Find the largest possible substring with k unique letters. (recursive) - python

I am trying to find max substring possible with k unique letters. Is there a way i can do it recursive by string partition?
My idea is to partition a string by cutting the last characters and if i find the first substring that contains k unique letters i return it.
For example k = 2, string = "abccd"
abccd ->
abcc, bccd ->
abc,bcc,bcc,ccd -> return bcc
def unique_l(sub, k):
u=0
visited = set()
for ch in sub:
if ch not in visited:
visited.add(ch)
u += 1
if u < k:
return -1
elif u == k:
return 1
else:
return 0
def find_sub(string,k):
if unique_l(string,k) == 1:
return string
if unique_l(string,k) == -1:
return "Not Found"
find_sub(string[0:len(string)-1],k) # Left
find_sub(string[1:len(string)],k) # Right
I know that i can do it in O(n) time using iteration but is there a way to do it recursive?

You can use recursion with a generator:
from collections import Counter
def group(d, k):
for i in range(len(d)):
for b in range(i, len(d)):
if len(set((_r:=d[i:b]))) == k:
yield _r
yield from group(_r, k)
r = max(group("abccd", 2), key=len)
Output:
'bcc'

Related

Code for consecutive strings works but can't pass random tests

In this problem, I'm given an array(list) strarr of strings and an integer k. My task is to return the first longest string consisting of k consecutive strings taken in the array. My code passed all the sample tests from CodeWars but can't seem to pass the random tests.
Here's the link to the problem.
I did it in two days. I found the max consecutively combined string first. Here's the code for that.
strarr = []
def longest_consec(strarr, k):
strarr.append('')
length = len(strarr)
cons_list = []
end = k
start = 0
freq = -length/2
final_string = []
largest = max(strarr, key=len, default='')
if k == 1:
return largest
elif 1 < k < length:
while(freq <= 1):
cons_list.append(strarr[start:end])
start += k-1
end += k-1
freq += 1
for index in cons_list:
final_string.append(''.join(index))
return max(final_string, key=len, default='')
else:
return ""
Since that didn't pass all the random tests, I compared the combined k strings on both sides of the single largest string. But, this way, the code doesn't account for the case when the single largest string is in the middle. Please help.
strarr = []
def longest_consec(strarr, k):
strarr.append('')
length = len(strarr)
largest = max(strarr, key=len, default='')
pos = int(strarr.index(largest))
if k == 1:
return largest
elif 1 < k < length:
prev_string = ''.join(strarr[pos+1-k:pos+1])
next_string = ''.join(strarr[pos:pos+k])
if len(prev_string) >= len(next_string):
res = prev_string
else:
res = next_string
return res
else:
return ""
print(longest_consec(["zone", "abigail", "theta", "form", "libe"], 2))
Let's start from the first statement of your function:
if k == 1:
while(p <= 1):
b.append(strarr[j:i])
j += 1
i += 1
p += 1
for w in b:
q.append(''.join(w))
return max(q, key=len)
Here q is finally equal strarr so you can shorten this code to:
if k == 1:
return max(strarr, key=len)
I see that second statement's condition checks if k value is between 1 and length of string array inclusive:
elif k > 1 and k <= 2*a:
...
If you want no errors remove equality symbol, last element of every array has index lesser than its length (equal exactly length of it minus 1).
Ceiling and division is not necessary in a definition, so you can shorten this:
a = ceil(len(strarr)/2)
into this:
a = len(strarr)
then your elif statement may look like below:
elif 1 < k < a: # Same as (k > 1 and k < a)
...
again, I see you want to concatenate (add) the longest string to k next strings using this code:
while(p <= 1):
b.append(strarr[j:i])
j += k-1
i += k-1
p += 1
for w in b:
q.append(''.join(w))
return max(q, key=len)
the more clearer way of doing this:
longest = max(strarr, key=len) # Longest string in array.
index = 0 # Index of the current item.
for string in strarr:
# If current string is equal the longest one ...
if string == longest:
# Join 'k' strings from current index (longest string index).
return ''.join(strarr[index:index + k])
index += 1 # Increase current index.
And the last statement which is:
elif k > 2*a or k<1:
return ""
if all previous statements failed then value is invalid so you can instead write:
return "" # Same as with else.
Now everything should work. I advice you learning the basics (especially lists, strings and slices), and please name your variables wisely so they are more readable.
You can try this as well
this has passed all the test cases on the platform you suggested.
def longest_consec(strarr, k):
i = 0
max_ = ""
res = ""
if (k<=0) or (k>len(strarr)):
return ""
while i<=(len(strarr)-k):
start = "".join(strarr[i:i+k])
max_ = max(max_, start, key=len)
if max_==start:
res=strarr[i:i+k]
i+=1
return max_
#output: ["zone", "abigail", "theta", "form", "libe", "zas", "theta", "abigail"], 2 -> abigailtheta
#output: ["zones", "abigail", "theta", "form", "libe", "zas", "theta", "abigail"],2 -> zonesabigail

Leetcode 5: Longes Palindrome Substring

I have been working on the LeetCode problem 5. Longest Palindromic Substring:
Given a string s, return the longest palindromic substring in s.
But I kept getting time limit exceeded on large test cases.
I used dynamic programming as follows:
dp[(i, j)] = True implies that s[i] to s[j] is a palindrome. So if s[i] == str[j] and dp[(i+1, j-1]) is set to True, that means S[i] to S[j] is also a palindrome.
How can I improve the performance of this implementation?
class Solution:
def longestPalindrome(self, s: str) -> str:
dp = {}
res = ""
for i in range(len(s)):
# single character is always a palindrome
dp[(i, i)] = True
res = s[i]
#fill in the table diagonally
for x in range(len(s) - 1):
i = 0
j = x + 1
while j <= len(s)-1:
if s[i] == s[j] and (j - i == 1 or dp[(i+1, j-1)] == True):
dp[(i, j)] = True
if(j-i+1) > len(res):
res = s[i:j+1]
else:
dp[(i, j)] = False
i += 1
j += 1
return res
I think the judging system for this problem is kind of too tight, it took some time to make it pass, improved version:
class Solution:
def longestPalindrome(self, s: str) -> str:
dp = {}
res = ""
for i in range(len(s)):
dp[(i, i)] = True
res = s[i]
for x in range(len(s)): # iterate till the end of the string
for i in range(x): # iterate up to the current state (less work) and for loop looks better here
if s[i] == s[x] and (dp.get((i + 1, x - 1), False) or x - i == 1):
dp[(i, x)] = True
if x - i + 1 > len(res):
res = s[i:x + 1]
return res
Here is another idea to improve the performance:
The nested loop will check over many cases where the DP value is already False for smaller ranges. We can avoid looking at large spans, by looking for palindromes from inside-out and stop extending the span as soon as it no longer is a palindrome. This process should be repeated at every offset in the source string, but this could still save some processing.
The inputs for which then most time is wasted, are those where there are lots of the same letters after each other, like "aaaaaaabcaaaaaaa". These lead to many iterations: each "a" or "aa" could be the center of a palindrome, but "growing" each of them is a waste of time. We should just consider all consecutive "a" together from the start and expand from there onwards.
You can specifically deal with these cases by first grouping consecutive letters which are the same. So the above example would be turned into 4 groups: a(7)b(1)c(1)a(7)
Then let each group in turn be taken as the center of a palindrome. For each group, "fan out" to potentially include one or more neighboring groups at both sides in "tandem". Continue fanning out until either the outside groups are not about the same letter, or they have a different group size. From that result you can derive what the largest palindrome is around that center. In particular, when the case is that the letters of the outer groups are the same, but not their sizes, you still include that letter at the outside of the palindrome, but with a repetition that corresponds to the least of these two mismatching group sizes.
Here is an implementation. I used named tuples to make it more readable:
from itertools import groupby
from collections import namedtuple
Group = namedtuple("Group", "letter,size,end")
class Solution:
def longestPalindrome(self, s: str) -> str:
longest = ""
x = 0
groups = [Group(group[0], len(group), x := x + len(group)) for group in
("".join(group[1]) for group in groupby(s))]
for i in range(len(groups)):
for j in range(0, min(i+1, len(groups) - i)):
if groups[i - j].letter != groups[i + j].letter:
break
left = groups[i - j]
right = groups[i + j]
if left.size != right.size:
break
size = right.end - (left.end - left.size) - abs(left.size - right.size)
if size > len(longest):
x = left.end - left.size + max(0, left.size - right.size)
longest = s[x:x+size]
return longest
Alternatively, you can try this approach, it seems to be faster than 96% Python submission.
def longestPalindrome(self, s: str) -> str:
N = len(s)
if N == 0:
return 0
max_len, start = 1, 0
for i in range(N):
df = i - max_len
if df >= 1 and s[df-1: i+1] == s[df-1: i+1][::-1]:
start = df - 1
max_len += 2
continue
if df >= 0 and s[df: i+1] == s[df: i+1][::-1]:
start= df
max_len += 1
return s[start: start + max_len]
If you want to improve the performance, you should create a variable for len(s) at the beginning of the function and use it. That way instead of calling len(s) 3 times, you would do it just once.
Also, I see no reason to create a class for this function. A simple function will outrun a class method, albeit very slightly.

determining if a string is a k-palindrome by not only removing first and last characters

I was just writing a program to determine if a given string is a palindrome when at most n letters are removed from it. I came up with a program in python which works but only by removing the first or last characters of the string recursively. It does not remove/ check what happens when you remove characters which are not on one of the ends. I was wondering how I could improve my program so that it does check all possibilities. This is my code so far:
def palindromecheck(s,n):
#print(s)
#print(n)
if (len(s)) <=1:
return True
if n==0:
return False
while s[0] == s[(len(s)-1)]:
s=s[1:-1]
if len(s) <= 1:
return True
return palindromecheck((s[:-1]),(n-1)) or palindromecheck((s[1:]),(n-1))
This is a typical DP problem. You could try to use DP (memo() helper funtion to save the repetitions). The idea is to find the longest palindromic subsequence of the given string. Then
|lps - original string| <= k,
conclude that the string is k-palindrome.
def checkPalindrome(s: str, k: int) -> bool:
# memo to save the repeatition
memo = {}
def helper(start, end):
if start >= end: return 0 # <= 1 char is a palindrome
if (start, end) in memo:
return memo[(start, end)]
if s[start] == s[end]:
result = helper(start + 1, end - 1)
else:
result = 1 + min(helper(start + 1, end), \
helper(start, end - 1))
memo[(start, end)] = result
return result
return helper(0, len(s) - 1) <= k
Alternatively, you can use lru_chache for the intermediate results:
from functools import lru_cache
from typing import List
def checkPalindrome(w: str, k: int) -> bool:
#lru_cache(maxsize=None)
def helper(s, e):
if s > e: return 0
if w[s] != w[e]:
return 1 + min(helper(s+1, e), \
helper(s, e-1))
else:
return helper(s+1, e-1)
return helper(0, len(w)-1) <= k
w = "asparagus"
k = 4
print(checkPalindrome(w, k))

Finding adjacent pairs of characters in a string using recursion

I have to write a program that uses a recursive function to count the number of pairs of repeated characters in a string, and pairs of characters cannot overlap.
Say, for instance, I input the string "Hello, Sabeena". I need the output to be "2", one for the pair of ls and one for the pair of es.
This is what I have tried, but there is no output.
message = input("Enter a message:\n")
pairs = 0
k = 0
if len(message) == k:
return("Number of pairs:",pairs)
else:
if message[k] == message[k+1]:
pairs = pairs + 1
k = k+1
else:
k = k+1
Ideally, the program should look like this:
Enter a message:
Hello, Sabeena
Number of pairs: 2
Can anybody suggest where I'm going wrong?
Put the recursive code in a function (it can't really be considered recursive until it is), and return a recursive call to the function if you haven't reached your base case (k == len(message) - 1), incrementing k each time.
def find_adjacent(message, pairs, k):
if k == len(message) - 1: #subtract one to avoid getting a string index out of range error
return("Number of pairs:", pairs)
else:
return find_adjacent(message, pairs+1 if message[k]==message[k+1] else pairs, k+1)
if __name__ == "__main__":
message = "message" # change to input("Enter a message:\n")
pairs = 0
k = 0
m, p = find_adjacent(message, pairs, k)
print m, p
The above prints
Number of pairs: 1
If you fancy it a bit less compact and quite a bit more readable:
def find_adjacent(message, pairs, k):
if k == len(message)-1:
return("Number of pairs:", pairs)
elif message[k] == message[k+1]:
if k == 0:
return find_adjacent(message, pairs+1, k+1) # first letter of message, all good
elif message[k] != message[k-1]:
return find_adjacent(message, pairs+1, k+1) # not first letter, and this pair hasn't been counted before
else:
return find_adjacent(message, pairs, k+1) # this sequence has already been counted
else:
return find_adjacent(message, pairs, k+1)
Here's a recursive function that passes a new copy of the message, each time shorter.
This is what most recursive functions do: not memory-efficient but solving the problem in simpler ways than loop-based approaches. That's not the case here of course, but this is just an exercise.
def count_adj(message, adj, c):
"""Recursively counts the number of adjacent characters"""
if len(message) < 1:
return adj
else:
if c == message[0]:
adj += 1
return count_adj(message[1:], adj, message[0])
tests = ("Hello, Sabeeenaa", "Hi", "h", "HH", "HHH", "", " ", " ")
for t in tests:
print t, ":", count_adj(t, 0, '')
Results:
Hello, Sabeeenaa : 4
Hi : 0
h : 0
HH : 1
HHH : 2
: 0
: 0
: 1

Finding all possible permutations of a given string in python

I have a string. I want to generate all permutations from that string, by changing the order of characters in it. For example, say:
x='stack'
what I want is a list like this,
l=['stack','satck','sackt'.......]
Currently I am iterating on the list cast of the string, picking 2 letters randomly and transposing them to form a new string, and adding it to set cast of l. Based on the length of the string, I am calculating the number of permutations possible and continuing iterations till set size reaches the limit.
There must be a better way to do this.
The itertools module has a useful method called permutations(). The documentation says:
itertools.permutations(iterable[, r])
Return successive r length permutations of elements in the iterable.
If r is not specified or is None, then r defaults to the length of the
iterable and all possible full-length permutations are generated.
Permutations are emitted in lexicographic sort order. So, if the input
iterable is sorted, the permutation tuples will be produced in sorted
order.
You'll have to join your permuted letters as strings though.
>>> from itertools import permutations
>>> perms = [''.join(p) for p in permutations('stack')]
>>> perms
['stack', 'stakc', 'stcak', 'stcka', 'stkac', 'stkca', 'satck',
'satkc', 'sactk', 'sackt', 'saktc', 'sakct', 'sctak', 'sctka',
'scatk', 'scakt', 'sckta', 'sckat', 'sktac', 'sktca', 'skatc',
'skact', 'skcta', 'skcat', 'tsack', 'tsakc', 'tscak', 'tscka',
'tskac', 'tskca', 'tasck', 'taskc', 'tacsk', 'tacks', 'taksc',
'takcs', 'tcsak', 'tcska', 'tcask', 'tcaks', 'tcksa', 'tckas',
'tksac', 'tksca', 'tkasc', 'tkacs', 'tkcsa', 'tkcas', 'astck',
'astkc', 'asctk', 'asckt', 'asktc', 'askct', 'atsck', 'atskc',
'atcsk', 'atcks', 'atksc', 'atkcs', 'acstk', 'acskt', 'actsk',
'actks', 'ackst', 'ackts', 'akstc', 'aksct', 'aktsc', 'aktcs',
'akcst', 'akcts', 'cstak', 'cstka', 'csatk', 'csakt', 'cskta',
'cskat', 'ctsak', 'ctska', 'ctask', 'ctaks', 'ctksa', 'ctkas',
'castk', 'caskt', 'catsk', 'catks', 'cakst', 'cakts', 'cksta',
'cksat', 'cktsa', 'cktas', 'ckast', 'ckats', 'kstac', 'kstca',
'ksatc', 'ksact', 'kscta', 'kscat', 'ktsac', 'ktsca', 'ktasc',
'ktacs', 'ktcsa', 'ktcas', 'kastc', 'kasct', 'katsc', 'katcs',
'kacst', 'kacts', 'kcsta', 'kcsat', 'kctsa', 'kctas', 'kcast',
'kcats']
If you find yourself troubled by duplicates, try fitting your data into a structure with no duplicates like a set:
>>> perms = [''.join(p) for p in permutations('stacks')]
>>> len(perms)
720
>>> len(set(perms))
360
Thanks to #pst for pointing out that this is not what we'd traditionally think of as a type cast, but more of a call to the set() constructor.
You can get all N! permutations without much code
def permutations(string, step = 0):
# if we've gotten to the end, print the permutation
if step == len(string):
print "".join(string)
# everything to the right of step has not been swapped yet
for i in range(step, len(string)):
# copy the string (store as array)
string_copy = [character for character in string]
# swap the current index with the step
string_copy[step], string_copy[i] = string_copy[i], string_copy[step]
# recurse on the portion of the string that has not been swapped yet (now it's index will begin with step + 1)
permutations(string_copy, step + 1)
Here is another way of doing the permutation of string with minimal code based on bactracking.
We basically create a loop and then we keep swapping two characters at a time,
Inside the loop we'll have the recursion. Notice,we only print when indexers reaches the length of our string.
Example:
ABC
i for our starting point and our recursion param
j for our loop
here is a visual help how it works from left to right top to bottom (is the order of permutation)
the code :
def permute(data, i, length):
if i==length:
print(''.join(data) )
else:
for j in range(i,length):
#swap
data[i], data[j] = data[j], data[i]
permute(data, i+1, length)
data[i], data[j] = data[j], data[i]
string = "ABC"
n = len(string)
data = list(string)
permute(data, 0, n)
Stack Overflow users have already posted some strong solutions but I wanted to show yet another solution. This one I find to be more intuitive
The idea is that for a given string: we can recurse by the algorithm (pseudo-code):
permutations = char + permutations(string - char) for char in string
I hope it helps someone!
def permutations(string):
"""
Create all permutations of a string with non-repeating characters
"""
permutation_list = []
if len(string) == 1:
return [string]
else:
for char in string:
[permutation_list.append(char + a) for a in permutations(string.replace(char, "", 1))]
return permutation_list
Here's a simple function to return unique permutations:
def permutations(string):
if len(string) == 1:
return string
recursive_perms = []
for c in string:
for perm in permutations(string.replace(c,'',1)):
recursive_perms.append(c+perm)
return set(recursive_perms)
itertools.permutations is good, but it doesn't deal nicely with sequences that contain repeated elements. That's because internally it permutes the sequence indices and is oblivious to the sequence item values.
Sure, it's possible to filter the output of itertools.permutations through a set to eliminate the duplicates, but it still wastes time generating those duplicates, and if there are several repeated elements in the base sequence there will be lots of duplicates. Also, using a collection to hold the results wastes RAM, negating the benefit of using an iterator in the first place.
Fortunately, there are more efficient approaches. The code below uses the algorithm of the 14th century Indian mathematician Narayana Pandita, which can be found in the Wikipedia article on Permutation. This ancient algorithm is still one of the fastest known ways to generate permutations in order, and it is quite robust, in that it properly handles permutations that contain repeated elements.
def lexico_permute_string(s):
''' Generate all permutations in lexicographic order of string `s`
This algorithm, due to Narayana Pandita, is from
https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order
To produce the next permutation in lexicographic order of sequence `a`
1. Find the largest index j such that a[j] < a[j + 1]. If no such index exists,
the permutation is the last permutation.
2. Find the largest index k greater than j such that a[j] < a[k].
3. Swap the value of a[j] with that of a[k].
4. Reverse the sequence from a[j + 1] up to and including the final element a[n].
'''
a = sorted(s)
n = len(a) - 1
while True:
yield ''.join(a)
#1. Find the largest index j such that a[j] < a[j + 1]
for j in range(n-1, -1, -1):
if a[j] < a[j + 1]:
break
else:
return
#2. Find the largest index k greater than j such that a[j] < a[k]
v = a[j]
for k in range(n, j, -1):
if v < a[k]:
break
#3. Swap the value of a[j] with that of a[k].
a[j], a[k] = a[k], a[j]
#4. Reverse the tail of the sequence
a[j+1:] = a[j+1:][::-1]
for s in lexico_permute_string('data'):
print(s)
output
aadt
aatd
adat
adta
atad
atda
daat
data
dtaa
taad
tada
tdaa
Of course, if you want to collect the yielded strings into a list you can do
list(lexico_permute_string('data'))
or in recent Python versions:
[*lexico_permute_string('data')]
Here is another approach different from what #Adriano and #illerucis posted. This has a better runtime, you can check that yourself by measuring the time:
def removeCharFromStr(str, index):
endIndex = index if index == len(str) else index + 1
return str[:index] + str[endIndex:]
# 'ab' -> a + 'b', b + 'a'
# 'abc' -> a + bc, b + ac, c + ab
# a + cb, b + ca, c + ba
def perm(str):
if len(str) <= 1:
return {str}
permSet = set()
for i, c in enumerate(str):
newStr = removeCharFromStr(str, i)
retSet = perm(newStr)
for elem in retSet:
permSet.add(c + elem)
return permSet
For an arbitrary string "dadffddxcf" it took 1.1336 sec for the permutation library, 9.125 sec for this implementation and 16.357 secs for #Adriano's and #illerucis' version. Of course you can still optimize it.
Here's a slightly improved version of illerucis's code for returning a list of all permutations of a string s with distinct characters (not necessarily in lexicographic sort order), without using itertools:
def get_perms(s, i=0):
"""
Returns a list of all (len(s) - i)! permutations t of s where t[:i] = s[:i].
"""
# To avoid memory allocations for intermediate strings, use a list of chars.
if isinstance(s, str):
s = list(s)
# Base Case: 0! = 1! = 1.
# Store the only permutation as an immutable string, not a mutable list.
if i >= len(s) - 1:
return ["".join(s)]
# Inductive Step: (len(s) - i)! = (len(s) - i) * (len(s) - i - 1)!
# Swap in each suffix character to be at the beginning of the suffix.
perms = get_perms(s, i + 1)
for j in range(i + 1, len(s)):
s[i], s[j] = s[j], s[i]
perms.extend(get_perms(s, i + 1))
s[i], s[j] = s[j], s[i]
return perms
See itertools.combinations or itertools.permutations.
why do you not simple do:
from itertools import permutations
perms = [''.join(p) for p in permutations(['s','t','a','c','k'])]
print perms
print len(perms)
print len(set(perms))
you get no duplicate as you can see :
['stack', 'stakc', 'stcak', 'stcka', 'stkac', 'stkca', 'satck', 'satkc',
'sactk', 'sackt', 'saktc', 'sakct', 'sctak', 'sctka', 'scatk', 'scakt', 'sckta',
'sckat', 'sktac', 'sktca', 'skatc', 'skact', 'skcta', 'skcat', 'tsack',
'tsakc', 'tscak', 'tscka', 'tskac', 'tskca', 'tasck', 'taskc', 'tacsk', 'tacks',
'taksc', 'takcs', 'tcsak', 'tcska', 'tcask', 'tcaks', 'tcksa', 'tckas', 'tksac',
'tksca', 'tkasc', 'tkacs', 'tkcsa', 'tkcas', 'astck', 'astkc', 'asctk', 'asckt',
'asktc', 'askct', 'atsck', 'atskc', 'atcsk', 'atcks', 'atksc', 'atkcs', 'acstk',
'acskt', 'actsk', 'actks', 'ackst', 'ackts', 'akstc', 'aksct', 'aktsc', 'aktcs',
'akcst', 'akcts', 'cstak', 'cstka', 'csatk', 'csakt', 'cskta', 'cskat', 'ctsak',
'ctska', 'ctask', 'ctaks', 'ctksa', 'ctkas', 'castk', 'caskt', 'catsk', 'catks',
'cakst', 'cakts', 'cksta', 'cksat', 'cktsa', 'cktas', 'ckast', 'ckats', 'kstac',
'kstca', 'ksatc', 'ksact', 'kscta', 'kscat', 'ktsac', 'ktsca', 'ktasc', 'ktacs',
'ktcsa', 'ktcas', 'kastc', 'kasct', 'katsc', 'katcs', 'kacst', 'kacts', 'kcsta',
'kcsat', 'kctsa', 'kctas', 'kcast', 'kcats']
120
120
[Finished in 0.3s]
def permute(seq):
if not seq:
yield seq
else:
for i in range(len(seq)):
rest = seq[:i]+seq[i+1:]
for x in permute(rest):
yield seq[i:i+1]+x
print(list(permute('stack')))
All Possible Word with stack
from itertools import permutations
for i in permutations('stack'):
print(''.join(i))
permutations(iterable, r=None)
Return successive r length permutations of elements in the iterable.
If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permutations are generated.
Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeat values in each permutation.
This is a recursive solution with n! which accepts duplicate elements in the string
import math
def getFactors(root,num):
sol = []
# return condition
if len(num) == 1:
return [root+num]
# looping in next iteration
for i in range(len(num)):
# Creating a substring with all remaining char but the taken in this iteration
if i > 0:
rem = num[:i]+num[i+1:]
else:
rem = num[i+1:]
# Concatenating existing solutions with the solution of this iteration
sol = sol + getFactors(root + num[i], rem)
return sol
I validated the solution taking into account two elements, the number of combinations is n! and the result can not contain duplicates. So:
inpt = "1234"
results = getFactors("",inpt)
if len(results) == math.factorial(len(inpt)) | len(results) != len(set(results)):
print("Wrong approach")
else:
print("Correct Approach")
With recursive approach.
def permute(word):
if len(word) == 1:
return [word]
permutations = permute(word[1:])
character = word[0]
result = []
for p in permutations:
for i in range(len(p)+1):
result.append(p[:i] + character + p[i:])
return result
running code.
>>> permute('abc')
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']
Yet another initiative and recursive solution. The idea is to select a letter as a pivot and then create a word.
def find_premutations(alphabet):
words = []
word =''
def premute(new_word, alphabet):
if not alphabet:
words.append(word)
else:
for i in range(len(alphabet)):
premute(new_word=word + alphabet[i], alphabet=alphabet[0:i] + alphabet[i+1:])
premute(word, alphabet)
return words
# let us try it with 'abc'
a = 'abc'
find_premutations(a)
Output:
abc
acb
bac
bca
cab
cba
Here's a really simple generator version:
def find_all_permutations(s, curr=[]):
if len(s) == 0:
yield curr
else:
for i, c in enumerate(s):
for combo in find_all_permutations(s[:i]+s[i+1:], curr + [c]):
yield "".join(combo)
I think it's not so bad!
def f(s):
if len(s) == 2:
X = [s, (s[1] + s[0])]
return X
else:
list1 = []
for i in range(0, len(s)):
Y = f(s[0:i] + s[i+1: len(s)])
for j in Y:
list1.append(s[i] + j)
return list1
s = raw_input()
z = f(s)
print z
Here's a simple and straightforward recursive implementation;
def stringPermutations(s):
if len(s) < 2:
yield s
return
for pos in range(0, len(s)):
char = s[pos]
permForRemaining = list(stringPermutations(s[0:pos] + s[pos+1:]))
for perm in permForRemaining:
yield char + perm
from itertools import permutations
perms = [''.join(p) for p in permutations('ABC')]
perms = [''.join(p) for p in permutations('stack')]
def perm(string):
res=[]
for j in range(0,len(string)):
if(len(string)>1):
for i in perm(string[1:]):
res.append(string[0]+i)
else:
return [string];
string=string[1:]+string[0];
return res;
l=set(perm("abcde"))
This is one way to generate permutations with recursion, you can understand the code easily by taking strings 'a','ab' & 'abc' as input.
You get all N! permutations with this, without duplicates.
Everyone loves the smell of their own code. Just sharing the one I find the simplest:
def get_permutations(word):
if len(word) == 1:
yield word
for i, letter in enumerate(word):
for perm in get_permutations(word[:i] + word[i+1:]):
yield letter + perm
This program does not eliminate the duplicates, but I think it is one of the most efficient approaches:
s=raw_input("Enter a string: ")
print "Permutations :\n",s
size=len(s)
lis=list(range(0,size))
while(True):
k=-1
while(k>-size and lis[k-1]>lis[k]):
k-=1
if k>-size:
p=sorted(lis[k-1:])
e=p[p.index(lis[k-1])+1]
lis.insert(k-1,'A')
lis.remove(e)
lis[lis.index('A')]=e
lis[k:]=sorted(lis[k:])
list2=[]
for k in lis:
list2.append(s[k])
print "".join(list2)
else:
break
With Recursion
# swap ith and jth character of string
def swap(s, i, j):
q = list(s)
q[i], q[j] = q[j], q[i]
return ''.join(q)
# recursive function
def _permute(p, s, permutes):
if p >= len(s) - 1:
permutes.append(s)
return
for i in range(p, len(s)):
_permute(p + 1, swap(s, p, i), permutes)
# helper function
def permute(s):
permutes = []
_permute(0, s, permutes)
return permutes
# TEST IT
s = "1234"
all_permute = permute(s)
print(all_permute)
With Iterative approach (Using Stack)
# swap ith and jth character of string
def swap(s, i, j):
q = list(s)
q[i], q[j] = q[j], q[i]
return ''.join(q)
# iterative function
def permute_using_stack(s):
stk = [(0, s)]
permutes = []
while len(stk) > 0:
p, s = stk.pop(0)
if p >= len(s) - 1:
permutes.append(s)
continue
for i in range(p, len(s)):
stk.append((p + 1, swap(s, p, i)))
return permutes
# TEST IT
s = "1234"
all_permute = permute_using_stack(s)
print(all_permute)
With Lexicographically sorted
# swap ith and jth character of string
def swap(s, i, j):
q = list(s)
q[i], q[j] = q[j], q[i]
return ''.join(q)
# finds next lexicographic string if exist otherwise returns -1
def next_lexicographical(s):
for i in range(len(s) - 2, -1, -1):
if s[i] < s[i + 1]:
m = s[i + 1]
swap_pos = i + 1
for j in range(i + 1, len(s)):
if m > s[j] > s[i]:
m = s[j]
swap_pos = j
if swap_pos != -1:
s = swap(s, i, swap_pos)
s = s[:i + 1] + ''.join(sorted(s[i + 1:]))
return s
return -1
# helper function
def permute_lexicographically(s):
s = ''.join(sorted(s))
permutes = []
while True:
permutes.append(s)
s = next_lexicographical(s)
if s == -1:
break
return permutes
# TEST IT
s = "1234"
all_permute = permute_lexicographically(s)
print(all_permute)
This code makes sense to me. The logic is to loop through all characters, extract the ith character, perform the permutation on the other elements and append the ith character at the beginning.
If i'm asked to get all permutations manually for string ABC. I would start by checking all combinations of element A:
A AB
A BC
Then all combinations of element B:
B AC
B CA
Then all combinations of element C:
C AB
C BA
def permute(s: str):
n = len(s)
if n == 1: return [s]
if n == 2:
return [s[0]+s[1], s[1]+s[0]]
permutations = []
for i in range(0, n):
current = s[i]
others = s[:i] + s[i+1:]
otherPermutations = permute(others)
for op in otherPermutations:
permutations.append(current + op)
return permutations
Simpler solution using permutations.
from itertools import permutations
def stringPermutate(s1):
length=len(s1)
if length < 2:
return s1
perm = [''.join(p) for p in permutations(s1)]
return set(perm)
def permute_all_chars(list, begin, end):
if (begin == end):
print(list)
return
for current_position in range(begin, end + 1):
list[begin], list[current_position] = list[current_position], list[begin]
permute_all_chars(list, begin + 1, end)
list[begin], list[current_position] = list[current_position], list[begin]
given_str = 'ABC'
list = []
for char in given_str:
list.append(char)
permute_all_chars(list, 0, len(list) -1)
The itertools module in the standard library has a function for this which is simply called permutations.
import itertools
def minion_game(s):
vow ="aeiou"
lsword=[]
ta=[]
for a in range(1,len(s)+1):
t=list(itertools.permutations(s,a))
lsword.append(t)
for i in range(0,len(lsword)):
for xa in lsword[i]:
if vow.startswith(xa):
ta.append("".join(xa))
print(ta)
minion_game("banana")

Categories