thread class. In this class it sleeps 60 seconds, the runs again until the application quits.
I'd like to implement a 'Stop' button in my wx.Frame to ask the looping thread to stop. It doesn't need to end the thread right away, it can just stop looping once it wakes up.
Here is my threading class (note: I haven't implemented looping yet, but it would likely fall under the run method in PingAssets)
class PingAssets(threading.Thread):
def __init__(self, threadNum, asset, window):
threading.Thread.__init__(self)
self.threadNum = threadNum
self.window = window
self.asset = asset
def run(self):
config = controller.getConfig()
fmt = config['timefmt']
start_time = datetime.now().strftime(fmt)
try:
if onlinecheck.check_status(self.asset):
status = "online"
else:
status = "offline"
except socket.gaierror:
status = "an invalid asset tag."
msg =("{}: {} is {}. \n".format(start_time, self.asset, status))
wx.CallAfter(self.window.Logger, msg)
And in my wxPyhton Frame I have this function called from a Start button:
def CheckAsset(self, asset):
self.count += 1
thread = PingAssets(self.count, asset, self)
self.threads.append(thread)
thread.start()
Threaded stoppable function
Instead of subclassing threading.Thread, one can modify the function to allow
stopping by a flag.
We need an object, accessible to running function, to which we set the flag to stop running.
We can use threading.currentThread() object.
import threading
import time
def doit(arg):
t = threading.currentThread()
while getattr(t, "do_run", True):
print ("working on %s" % arg)
time.sleep(1)
print("Stopping as you wish.")
def main():
t = threading.Thread(target=doit, args=("task",))
t.start()
time.sleep(5)
t.do_run = False
if __name__ == "__main__":
main()
The trick is, that the running thread can have attached additional properties. The solution builds
on assumptions:
the thread has a property "do_run" with default value True
driving parent process can assign to started thread the property "do_run" to False.
Running the code, we get following output:
$ python stopthread.py
working on task
working on task
working on task
working on task
working on task
Stopping as you wish.
Pill to kill - using Event
Other alternative is to use threading.Event as function argument. It is by
default False, but external process can "set it" (to True) and function can
learn about it using wait(timeout) function.
We can wait with zero timeout, but we can also use it as the sleeping timer (used below).
def doit(stop_event, arg):
while not stop_event.wait(1):
print ("working on %s" % arg)
print("Stopping as you wish.")
def main():
pill2kill = threading.Event()
t = threading.Thread(target=doit, args=(pill2kill, "task"))
t.start()
time.sleep(5)
pill2kill.set()
t.join()
Edit: I tried this in Python 3.6. stop_event.wait() blocks the event (and so the while loop) until release. It does not return a boolean value. Using stop_event.is_set() works instead.
Stopping multiple threads with one pill
Advantage of pill to kill is better seen, if we have to stop multiple threads
at once, as one pill will work for all.
The doit will not change at all, only the main handles the threads a bit differently.
def main():
pill2kill = threading.Event()
tasks = ["task ONE", "task TWO", "task THREE"]
def thread_gen(pill2kill, tasks):
for task in tasks:
t = threading.Thread(target=doit, args=(pill2kill, task))
yield t
threads = list(thread_gen(pill2kill, tasks))
for thread in threads:
thread.start()
time.sleep(5)
pill2kill.set()
for thread in threads:
thread.join()
This has been asked before on Stack. See the following links:
Is there any way to kill a Thread in Python?
Stopping a thread after a certain amount of time
Basically you just need to set up the thread with a stop function that sets a sentinel value that the thread will check. In your case, you'll have the something in your loop check the sentinel value to see if it's changed and if it has, the loop can break and the thread can die.
I read the other questions on Stack but I was still a little confused on communicating across classes. Here is how I approached it:
I use a list to hold all my threads in the __init__ method of my wxFrame class: self.threads = []
As recommended in How to stop a looping thread in Python? I use a signal in my thread class which is set to True when initializing the threading class.
class PingAssets(threading.Thread):
def __init__(self, threadNum, asset, window):
threading.Thread.__init__(self)
self.threadNum = threadNum
self.window = window
self.asset = asset
self.signal = True
def run(self):
while self.signal:
do_stuff()
sleep()
and I can stop these threads by iterating over my threads:
def OnStop(self, e):
for t in self.threads:
t.signal = False
I had a different approach. I've sub-classed a Thread class and in the constructor I've created an Event object. Then I've written custom join() method, which first sets this event and then calls a parent's version of itself.
Here is my class, I'm using for serial port communication in wxPython app:
import wx, threading, serial, Events, Queue
class PumpThread(threading.Thread):
def __init__ (self, port, queue, parent):
super(PumpThread, self).__init__()
self.port = port
self.queue = queue
self.parent = parent
self.serial = serial.Serial()
self.serial.port = self.port
self.serial.timeout = 0.5
self.serial.baudrate = 9600
self.serial.parity = 'N'
self.stopRequest = threading.Event()
def run (self):
try:
self.serial.open()
except Exception, ex:
print ("[ERROR]\tUnable to open port {}".format(self.port))
print ("[ERROR]\t{}\n\n{}".format(ex.message, ex.traceback))
self.stopRequest.set()
else:
print ("[INFO]\tListening port {}".format(self.port))
self.serial.write("FLOW?\r")
while not self.stopRequest.isSet():
msg = ''
if not self.queue.empty():
try:
command = self.queue.get()
self.serial.write(command)
except Queue.Empty:
continue
while self.serial.inWaiting():
char = self.serial.read(1)
if '\r' in char and len(msg) > 1:
char = ''
#~ print('[DATA]\t{}'.format(msg))
event = Events.PumpDataEvent(Events.SERIALRX, wx.ID_ANY, msg)
wx.PostEvent(self.parent, event)
msg = ''
break
msg += char
self.serial.close()
def join (self, timeout=None):
self.stopRequest.set()
super(PumpThread, self).join(timeout)
def SetPort (self, serial):
self.serial = serial
def Write (self, msg):
if self.serial.is_open:
self.queue.put(msg)
else:
print("[ERROR]\tPort {} is not open!".format(self.port))
def Stop(self):
if self.isAlive():
self.join()
The Queue is used for sending messages to the port and main loop takes responses back. I've used no serial.readline() method, because of different end-line char, and I have found the usage of io classes to be too much fuss.
Depends on what you run in that thread.
If that's your code, then you can implement a stop condition (see other answers).
However, if what you want is to run someone else's code, then you should fork and start a process. Like this:
import multiprocessing
proc = multiprocessing.Process(target=your_proc_function, args=())
proc.start()
now, whenever you want to stop that process, send it a SIGTERM like this:
proc.terminate()
proc.join()
And it's not slow: fractions of a second.
Enjoy :)
My solution is:
import threading, time
def a():
t = threading.currentThread()
while getattr(t, "do_run", True):
print('Do something')
time.sleep(1)
def getThreadByName(name):
threads = threading.enumerate() #Threads list
for thread in threads:
if thread.name == name:
return thread
threading.Thread(target=a, name='228').start() #Init thread
t = getThreadByName('228') #Get thread by name
time.sleep(5)
t.do_run = False #Signal to stop thread
t.join()
I find it useful to have a class, derived from threading.Thread, to encapsulate my thread functionality. You simply provide your own main loop in an overridden version of run() in this class. Calling start() arranges for the object’s run() method to be invoked in a separate thread.
Inside the main loop, periodically check whether a threading.Event has been set. Such an event is thread-safe.
Inside this class, you have your own join() method that sets the stop event object before calling the join() method of the base class. It can optionally take a time value to pass to the base class's join() method to ensure your thread is terminated in a short amount of time.
import threading
import time
class MyThread(threading.Thread):
def __init__(self, sleep_time=0.1):
self._stop_event = threading.Event()
self._sleep_time = sleep_time
"""call base class constructor"""
super().__init__()
def run(self):
"""main control loop"""
while not self._stop_event.isSet():
#do work
print("hi")
self._stop_event.wait(self._sleep_time)
def join(self, timeout=None):
"""set stop event and join within a given time period"""
self._stop_event.set()
super().join(timeout)
if __name__ == "__main__":
t = MyThread()
t.start()
time.sleep(5)
t.join(1) #wait 1s max
Having a small sleep inside the main loop before checking the threading.Event is less CPU intensive than looping continuously. You can have a default sleep time (e.g. 0.1s), but you can also pass the value in the constructor.
Sometimes you don't have control over the running target. In those cases you can use signal.pthread_kill to send a stop signal.
from signal import pthread_kill, SIGTSTP
from threading import Thread
from itertools import count
from time import sleep
def target():
for num in count():
print(num)
sleep(1)
thread = Thread(target=target)
thread.start()
sleep(5)
pthread_kill(thread.ident, SIGTSTP)
result
0
1
2
3
4
[14]+ Stopped

Run only one Instance of a Thread

I am pretty new to Python and have a question about threading.
I have one function that is called pretty often. This function starts another function in a new Thread.
def calledOften(id):
t = threading.Thread(target=doit, args=(id))
t.start()
def doit(arg):
while true:
#Long running function that is using arg
When calledOften is called everytime a new Thread is created. My goal is to always terminate the last running thread --> At all times there should be only one running doit() Function.
What I tried:
How to stop a looping thread in Python?
def calledOften(id):
t = threading.Thread(target=doit, args=(id,))
t.start()
time.sleep(5)
t.do_run = False
This code (with a modified doit Function) worked for me to stop the thread after 5 seconds.
but i can not call t.do_run = False before I start the new thread... Thats pretty obvious because it is not defined...
Does somebody know how to stop the last running thread and start a new one?
Thank you ;)
I think you can decide when to terminate the execution of a thread from inside the thread by yourself. That should not be creating any problems for you. You can think of a Threading manager approach - something like below
import threading
class DoIt(threading.Thread):
def __init__(self, id, stop_flag):
super().__init__()
self.id = id
self.stop_flag = stop_flag
def run(self):
while not self.stop_flag():
pass # do something
class CalledOftenManager:
__stop_run = False
__instance = None
def _stop_flag(self):
return CalledOftenManager.__stop_run
def calledOften(self, id):
if CalledOftenManager.__instance is not None:
CalledOftenManager.__stop_run = True
while CalledOftenManager.__instance.isAlive():
pass # wait for the thread to terminate
CalledOftenManager.__stop_run = False
CalledOftenManager.__instance = DoIt(id, CalledOftenManager._stop_flag)
CalledOftenManager.__instance.start()
# Call Manager always
CalledOftenManager.calledOften(1)
CalledOftenManager.calledOften(2)
CalledOftenManager.calledOften(3)
Now, what I tried here is to make a controller for calling the thread DoIt. Its one approach to achieve what you need.

How to end with a thread from the main thread?

I'm looking for this question online but I can not find any way to do it directly I'm trying the following
class Test(Thread):
def __init__(self):
Thread.__init__(self)
def run(self):
for i in range(3):
time.sleep(1)
print(i)
def main():
test = Test()
test.start()
del test
time.sleep(5)
print('end')
main()
the only way to stop the thread is from the run method when the code ends but I can not find any way to end the thread.
You can't. All you can do is ask it nicely (by implementing some sort of inter thread communication like a threading.Queue object, then making your thread check it for instructions) and hope for the best.
You can use this simple approach to stop/kill/end a child thread from the parent thread using some variable that is being checked in child thread periodically:
from threading import Thread
from time import time, sleep
class Test:
some_var = True
def __init__(self):
self.t = Thread(target=self.worker)
#self.t.setDaemon(True)
self.t.start()
def worker(self):
while self.some_var is True:
print("%s > I'm running" % str(time()))
test = Test()
sleep(2)
test.some_var = False
print("End!")
Let me know if I didn't understand your question, but I think I've answered your question "How to end with a thread from the main thread?".

How to end a program properly with threads?

I have a class which pulls items from a queue and then runs code on it. I also have code in the main function that adds items to the queue for processing.
For some reason, the program doesn't want to end properly.
Here is the code:
class Downloader(Thread):
def __init__(self, queue):
self.queue = queue
Thread.__init__(self)
def run(self):
while True:
download_file(self.queue.get())
self.queue.task_done()
def spawn_threads(Class, amount):
for t in xrange(amount):
thread = Class(queue)
thread.setDaemon = True
thread.start()
if __name__ == "__main__":
spawn_threads(Downloader, 20)
for item in items: queue.put(item)
#not the real code, but simplied because it isn't relevant
print 'Done scanning. Waiting for downloads to finish.'
queue.join()
print 'Done!'
The program waits for it to finish properly at the queue.join() and prints Done!, but something keeps the program from closing which i can't seem to put my finger on. I'd assume it was the while True loop, but i thought setting the threads as daemons was meant to solve that.
You are not using setDaemon() correctly. As a result, none of the Downloader threads are daemon threads.
Instead of
thread.setDaemon = True
write
thread.setDaemon(True)
or
thread.daemon = True
(The docs seem to imply that the latter is the preferred spelling in Python 2.6+.)

Python multiprocessing with twisted's reactor

I am working on a xmlrpc server which has to perform certain tasks cyclically. I am using twisted as the core of the xmlrpc service but I am running into a little problem:
class cemeteryRPC(xmlrpc.XMLRPC):
def __init__(self, dic):
xmlrpc.XMLRPC.__init__(self)
def xmlrpc_foo(self):
return 1
def cycle(self):
print "Hello"
time.sleep(3)
class cemeteryM( base ):
def __init__(self, dic): # dic is for cemetery
multiprocessing.Process.__init__(self)
self.cemRPC = cemeteryRPC()
def run(self):
# Start reactor on a second process
reactor.listenTCP( c.PORT_XMLRPC, server.Site( self.cemRPC ) )
p = multiprocessing.Process( target=reactor.run )
p.start()
while not self.exit.is_set():
self.cemRPC.cycle()
#p.join()
if __name__ == "__main__":
import errno
test = cemeteryM()
test.start()
# trying new method
notintr = False
while not notintr:
try:
test.join()
notintr = True
except OSError, ose:
if ose.errno != errno.EINTR:
raise ose
except KeyboardInterrupt:
notintr = True
How should i go about joining these two process so that their respective joins doesn't block?
(I am pretty confused by "join". Why would it block and I have googled but can't find much helpful explanation to the usage of join. Can someone explain this to me?)
Regards
Do you really need to run Twisted in a separate process? That looks pretty unusual to me.
Try to think of Twisted's Reactor as your main loop - and hang everything you need off that - rather than trying to run Twisted as a background task.
The more normal way of performing this sort of operation would be to use Twisted's .callLater or to add a LoopingCall object to the Reactor.
e.g.
from twisted.web import xmlrpc, server
from twisted.internet import task
from twisted.internet import reactor
class Example(xmlrpc.XMLRPC):
def xmlrpc_add(self, a, b):
return a + b
def timer_event(self):
print "one second"
r = Example()
m = task.LoopingCall(r.timer_event)
m.start(1.0)
reactor.listenTCP(7080, server.Site(r))
reactor.run()
Hey asdvawev - .join() in multiprocessing works just like .join() in threading - it's a blocking call the main thread runs to wait for the worker to shut down. If the worker never shuts down, then .join() will never return. For example:
class myproc(Process):
def run(self):
while True:
time.sleep(1)
Calling run on this means that join() will never, ever return. Typically to prevent this I'll use an Event() object passed into the child process to allow me to signal the child when to exit:
class myproc(Process):
def __init__(self, event):
self.event = event
Process.__init__(self)
def run(self):
while not self.event.is_set():
time.sleep(1)
Alternatively, if your work is encapsulated in a queue - you can simply have the child process work off of the queue until it encounters a sentinel (typically a None entry in the queue) and then shut down.
Both of these suggestions means that prior to calling .join() you can send set the event, or insert the sentinel and when join() is called, the process will finish it's current task and then exit properly.

Categories