Refresh python process multiple times within a test in pytest - python

I have an interesting use case, where I have values that are inserted into an array in a random order. I then generate the hash of this array (using hashlib). Now, I want to make sure that this hash is always the same between different runs, so I am sorting this array before I hash it, and that solves the problem perfectly. (Note: this is an abstraction of the problem. It's not exactly like that, so replacing arrays by sets, or similar solutions are not what I'm looking for here).
Now, here is where my actual problem is: To prevent regressions, I want to add a test that reruns the process multiple times and ensures that the hash is the same between all those runs. The problem is, there is no way to rerun that process multiple times within the unit test. If I rerun it, the random order will always be the same (maybe because a random seed is being reused or something), negating the value of the test in the first place.
Thus, is there a way to run the test multiple times with a totally fresh Python process, in order to compare the outputs of the runs of the test, and make sure they are equal?

We were finally able to solve the problem with this:
import multiprocessing
def _generate_hash(queue: Queue):
// execute the hash generation process
def test_hash_is_consistent_across_multiple_runs():
multiprocessing.set_start_method("spawn")
q = multiprocessing.Queue()
for i in range(5):
p = multiprocessing.Process(target=_generate_hash, args=(q))
p.start()
p.join()
previous_hash = None
for i in range(5):
current_hash = q.get()
if previous_hash:
assert current_hash == previous_hash
previous_hash = current_hash
The trick is by using spawn, which will create a fresh python process for each created process.

Related

Python: how to parallelizing a simple loop with MPI

I need to rewrite a simple for loop with MPI cause each step is time consuming. Lets say I have a list including several np.array and I want to apply some computation on each array. For example:
def myFun(x):
return x+2 # simple example, the real one would be complicated
dat = [np.random.rand(3,2), np.random.rand(3,2),np.random.rand(3,2),np.random.rand(3,2)] # real data would be much larger
result = []
for item in dat:
result.append(myFun(item))
Instead of using the simple for loop above, I want to use MPI to run the 'for loop' part of the above code in parallel with 24 different nodes also I want the order of items in the result list follow the same with dat list.
Note The data is read from other file which can be treated 'fix' for each processor.
I haven't use mpi before, so this stucks me for a while.
For simplicity let us assume that the master process (the process with rank = 0) is the one that will read the entire file from disk into memory. This problem can be solved only knowing about the following MPI routines, Get_size(), Get_rank(), scatter, and gather.
The Get_size():
Returns the number of processes in the communicator. It will return
the same number to every process.
The Get_rank():
Determines the rank of the calling process in the communicator.
In MPI to each process is assigned a rank, that varies from 0 to N - 1, where N is the total number of processes running.
The scatter:
MPI_Scatter involves a designated root process sending data to all
processes in a communicator. The primary difference between MPI_Bcast
and MPI_Scatter is small but important. MPI_Bcast sends the same piece
of data to all processes while MPI_Scatter sends chunks of an array to
different processes.
and the gather:
MPI_Gather is the inverse of MPI_Scatter. Instead of spreading
elements from one process to many processes, MPI_Gather takes elements
from many processes and gathers them to one single process.
Obviously, you should first follow a tutorial and read the MPI documentation to understand its parallel programming model, and its routines. Otherwise, you will find it very hard to understand how it all works. That being said your code could look like the following:
from mpi4py import MPI
def myFun(x):
return x+2 # simple example, the real one would be complicated
comm = MPI.COMM_WORLD
rank = comm.Get_rank() # get your process ID
data = # init the data
if rank == 0: # The master is the only process that reads the file
data = # something read from file
# Divide the data among processes
data = comm.scatter(data, root=0)
result = []
for item in data:
result.append(myFun(item))
# Send the results back to the master processes
newData = comm.gather(result,root=0)
In this way, each process will work (in parallel) in only a certain chunk of the data. After having finish their work, each process send back to the master process their data chunks (i.e., comm.gather(result,root=0)). This is just a toy example, now it is up to you to improved according to your testing environment and code.
You could either go the low-level MPI way as shown in the answer of #dreamcrash or you could go for a more Pythonic solution that uses an executor pool very similar to the one provided by the standard Python multiprocessing module.
First, you need to turn your code into a more functional-style one by noticing that you are actually doing a map operation, which applies myFun to each element of dat:
def myFun(x):
return x+2 # simple example, the real one would be complicated
dat = [
np.random.rand(3,2), np.random.rand(3,2), np.random.rand(3,2), np.random.rand(3,2)
] # real data would be much larger
result = map(myFun, dat)
map here runs sequentially in one Python interpreter process.
To run that map in parallel with the multiprocessing module, you only need to instantiate a Pool object and then call its map() method in place of the Python map() function:
from multiprocessing import Pool
def myFun(x):
return x+2 # simple example, the real one would be complicated
if __name__ == '__main__':
dat = [
np.random.rand(3,2), np.random.rand(3,2), np.random.rand(3,2), np.random.rand(3,2)
] # real data would be much larger
with Pool() as pool:
result = pool.map(myFun, dat)
Here, Pool() creates a new executor pool with as many interpreter processes as there are logical CPUs as seen by the OS. Calling the map() method of the pool runs the mapping in parallel by sending items to the different processes in the pool and waiting for completion. Since the worker processes import the Python script as a module, it is important to have the code that was previously at the top level moved under the if __name__ == '__main__': conditional so it doesn't run in the workers too.
Using multiprocessing.Pool() is very convenient because it requires only a slight change of the original code and the module handles for you all the work scheduling and the required data movement to and from the worker processes. The problem with multiprocessing is that it only works on a single host. Fortunately, mpi4py provides a similar interface through the mpi4py.futures.MPIPoolExecutor class:
from mpi4py.futures import MPIPoolExecutor
def myFun(x):
return x+2 # simple example, the real one would be complicated
if __name__ == '__main__':
dat = [
np.random.rand(3,2), np.random.rand(3,2), np.random.rand(3,2), np.random.rand(3,2)
] # real data would be much larger
with MPIPoolExecutor() as pool:
result = pool.map(myFun, dat)
Like with the Pool object from the multiprocessing module, the MPI pool executor handles for you all the work scheduling and data movement.
There are two ways to run the MPI program. The first one starts the script as an MPI singleton and then uses the MPI process control facility to spawn a child MPI job with all the pool workers:
mpiexec -n 1 python program.py
You also need to specify the MPI universe size (the total number of MPI ranks in both the main and all child jobs). The specific way of doing so differs between the implementations, so you need to consult your implementation's manual.
The second option is to launch directly the desired number of MPI ranks and have them execute the mpi4py.futures module itself with the script name as argument:
mpiexec -n 24 python -m mpi4py.futures program.py
Keep in mind that no mater which way you launch the script one MPI rank will be reserved for the controller and will not be running mapping tasks. You are aiming at running on 24 hosts, so you should be having plenty of CPU cores and can probably afford to have one reserved. Or you could instruct MPI to oversubscribe the first host with one more rank.
One thing to note with both multiprocessing.Pool and mpi4py.futures.MPIPoolExecutor is that the map() method guarantees the order of the items in the output array, but it doesn't guarantee the order in which the different items are evaluated. This shouldn't be a problem in most cases.
A word of advise. If your data is actually chunks read from a file, you may be tempted to do something like this:
if __name__ == '__main__':
data = read_chunks()
with MPIPoolExecutor() as p:
result = p.map(myFun, data)
Don't do that. Instead, if possible, e.g., if enabled by the presence of a shared (and hopefully parallel) filesytem, delegate the reading to the workers:
NUM_CHUNKS = 100
def myFun(chunk_num):
# You may need to pass the value of NUM_CHUNKS to read_chunk()
# for it to be able to seek to the right position in the file
data = read_chunk(NUM_CHUNKS, chunk_num)
return ...
if __name__ == '__main__':
chunk_nums = range(NUM_CHUNKS) # 100 chunks
with MPIPoolExecutor() as p:
result = p.map(myFun, chunk_nums)

How to share numpy random state of a parent process with child processes?

I set numpy random seed at the beginning of my program. During the program execution I run a function multiple times using multiprocessing.Process. The function uses numpy random functions to draw random numbers. The problem is that Process gets a copy of the current environment. Therefore, each process is running independently and they all start with the same random seed as the parent environment.
So my question is how can I share the random state of numpy in the parent environment with the child process environment? Just note that I want to use Process for my work and need to use a separate class and do import numpy in that class separately. I tried using multiprocessing.Manager to share the random state but it seems that things do not work as expected and I always get the same results. Also, it does not matter if I move the for loop inside drawNumpySamples or leave it in main.py; I still cannot get different numbers and the random state is always the same. Here's a simplified version of my code:
# randomClass.py
import numpy as np
class myClass(self):
def __init__(self, randomSt):
print ('setup the object')
np.random.set_state(randomSt)
def drawNumpySamples(self, idx)
np.random.uniform()
And in the main file:
# main.py
import numpy as np
from multiprocessing import Process, Manager
from randomClass import myClass
np.random.seed(1) # set random seed
mng = Manager()
randomState = mng.list(np.random.get_state())
myC = myClass(randomSt = randomState)
for i in range(10):
myC.drawNumpySamples() # this will always return the same results
Note: I use Python 3.5. I also posted an issue on Numpy's GitHub page. Just sending the issue link here for future reference.
Even if you manage to get this working, I don’t think it will do what you want. As soon as you have multiple processes pulling from the same random state in parallel, it’s no longer deterministic which order they each get to the state, meaning your runs won’t actually be repeatable. There are probably ways around that, but it seems like a nontrivial problem.
Meanwhile, there is a solution that should solve both the problem you want and the nondeterminism problem:
Before spawning a child process, ask the RNG for a random number, and pass it to the child. The child can then seed with that number. Each child will then have a different random sequence from other children, but the same random sequence that the same child got if you rerun the entire app with a fixed seed.
If your main process does any other RNG work that could depend non-deterministically on the execution of the children, you'll need to pre-generate the seeds for all of your child processes, in order, before pulling any other random numbers.
As senderle pointed out in a comment: If you don't need multiple distinct runs, but just one fixed run, you don't even really need to pull a seed from your seeded RNG; just use a counter starting at 1 and increment it for each new process, and use that as a seed. I don't know if that's acceptable, but if it is, it's hard to get simpler than that.
As Amir pointed out in a comment: a better way is to draw a random integer every time you spawn a new process and pass that random integer to the new process to set the numpy's random seed with that integer. This integer can indeed come from np.random.randint().
You need to update the state of the Manager each time you get a random number:
import numpy as np
from multiprocessing import Manager, Pool, Lock
lock = Lock()
mng = Manager()
state = mng.list(np.random.get_state())
def get_random(_):
with lock:
np.random.set_state(state)
result = np.random.uniform()
state[:] = np.random.get_state()
return result
np.random.seed(1)
result1 = Pool(10).map(get_random, range(10))
# Compare with non-parallel version
np.random.seed(1)
result2 = [np.random.uniform() for _ in range(10)]
# result of Pool.map may be in different order
assert sorted(result1) == sorted(result2)
Fortunately, according to the documentation, you can access the complete state of the numpy random number generator using get_state and set it again using set_state. The generator itself uses the Mersenne Twister algorithm (see the RandomState part of the documentation).
This means you can do anything you want, though whether it will be good and efficient is a different question entirely. As abarnert points out, no matter how you share the parent's state—this could use Alex Hall's method, which looks correct—your sequencing within each child will depend on the order in which each child draws random numbers from the MT state machine.
It would perhaps be better to build a large pool of pseudo-random numbers for each child, saving the start state of the entire generator once at the start. Then each child can draw a PRNG value until its particular pool runs out, after which you have the child coordinate with the parent for the next pool. The parent enumerates which children got which "pool'th" number. The code would look something like this (note that it would make sense to turn this into an infinite generator with a next method):
class PrngPool(object):
def __init__(self, child_id, shared_state):
self._child_id = child_id
self._shared_state = shared_state
self._numbers = []
def next_number(self):
if not self.numbers:
self._refill()
return self.numbers.pop(0) # XXX inefficient
def _refill(self):
# ... something like Alex Hall's lock/gen/unlock,
# but fill up self._numbers with the next 1000 (or
# however many) numbers after adding our ID and
# the index "n" of which n-through-n+999 numbers
# we took here. Any other child also doing a
# _refill will wait for the lock and get an updated
# index n -- eg, if we got numbers 3000 to 3999,
# the next child will get numbers 4000 to 4999.
This way there is not nearly as much communication through Manager items (MT state and our ID-and-index added to the "used" list). At the end of the process, it's possible to see which children used which PRNG values, and to re-generate those PRNG values if needed (remember to record the full MT internal start state!).
Edit to add: The way to think about this is like this: the MT is not actually random. It is periodic with a very long period. When you use any such RNG, your seed is simply a starting point within the period. To get repeatability you must use non-random numbers, such as a set from a book. There is a (virtual) book with every number that comes out of the MT generator. We're going to write down which page(s) of this book we used for each group of computations, so that we can re-open the book to those pages later and re-do the same computations.
You can use np.random.SeedSequence. See https://numpy.org/doc/stable/reference/random/parallel.html:
from numpy.random import SeedSequence, default_rng
ss = SeedSequence(12345)
# Spawn off 10 child SeedSequences to pass to child processes.
child_seeds = ss.spawn(10)
streams = [default_rng(s) for s in child_seeds]
This way, each of you thread/process will get a statistically independent random generator.

Dask: How to efficiently distribute a genetic search algorithm?

I've implemented a genetic search algorithm and tried to parallelise it, but getting terrible performance (worse than single threaded). I suspect this is due to communication overhead.
I have provided pseudo-code below, but in essence the genetic algorithm creates a large pool of "Chromosome" objects, then runs many iterations of:
Score each individual chromosome based on how it performs in a 'world.' The world remains static across iterations.
Randomly selects a new population based on their scores calculated in the previous step
Go to step 1 for n iterations
The scoring algorithm (step 1) is the major bottleneck, hence it seemed natural to distribute out the processing of this code.
I have run into a couple of issues I hoped I could get help with:
How can I link the calculated score with the object that was passed to the scoring function by map(), i.e. link each Future holding a score back to a Chromosome? I've done this in a very clunky way by having the calculate_scores() method return the object, but in reality all I need is to send a float back if there is a better way to maintain the link.
The parallel processing of the scoring function is working okay, though takes a long time for map() to iterate through all the objects. However, the subsequent calls to draw_chromosome_from_pool() run very slowly compared to the single-threaded version to the point that I've not yet seen it complete. I have no idea what is causing this as the method always completes quickly in the single-threaded version. Is there some IPC going on to pull the chromosomes back to the local process, even after all the futures have completed? Is the local process de-prioritised in some way?
I am worried that the overall iterative nature of building/rebuilding the pool each cycle is going to cause an enormous amount of data transmission to the workers. The question at the root of this concern: what and when does Dask actually send data back and forth to the worker pool. i.e. when does Environment() get distributed out vs. Chromosome(), and how/when do results come back? I've read the docs but either haven't found the right detail, or am too stupid to understand.
Idealistically, I think (but open to correction) what I want is a distributed architecture where each worker holds the Environment() data locally on a 'permanent' basis, then Chromosome() instance data is distributed for scoring with little duplicated back/forth of unchanged Chromosome() data between iterations.
Very long post, so if you have taken the time to read this, thank you already!
class Chromosome(object): # Small size: several hundred bytes per instance
def get_score():
# Returns a float
def set_score(i):
# Stores a a float
class Environment(object): # Large size: 20-50Mb per instance, but only one instance
def calculate_scores(chromosome):
# Slow calculation using attributes from chromosome and instance data
chromosome.set_score(x)
return chromosome
class Evolver(object):
def draw_chromosome_from_pool(self, max_score):
while True:
individual = np.random.choice(self.chromosome_pool)
selection_chance = np.random.uniform()
if selection_chance < individual.get_score() / max_score:
return individual
def run_evolution()
self.dask_client = Client()
self.chromosome_pool = list()
for i in range(10000):
self.chromosome_pool.append( Chromosome() )
world_data = LoadWorldData() # Returns a pandas Dataframe
self.world = Environment(world_data)
iterations = 1000
for i in range(iterations):
futures = self.dask_client.map(self.world.calculate_scores, self.chromosome_pool)
for future in as_completed(futures):
c = future.result()
highest_score = max(highest_score, c.get_score())
new_pool = set()
while len(new_pool)<self.pool_size:
mother = self.draw_chromosome_from_pool(highest_score)
# do stuff to build a new pool
Yes, each time you call the line
futures = self.dask_client.map(self.world.calculate_scores, self.chromosome_pool)
you are serialising self.world, which is large. You could do this just once before the loop with
future_world = client.scatter(self.world, broadcast=True)
and then in the loop
futures = self.dask_client.map(lambda ch: Environment.calculate_scores(future_world, ch), self.chromosome_pool)
will use the copies already on the workers (or a simple function that does the same). The point is that future_world is just a pointer to stuff already distributed, but dask takes care of this for you.
On the issue of which chromosome is which: using as_completed breaks the order that you submitted them to map, but this is not necessary for your code. You could have used wait to process when all the work was done, or simply iterate over the future.result()s (which will wait for each task to be done), and then you will retain the ordering in the chromosome_pool.

How to make faster my script on python?

I have a script in python but it takes more than 20 hours to run until the end.
Since my code is pretty big, I will post a simplified one.
The first part of the code:
flag = 1
mydic = {}
for i in mylist:
mydic[flag] = myfunction(i)
flag += 1
mylist has more than 700 entries and each time I call myfunction it run for around 20sec.
So, I was thinking if I can use paraller programming to split the iteration into two groups and run it simultaneously. Is that possible and will I need the half time than before?
The second part of the code:
mymatrix = []
for n1 in range(0,flag):
mat = []
for n2 in range(0,flag):
if n1 >= n2:
mat.append(0)
else:
res = myfunction2(mydic(n1),mydic(n2))
mat.append(res)
mymatrix.append(mat)
So, if mylist has 700 entries, I want to create a 700x700 matrix where it is upper triangular matrix. But the myfunction2() needs around 30sec each time. I don't know if I can use parallel programming here too.
I cannot simplify the myfunction() and myfunction2() since they are functions where I call an external api and return the results.
Do you have any suggestion of how can I change it to make it faster.
Based on your comments, I think it's very likely that the 30seconds of time is mostly due to external API calls. I would add some timing code to test what portions of your code are actually responsible for the slowness.
If it is from the external API calls, there are some easy fixes. The external API calls block, so you'll get a speedup if you can move to a parallel model ( though 30s of blocking sounds huge to me ).
I think it would be easiest to create a quick "task list" by having the output of 2 loops be a matrix of arguments to pass into a function. Then I'd pipe them into Celery to run the tasks. That should give you a decent speedup with a minimal amount of work.
You would probably save a lot more time with the threading or multiprocessing modules to run tasks (or sections) , or even write it all in Twisted python - but that usually takes longer than a simple celery function.
The one caveat with the Celery approach is that you'll be dispatching a lot of work - so you'll have to have some functionality to poll for results. That could be a while loop that just sleeps(10) and repeats itself until celery has a result for every task. If you do it in Twisted, you can access/track results on finish. I've never had to do something like this with multiprocessing, so don't know how that would fit in.
how about using a generator for the second part instead of one of the for loops
def fn():
for n1 in range(0, flag):
yield n1
generate = fn()
while True:
a = next(generate)
for n2 in range(0, flag):
if a >= n2:
mat.append(0)
else:
mat.append(myfunction2(mydic(a),mydic(n2))
mymatrix.append(mat)

Python multiprocess with pool workers - memory use optimization

I have a fuzzy string matching script that looks for some 30K needles in a haystack of 4 million company names. While the script works fine, my attempts at speeding up things via parallel processing on an AWS h1.xlarge failed as I'm running out of memory.
Rather than trying to get more memory as explained in response to my previous question, I'd like to find out how to optimize the workflow - I'm fairly new to this so there should be plenty of room. Btw, I've already experimented with queues (also worked but ran into the same MemoryError, plus looked through a bunch of very helpful SO contributions, but not quite there yet.
Here's what seems most relevant of the code. I hope it sufficiently clarifies the logic - happy to provide more info as needed:
def getHayStack():
## loads a few million company names into id: name dict
return hayCompanies
def getNeedles(*args):
## loads subset of 30K companies into id: name dict (for allocation to workers)
return needleCompanies
def findNeedle(needle, haystack):
""" Identify best match and return results with score """
results = {}
for hayID, hayCompany in haystack.iteritems():
if not isnull(haystack[hayID]):
results[hayID] = levi.setratio(needle.split(' '),
hayCompany.split(' '))
scores = list(results.values())
resultIDs = list(results.keys())
needleID = resultIDs[scores.index(max(scores))]
return [needleID, haystack[needleID], max(scores)]
def runMatch(args):
""" Execute findNeedle and process results for poolWorker batch"""
batch, first = args
last = first + batch
hayCompanies = getHayStack()
needleCompanies = getTargets(first, last)
needles = defaultdict(list)
current = first
for needleID, needleCompany in needleCompanies.iteritems():
current += 1
needles[targetID] = findNeedle(needleCompany, hayCompanies)
## Then store results
if __name__ == '__main__':
pool = Pool(processes = numProcesses)
totalTargets = len(getTargets('all'))
targetsPerBatch = totalTargets / numProcesses
pool.map_async(runMatch,
itertools.izip(itertools.repeat(targetsPerBatch),
xrange(0,
totalTargets,
targetsPerBatch))).get(99999999)
pool.close()
pool.join()
So I guess the questions are: How can I avoid loading the haystack for all workers - e.g. by sharing the data or taking a different approach like dividing the much larger haystack across workers rather than the needles? How can I otherwise improve memory usage by avoiding or eliminating clutter?
Your design is a bit confusing. You're using a pool of N workers, and then breaking your M jobs work up into N tasks of size M/N. In other words, if you get that all correct, you're simulating worker processes on top of a pool built on top of worker processes. Why bother with that? If you want to use processes, just use them directly. Alternatively, use a pool as a pool, sends each job as its own task, and use the batching feature to batch them up in some appropriate (and tweakable) way.
That means that runMatch just takes a single needleID and needleCompany, and all it does is call findNeedle and then do whatever that # Then store results part is. And then the main program gets a lot simpler:
if __name__ == '__main__':
with Pool(processes=numProcesses) as pool:
results = pool.map_async(runMatch, needleCompanies.iteritems(),
chunkSize=NUMBER_TWEAKED_IN_TESTING).get()
Or, if the results are small, instead of having all of the processes (presumably) fighting over some shared resulting-storing thing, just return them. Then you don't need runMatch at all, just:
if __name__ == '__main__':
with Pool(processes=numProcesses) as pool:
for result in pool.imap_unordered(findNeedle, needleCompanies.iteritems(),
chunkSize=NUMBER_TWEAKED_IN_TESTING):
# Store result
Or, alternatively, if you do want to do exactly N batches, just create a Process for each one:
if __name__ == '__main__':
totalTargets = len(getTargets('all'))
targetsPerBatch = totalTargets / numProcesses
processes = [Process(target=runMatch,
args=(targetsPerBatch,
xrange(0,
totalTargets,
targetsPerBatch)))
for _ in range(numProcesses)]
for p in processes:
p.start()
for p in processes:
p.join()
Also, you seem to be calling getHayStack() once for each task (and getNeedles as well). I'm not sure how easy it would be to end up with multiple copies of this live at the same time, but considering that it's the largest data structure you have by far, that would be the first thing I try to rule out. In fact, even if it's not a memory-usage problem, getHayStack could easily be a big performance hit, unless you're already doing some kind of caching (e.g., explicitly storing it in a global or a mutable default parameter value the first time, and then just using it), so it may be worth fixing anyway.
One way to fix both potential problems at once is to use an initializer in the Pool constructor:
def initPool():
global _haystack
_haystack = getHayStack()
def runMatch(args):
global _haystack
# ...
hayCompanies = _haystack
# ...
if __name__ == '__main__':
pool = Pool(processes=numProcesses, initializer=initPool)
# ...
Next, I notice that you're explicitly generating lists in multiple places where you don't actually need them. For example:
scores = list(results.values())
resultIDs = list(results.keys())
needleID = resultIDs[scores.index(max(scores))]
return [needleID, haystack[needleID], max(scores)]
If there's more than a handful of results, this is wasteful; just use the results.values() iterable directly. (In fact, it looks like you're using Python 2.x, in which case keys and values are already lists, so you're just making an extra copy for no good reason.)
But in this case, you can simplify the whole thing even farther. You're just looking for the key (resultID) and value (score) with the highest score, right? So:
needleID, score = max(results.items(), key=operator.itemgetter(1))
return [needleID, haystack[needleID], score]
This also eliminates all the repeated searches over score, which should save some CPU.
This may not directly solve the memory problem, but it should hopefully make it easier to debug and/or tweak.
The first thing to try is just to use much smaller batches—instead of input_size/cpu_count, try 1. Does memory usage go down? If not, we've ruled that part out.
Next, try sys.getsizeof(_haystack) and see what it says. If it's, say, 1.6GB, then you're cutting things pretty fine trying to squeeze everything else into 0.4GB, so that's the way to attack it—e.g., use a shelve database instead of a plain dict.
Also try dumping memory usage (with the resource module, getrusage(RUSAGE_SELF)) at the start and end of the initializer function. If the final haystack is only, say, 0.3GB, but you allocate another 1.3GB building it up, that's the problem to attack. For example, you might spin off a single child process to build and pickle the dict, then have the pool initializer just open it and unpickle it. Or combine the two—build a shelve db in the first child, and open it read-only in the initializer. Either way, this would also mean you're only doing the CSV-parsing/dict-building work once instead of 8 times.
On the other hand, if your total VM usage is still low (note that getrusage doesn't directly have any way to see your total VM size—ru_maxrss is often a useful approximation, especially if ru_nswap is 0) at time the first task runs, the problem is with the tasks themselves.
First, getsizeof the arguments to the task function and the value you return. If they're large, especially if they either keep getting larger with each task or are wildly variable, it could just be pickling and unpickling that data takes too much memory, and eventually 8 of them are together big enough to hit the limit.
Otherwise, the problem is most likely in the task function itself. Either you've got a memory leak (you can only have a real leak by using a buggy C extension module or ctypes, but if you keep any references around between calls, e.g., in a global, you could just be holding onto things forever unnecessarily), or some of the tasks themselves take too much memory. Either way, this should be something you can test more easily by pulling out the multiprocessing and just running the tasks directly, which is a lot easier to debug.

Categories