I have some 2D numpy data that I want to translate to a higher dimensional array using a mapped average (or some other statistic).
The source data is 2D with a MxN shape, and I want to map this onto a 4D array (AxBxCxD shape). The indicies mapping from the source data to each of the four dimensions are created from either 2D (MxN shaped) variables or tiled 1D (Mx1 shaped) variables.
Below is an a working example of what I am trying to do. Although this seems to work, I would like to know if there is a function that would allow me to:
1) do-away with the for-loops and
2) allow for a variable number of dimensions (3D, 4D, 5D, etc) for the destination array(s).
import numpy as np
# create data I want to conditionally average (MxN array)
zz = np.random.rand(100,10)
# create variables used to define binning for conditional averaging
# each variable defines one dimension of the final 4 dimensional array
aa = np.random.rand(100,10)*10
bb = np.random.rand(100,1) + 5
cc = np.random.rand(100,1) * 25
dd = np.random.rand(100,1)* 50 + 100
# define binning boundaries
binsaa = np.array([2, 4, 6, 8])
binsbb = np.array([5.1, 5.5, 5.7])
binscc = np.array([12])
binsdd = np.array([110, 133])
# create bin indicies
idaa = np.digitize(aa,binsaa,right=True)
idbb = np.digitize(bb,binsbb,right=True)
idcc = np.digitize(cc,binscc,right=True)
iddd = np.digitize(dd,binsdd,right=True)
# tile some of the indicies so they match the shape of the data to be averaged
idbbt = np.tile(idbb,[1,10])
idcct = np.tile(idcc,[1,10])
idddt = np.tile(iddd,[1,10])
# make empty destination 4 dimensional arrays
avgxx = np.zeros([5,4,2,3])
cntxx = np.zeros([5,4,2,3])
# use for loops to average original data and place in 4-dim array
for ixa in range(5):
for ixb in range(4):
for ixc in range(2):
for ixd in range(3):
idz = (idaa == ixa) & (idbbt == ixb) & (idcct == ixc) & (idddt == ixd)
avgxx[ixa,ixb,ixc,ixd] = np.average(zz[idz])
cntxx[ixa,ixb,ixc,ixd] = np.sum(idz)
print(avgxx[:,:,:,:])
print(cntxx[:,:,:,:])
Related
I have some high dimensional boolean data, in this example an array with 4 dimensions, but this is arbitrary:
X.shape
(3, 2, 66, 241)
I want to group the dataset into connected regions of True values, which can be done with scipy.ndimage.label, with the aid of a connectivity structure which says which points in the array should be considered to touch. The default 2-D structure is a cross:
[[0,1,0],
[1,1,1],
[0,1,0]]
Which can be easily extended to high dimensions if all those dimensions are connected. However I want to programmatically generate such a structure where I have a list of which dims are connected to which:
#We want to find connections across dims 2 and 3 across each slice of dims 0 and 1:
dim_connections=[[0],[1],[2,3]]
#Now we want two separate connected subspaces in our data:
dim_connections=[[0,1],[2,3]]
For individual cases I can work out with hard-thinking how to generate the correct structuring element, but I am struggling to work out the general rule! For clarity I want something like:
mystructure=construct_arbitrary_structure(ndim, dim_connections)
the_correct_result=scipy.ndimage.label(X,structure=my_structure)
This should work for you
def construct_arbitrary_structure(ndim, dim_connections):
#Create structure array
structure = np.zeros([3] * ndim, dtype=int)
#Fill structure array
for d in dim_connections:
if len(d) > 1:
# Set the connection between multiple dimensions
for i in range(ndim):
# Create a unit vector
u = np.zeros(ndim, dtype=int)
u[i] = 1
# Create a mask by adding the connection between multiple dimensions
M = np.zeros([3] * ndim, dtype=int)
for j in d:
M += np.roll(u, j)
structure += M
else:
# Set the connection for one dimension
u = np.zeros(ndim, dtype=int)
u[d[0]] = 1
structure += u
#Make sure it's symmetric
for i in range(ndim):
structure += np.roll(structure, 1, axis=i)
return structure
I have a 2d numpy array size 100 x 100.
I want to randomly sample values from the "inside" 80 x 80 values so that I can exclude values which are influenced by edge effects. I want to sample from row 10 to row 90 and within that from column 10 to column 90.
However, importantly, I need to retain the original index values from the 100 x 100 grid, so I can't just trim the dataset and move on. If I do that, I am not really solving the edge effect problem because this is occurring within a loop with multiple iterations.
gridsize = 100
new_abundances = np.zeros([100,100],dtype=np.uint8)
min_select = int(np.around(gridsize * 0.10))
max_select = int(gridsize - (np.around(gridsize * 0.10)))
row_idx =np.arange(min_select,max_select)
col_idx = np.arange(min_select,max_select)
indices_random = ????? Somehow randomly sample from new_abundances only within the rows and columns of row_idx and col_idx set.
What I ultimately need is a list of 250 random indices selected from within the flattened new_abundances array. I need to keep the new_abundances array as 2d to identify the "edges" but once that is done, I need to flatten it to get the indices which are randomly selected.
Desired output:
An 1d list of indices from a flattened new_abundances array.
Woudl something like solve your problem?
import numpy as np
np.random.seed(0)
mat = np.random.random(size=(100,100))
x_indices = np.random.randint(low=10, high=90, size=250)
y_indices = np.random.randint(low=10, high=90, size=250)
coordinates = list(zip(x_indices,y_indices))
flat_mat = mat.flatten()
flat_index = x_indices * 100 + y_indices
Then you can access elements using any value from the coordinates list, e.g. mat[coordinates[0]] returns the the matrix value at coordinates[0]. Value of coordinates[0] is (38, 45) in my case. If the matrix is flattened, you can calculate the 1D index of the corresponding element. In this case, mat[coordinates[0]] == flat_mat[flat_index[0]] holds, where flat_index[0]==3845=100*38+45
Please also note that multiple sampling of the original data is possible this way.
Using your notation:
import numpy as np
np.random.seed(0)
gridsize = 100
new_abundances = np.zeros([100,100],dtype=np.uint8)
min_select = int(np.around(gridsize * 0.10))
max_select = int(gridsize - (np.around(gridsize * 0.10)))
x_indices = np.random.randint(low=min_select, high=max_select, size=250)
y_indices = np.random.randint(low=min_select, high=max_select, size=250)
coords = list(zip(x_indices,y_indices))
flat_new_abundances = new_abundances.flatten()
flat_index = x_indices * gridsize + y_indices
I have a 3D array and a list of 3D indexes. My aim is to isolate a small 3D volume of a specific size (3x3x3 or 5x5x5 or whatever) for every index (with the index lying in the middle of the volume).
At the moment, I do this:
1) Group five 2D arrays (with the interested one in the middle, following the indexes). So having a 5xNxN array.
2) For a 5x5x5 volume, for each 2D array (0,N,N; 1,N,N..etc) of my 5xNxN array, I crop a 5x5 array around the same index.
3) Stack these five 5x5 2D arrays to obtain my small 3D volume.
Is there a fastest way to do this job?
Here an explanatory code:
arr = np.zeros((7,7,7)) #Just a 3D array
ind = [3, 3, 3] #My index
for el in range(arr.shape[0]):
if el==ind[0]:
group = arr[el-2:el+3] #it isolates a 3D volume with arr[ind[0]] in the middle
volume_3d = []
for i in group:
volume_2d = i[ind[1]-2:ind[1]+3, ind[2]-2:ind[2]+3]
volume_3d.append (volume_2d) #it builds the 3D volume
Thanks
Numpy supports slicing like this quite easily:
dim = 5
x = dim // 2
i,j,k = ind
volume_3d = arr[i-x:i+(dim-x), j-x:j+(dim-x), k-x:k+(dim-x)].copy()
# Your implementation.
dim = 5
x = dim // 2
arr = np.random.randn(7, 7, 7)
el = ind[0]
group = arr[el-x:el+(dim-x)]
volume_3d = []
for i in group:
volume_2d = i[ind[1]-x:ind[1]+(dim-x), ind[2]-x:ind[2]+(dim-x)]
volume_3d.append (volume_2d)
# Proposed in this post.
i,j,k = ind
volume_3d_2 = arr[i-x:i+(dim-x), j-x:j+(dim-x), k-x:k+(dim-x)]
print(np.array_equal(volume_3d, volume_3d_2))
True
I have a 2d array/matrix like this, how would I randomly pick the value from this 2D matrix, for example getting value like [-62, 29.23]. I looked at the numpy.choice but it is built for 1d array.
The following is my example with 4 rows and 8 columns
Space_Position=[
[[-62,29.23],[-49.73,29.23],[-31.82,29.23],[-14.2,29.23],[3.51,29.23],[21.21,29.23],[39.04,29.23],[57.1,29.23]],
[[-62,11.28],[-49.73,11.28],[-31.82,11.28],[-14.2,11.28],[3.51,11.28],[21.21,11.28] ,[39.04,11.28],[57.1,11.8]],
[[-62,-5.54],[-49.73,-5.54],[-31.82,-5.54] ,[-14.2,-5.54],[3.51,-5.54],[21.21,-5.54],[39.04,-5.54],[57.1,-5.54]],
[[-62,-23.1],[-49.73,-23.1],[-31.82,-23.1],[-14.2,-23.1],[3.51,-23.1],[21.21,-23.1],[39.04,-23.1] ,[57.1,-23.1]]
]
In the answers the following solution was given:
random_index1 = np.random.randint(0, Space_Position.shape[0])
random_index2 = np.random.randint(0, Space_Position.shape[1])
Space_Position[random_index1][random_index2]
this indeed works to give me one sample, how about more than one sample like what np.choice() does?
Another way I am thinking is to tranform the matrix into a array instead of matrix like,
Space_Position=[
[-62,29.23],[-49.73,29.23],[-31.82,29.23],[-14.2,29.23],[3.51,29.23],[21.21,29.23],[39.04,29.23],[57.1,29.23], ..... ]
and at last use np.choice(), however I could not find the ways to do the transformation, np.flatten() makes the array like
Space_Position=[-62,29.23,-49.73,29.2, ....]
Just use a random index (in your case 2 because you have 3 dimensions):
import numpy as np
Space_Position = np.array(Space_Position)
random_index1 = np.random.randint(0, Space_Position.shape[0])
random_index2 = np.random.randint(0, Space_Position.shape[1])
Space_Position[random_index1, random_index2] # get the random element.
The alternative is to actually make it 2D:
Space_Position = np.array(Space_Position).reshape(-1, 2)
and then use one random index:
Space_Position = np.array(Space_Position).reshape(-1, 2) # make it 2D
random_index = np.random.randint(0, Space_Position.shape[0]) # generate a random index
Space_Position[random_index] # get the random element.
If you want N samples with replacement:
N = 5
Space_Position = np.array(Space_Position).reshape(-1, 2) # make it 2D
random_indices = np.random.randint(0, Space_Position.shape[0], size=N) # generate N random indices
Space_Position[random_indices] # get N samples with replacement
or without replacement:
Space_Position = np.array(Space_Position).reshape(-1, 2) # make it 2D
random_indices = np.arange(0, Space_Position.shape[0]) # array of all indices
np.random.shuffle(random_indices) # shuffle the array
Space_Position[random_indices[:N]] # get N samples without replacement
Refering to numpy.random.choice:
Sampling random rows from a 2-D array is not possible with this function, but is possible with Generator.choice through its axis keyword.
The genrator documentation is linked here numpy.random.Generator.choice.
Using this knowledge. You can create a generator and then "choice" from your array:
rng = np.random.default_rng() #creates the generator ==> Generator(PCG64) at 0x2AA703BCE50
N = 3 #Number of Choices
a = np.array(Space_Position) #makes sure, a is an ndarray and numpy-supported
s = a.shape #(4,8,2)
a = a.reshape((s[0] * s[1], s[2])) #makes your array 2 dimensional keeping the last dimension seperated
a.shape #(32, 2)
b = rng.choice(a, N, axis=0, replace=False) #returns N choices of a in array b, e.g. narray([[ 57.1 , 11.8 ], [ 21.21, -5.54], [ 39.04, 11.28]])
#Note: replace=False prevents having the same entry several times in the result
Space_Position[np.random.randint(0, len(Space_Position))]
[np.random.randint(0, len(Space_Position))]
gives you what you want
I'm trying to resize a 2D numpy array of a given factor, obtaining a smaller array in output.
The array is read from an image file and some of the values should be NaN (Not a Number, np.nan from numpy): it is the result of remote sensing measurements from satellite and simply some pixels weren't measured.
The suitable package I found for this is scypy.misc.imresize, but each pixel in the output array containing a NaN is set to NaN, even if there are some valid data in the original pixels interpolated together.
My solution is appended here, what I've done is essentially :
create a new array based on the original array shape and the desired reduction factor
create an index array to address all the pixels of the original array to be averaged for each pixel in the new
cycle through the new array pixels and average all the not-NaN pixel to obtain the new array pixel value; it there are only NaN, the output will be NaN.
I'm planning to add keyword to choice between different output (average, median, standard deviation of the input pixels and so on).
It is working as expected, but on a ~1Mpx image it takes around 3 seconds. Due to my lack of experience in python I'm searching for improvements.
Do anyone have suggestion how to do it better and more efficiently?
Do anyone know a library that already implements all that stuff?
Thanks.
Here you have an example output for random pixel input generated with the code here below:
import numpy as np
import pylab as plt
from scipy import misc
def resize_2d_nonan(array,factor):
"""
Resize a 2D array by different factor on two axis sipping NaN values.
If a new pixel contains only NaN, it will be set to NaN
Parameters
----------
array : 2D np array
factor : int or tuple. If int x and y factor wil be the same
Returns
-------
array : 2D np array scaled by factor
Created on Mon Jan 27 15:21:25 2014
#author: damo_ma
"""
xsize, ysize = array.shape
if isinstance(factor,int):
factor_x = factor
factor_y = factor
elif isinstance(factor,tuple):
factor_x , factor_y = factor[0], factor[1]
else:
raise NameError('Factor must be a tuple (x,y) or an integer')
if not (xsize %factor_x == 0 or ysize % factor_y == 0) :
raise NameError('Factors must be intger multiple of array shape')
new_xsize, new_ysize = xsize/factor_x, ysize/factor_y
new_array = np.empty([new_xsize, new_ysize])
new_array[:] = np.nan # this saves us an assignment in the loop below
# submatrix indexes : is the average box on the original matrix
subrow, subcol = np.indices((factor_x, factor_y))
# new matrix indexs
row, col = np.indices((new_xsize, new_ysize))
# some output for testing
#for i, j, ind in zip(row.reshape(-1), col.reshape(-1),range(row.size)) :
# print '----------------------------------------------'
# print 'i: %i, j: %i, ind: %i ' % (i, j, ind)
# print 'subrow+i*new_ysize, subcol+j*new_xsize :'
# print i,'*',new_xsize,'=',i*factor_x
# print j,'*',new_ysize,'=',j*factor_y
# print subrow+i*factor_x,subcol+j*factor_y
# print '---'
# print 'array[subrow+i*factor_x,subcol+j*factor_y] : '
# print array[subrow+i*factor_x,subcol+j*factor_y]
for i, j, ind in zip(row.reshape(-1), col.reshape(-1),range(row.size)) :
# define the small sub_matrix as view of input matrix subset
sub_matrix = array[subrow+i*factor_x,subcol+j*factor_y]
# modified from any(a) and all(a) to a.any() and a.all()
# see https://stackoverflow.com/a/10063039/1435167
if not (np.isnan(sub_matrix)).all(): # if we haven't all NaN
if (np.isnan(sub_matrix)).any(): # if we haven no NaN at all
msub_matrix = np.ma.masked_array(sub_matrix,np.isnan(sub_matrix))
(new_array.reshape(-1))[ind] = np.mean(msub_matrix)
else: # if we haven some NaN
(new_array.reshape(-1))[ind] = np.mean(sub_matrix)
# the case assign NaN if we have all NaN is missing due
# to the standard values of new_array
return new_array
row , cols = 6, 4
a = 10*np.random.random_sample((row , cols))
a[0:3,0:2] = np.nan
a[0,2] = np.nan
factor_x = 2
factor_y = 2
a_misc = misc.imresize(a, .5, interp='nearest', mode='F')
a_2d_nonan = resize_2d_nonan(a,(factor_x,factor_y))
print a
print
print a_misc
print
print a_2d_nonan
plt.subplot(131)
plt.imshow(a,interpolation='nearest')
plt.title('original')
plt.xticks(arange(a.shape[1]))
plt.yticks(arange(a.shape[0]))
plt.subplot(132)
plt.imshow(a_misc,interpolation='nearest')
plt.title('scipy.misc')
plt.xticks(arange(a_misc.shape[1]))
plt.yticks(arange(a_misc.shape[0]))
plt.subplot(133)
plt.imshow(a_2d_nonan,interpolation='nearest')
plt.title('my.func')
plt.xticks(arange(a_2d_nonan.shape[1]))
plt.yticks(arange(a_2d_nonan.shape[0]))
EDIT
I add some modification to address ChrisProsser comment.
If I substitute the NaN with some other value, let say the average of the not-NaN pixels, it will affect all the subsequent calculation: the difference between the resampled original array and the resampled array with NaN substituted shows that 2 pixels changed their values.
My goal is simply skip all the NaN pixels.
# substitute NaN with the average value
ind_nonan , ind_nan = np.where(np.isnan(a) == False), np.where(np.isnan(a) == True)
a_substitute = np.copy(a)
a_substitute[ind_nan] = np.mean(a_substitute[ind_nonan]) # substitute the NaN with average on the not-Nan
a_substitute_misc = misc.imresize(a_substitute, .5, interp='nearest', mode='F')
a_substitute_2d_nonan = resize_2d_nonan(a_substitute,(factor_x,factor_y))
print a_2d_nonan-a_substitute_2d_nonan
[[ nan -0.02296697]
[ 0.23143208 0. ]
[ 0. 0. ]]
** 2nd EDIT**
To address the Hooked's answer I put some additional code. It is an iteresting idea, sadly it interpolates new values over pixels that should be "empty" (NaN) and for my small example generate more NaN than good values.
X , Y = np.indices((row , cols))
X_new , Y_new = np.indices((row/factor_x , cols/factor_y))
from scipy.interpolate import CloughTocher2DInterpolator as intp
C = intp((X[ind_nonan],Y[ind_nonan]),a[ind_nonan])
a_interp = C(X_new , Y_new)
print a
print
print a_interp
[[ nan, nan],
[ nan, nan],
[ nan, 6.32826577]])
You are operating on small windows of the array. Instead of looping through the array to make the windows, the array can be efficiently restructured by manipulating its strides. The numpy library provides the as_strided() function to help with that. An example is provided in the SciPy CookBook Stride tricks for the Game of Life.
The following will use a generalized sliding window function which I will include it at the end.
Determine the shape of the new array:
rows, cols = a.shape
new_shape = rows / 2, cols / 2
Restructure the array into the windows you need, and create an indexing array identifying NaNs:
# 2x2 windows of the original array
windows = sliding_window(a, (2,2))
# make a windowed boolean array for indexing
notNan = sliding_window(np.logical_not(np.isnan(a)), (2,2))
The new array can be made using a list comprehension or a generator expression.
# using a list comprehension
# make a list of the means of the windows, disregarding the Nan's
means = [window[index].mean() for window, index in zip(windows, notNan)]
new_array = np.array(means).reshape(new_shape)
# generator expression
# produces the means of the windows, disregarding the Nan's
means = (window[index].mean() for window, index in zip(windows, notNan))
new_array = np.fromiter(means, dtype = np.float32).reshape(new_shape)
The generator expression should conserve memory. Using itertools.izip() instead of ```zip`` should also help if memory is a problem. I just used the list comprehension for your solution.
Your function:
def resize_2d_nonan(array,factor):
"""
Resize a 2D array by different factor on two axis skipping NaN values.
If a new pixel contains only NaN, it will be set to NaN
Parameters
----------
array : 2D np array
factor : int or tuple. If int x and y factor wil be the same
Returns
-------
array : 2D np array scaled by factor
Created on Mon Jan 27 15:21:25 2014
#author: damo_ma
"""
xsize, ysize = array.shape
if isinstance(factor,int):
factor_x = factor
factor_y = factor
window_size = factor, factor
elif isinstance(factor,tuple):
factor_x , factor_y = factor
window_size = factor
else:
raise NameError('Factor must be a tuple (x,y) or an integer')
if (xsize % factor_x or ysize % factor_y) :
raise NameError('Factors must be integer multiple of array shape')
new_shape = xsize / factor_x, ysize / factor_y
# non-overlapping windows of the original array
windows = sliding_window(a, window_size)
# windowed boolean array for indexing
notNan = sliding_window(np.logical_not(np.isnan(a)), window_size)
#list of the means of the windows, disregarding the Nan's
means = [window[index].mean() for window, index in zip(windows, notNan)]
# new array
new_array = np.array(means).reshape(new_shape)
return new_array
I haven't done any time comparisons with your original function, but it should be faster.
Many solutions I've seen here on SO vectorize the operations to increase speed/efficiency - I don't quite have a handle on that and don't know if it can be applied to your problem. Searching SO for window, array, moving average, vectorize, and numpy should produce similar questions and answers for reference.
sliding_window() see attribution below:
import numpy as np
from numpy.lib.stride_tricks import as_strided as ast
from itertools import product
def norm_shape(shape):
'''
Normalize numpy array shapes so they're always expressed as a tuple,
even for one-dimensional shapes.
Parameters
shape - an int, or a tuple of ints
Returns
a shape tuple
'''
try:
i = int(shape)
return (i,)
except TypeError:
# shape was not a number
pass
try:
t = tuple(shape)
return t
except TypeError:
# shape was not iterable
pass
raise TypeError('shape must be an int, or a tuple of ints')
def sliding_window(a,ws,ss = None,flatten = True):
'''
Return a sliding window over a in any number of dimensions
Parameters:
a - an n-dimensional numpy array
ws - an int (a is 1D) or tuple (a is 2D or greater) representing the size
of each dimension of the window
ss - an int (a is 1D) or tuple (a is 2D or greater) representing the
amount to slide the window in each dimension. If not specified, it
defaults to ws.
flatten - if True, all slices are flattened, otherwise, there is an
extra dimension for each dimension of the input.
Returns
an array containing each n-dimensional window from a
'''
if None is ss:
# ss was not provided. the windows will not overlap in any direction.
ss = ws
ws = norm_shape(ws)
ss = norm_shape(ss)
# convert ws, ss, and a.shape to numpy arrays so that we can do math in every
# dimension at once.
ws = np.array(ws)
ss = np.array(ss)
shape = np.array(a.shape)
# ensure that ws, ss, and a.shape all have the same number of dimensions
ls = [len(shape),len(ws),len(ss)]
if 1 != len(set(ls)):
raise ValueError(\
'a.shape, ws and ss must all have the same length. They were %s' % str(ls))
# ensure that ws is smaller than a in every dimension
if np.any(ws > shape):
raise ValueError(\
'ws cannot be larger than a in any dimension.\
a.shape was %s and ws was %s' % (str(a.shape),str(ws)))
# how many slices will there be in each dimension?
newshape = norm_shape(((shape - ws) // ss) + 1)
# the shape of the strided array will be the number of slices in each dimension
# plus the shape of the window (tuple addition)
newshape += norm_shape(ws)
# the strides tuple will be the array's strides multiplied by step size, plus
# the array's strides (tuple addition)
newstrides = norm_shape(np.array(a.strides) * ss) + a.strides
strided = ast(a,shape = newshape,strides = newstrides)
if not flatten:
return strided
# Collapse strided so that it has one more dimension than the window. I.e.,
# the new array is a flat list of slices.
meat = len(ws) if ws.shape else 0
firstdim = (np.product(newshape[:-meat]),) if ws.shape else ()
dim = firstdim + (newshape[-meat:])
# remove any dimensions with size 1
dim = filter(lambda i : i != 1,dim)
return strided.reshape(dim)
sliding_window() attribution
I originally found this on a blog page that is now a broken link:
Efficient Overlapping Windows with Numpy - http://www.johnvinyard.com/blog/?p=268
With a little searching it looks like it now resides in the Zounds github repository. Thanks John Vinyard.
Note this post is pretty old and there are a lot of SO Q&A's regarding sliding windows, rolling windows, and for images- patch extraction. There are a lot of one-offs using numpy's as_strided but this function still seems the only one to handle n-d windowing. scikits sklearn.feature_extraction.image library seems to be often cited for extracting or viewing image patches.
Interpolate the points, using scipy.interpolate, on a different grid. Below I've shown a cubic interpolator, which is slower but probably more accurate. You'll notice that the corner pixels are missing with this function, you could then use a linear or nearest neighbor interpolation to handle those last values.
import numpy as np
import pylab as plt
# Test data
row = np.linspace(-3,3,50)
X,Y = np.meshgrid(row,row)
Z = np.sqrt(X**2+Y**2) + np.cos(Y)
# Make some dead pixels, favor an edge
dead = np.random.random(Z.shape)
dead = (dead*X>.7)
Z[dead] =np.nan
from scipy.interpolate import CloughTocher2DInterpolator as intp
C = intp((X[~dead],Y[~dead]),Z[~dead])
new_row = np.linspace(-3,3,25)
xi,yi = np.meshgrid(new_row,new_row)
zi = C(xi,yi)
plt.subplot(121)
plt.title("Original signal 50x50")
plt.imshow(Z,interpolation='nearest')
plt.subplot(122)
plt.title("Interpolated signal 25x25")
plt.imshow(zi,interpolation='nearest')
plt.show()