Replacing certain values in column with string - python

This is my current data frame:
sports_gpa music_gpa Activity Sport
2 3 nan nan
0 2 nan nan
3 3.5 nan nan
2 1 nan nan
I have the following condition:
If the 'sports_gpa' is greater than 0 and the 'music_gpa' is greater than the 'sports_gpa', fill the the 'Activity' column with the 'sport_gpa' and fill the 'Sport' column with the str 'basketball'.
Expected output:
sports_gpa music_gpa Activity Sport
2 3 2 basketball
0 2 nan nan
3 3.5 3 basketball
2 1 nan nan
To do this I would use the following statement...
df['Activity'], df['Sport'] = np.where(((df['sports_gpa'] > 0) & (df['music_gpa'] > df['sports_gpa'])), (df['sport_gpa'],'basketball'), (df['Activity'], df['Sport']))
This of course gives an error that operands could not be broadcast together with shapes.
To fix this I could add a column to the data frame..
df.loc[:,'str'] = 'basketball'
df['Activity'], df['Sport'] = np.where(((df['sports_gpa'] > 0) & (df['music_gpa'] > df['sports_gpa'])), (df['sport_gpa'],df['str']), (df['Activity'], df['Sport']))
This gives me my expected output.
I am wondering if there is a way to fix this error without having to create a new column in order to add the str value 'basketball' to the 'Sport' column in the np.where statement.

Use np.where + Series.fillna:
where=df['sports_gpa'].ne(0)&(df['sports_gpa']<df['music_gpa'])
df['Activity'], df['Sport'] = np.where(where, (df['sports_gpa'],df['Sport'].fillna('basketball')), (df['Activity'], df['Sport']))
You can also use Series.where + Series.mask:
df['Activity']=df['sports_gpa'].where(where)
df['Sport']=df['Sport'].mask(where,'basketball')
print(df)
sports_gpa music_gpa Activity Sport
0 2 3.0 2.0 basketball
1 0 2.0 NaN NaN
2 3 3.5 3.0 basketball
3 2 1.0 NaN NaN

Just figured out I could do:
df['Activity'], df['Sport'] = np.where(((df['sports_gpa'] > 0) & (df['music_gpa'] > df['sports_gpa'])), (df['sports_gpa'],df['Sport'].astype(str).replace({"nan": "basketball"})), (df['Activity'], df['Sport']))

Related

Sum one dataframe based on value of other dataframe in same index/row

I would like to sum values of a dataframe conditionally, based on the values of a different dataframe. Say for example I have two dataframes:
df1 = pd.DataFrame(data = [[1,-1,5],[2,1,1],[3,0,0]],index=[0,1,2],columns = [0,1,2])
index 0 1 2
-----------------
0 1 -1 5
1 2 1 1
2 3 0 0
df2 = pd.DataFrame(data = [[1,1,3],[1,1,2],[0,2,1]],index=[0,1,2],columns = [0,1,2])
index 0 1 2
-----------------
0 1 1 3
1 1 1 2
2 0 2 1
Now what I would like is that for example, if the row/index value of df1 equals 1, to sum the location of those values in df2.
In this example, if the condition is 1, then the sum of df2 would be 4. If the condition was 0, the result would be 3.
Another option with Pandas' query:
df2.query("#df1==1").sum().sum()
# 4
You can use a mask with where:
df2.where(df1.eq(1)).to_numpy().sum()
# or
# df2.where(df1.eq(1)).sum().sum()
output: 4.0
intermediate:
df2.where(df1.eq(1))
0 1 2
0 1.0 NaN NaN
1 NaN 1.0 2.0
2 NaN NaN NaN
Assuming that one wants to store the value in the variable value, there are various options to achieve that. Will leave below two of them.
Option 1
One can simply do the following
value = df2[df1 == 1].sum().sum()
[Out]: 4.0 # numpy.float64
# or
value = sum(df2[df1 == 1].sum())
[Out]: 4.0 # float
Option 2
Using pandas.DataFrame.where
value = df2.where(df1 == 1, 0).sum().sum()
[Out]: 4.0 # numpy.int64
# or
value = sum(df2.where(df1 == 1, 0).sum())
[Out]: 4 # int
Notes:
Both df2[df1 == 1] and df2.where(df1 == 1, 0) give the following output
0 1 2
0 1.0 NaN NaN
1 NaN 1.0 2.0
2 NaN NaN NaN
Depending on the desired output (float, int, numpy.float64,...) one method might be better than the other.

Divide several columns with the same column name ending by one other column in python

I have a smiliar question to this one.
I have a dataframe with several rows, which looks like this:
Name TypA TypB ... TypF TypA_value TypB_value ... TypF_value Divider
1 1 1 NaN 10 5 NaN 5
2 NaN 2 NaN NaN 20 NaN 10
and I want to divide all columns with the ending "value" by the column "Divider", how can I do so? One trick would be to use the sorting, to use the answer from above, but is there a direct way for it? That I do not need to sort the dataframe.
The outcome would be:
Name TypA TypB ... TypF TypA_value TypB_value ... TypF_value Divider
1 1 1 NaN 2 1 0 5
2 NaN 2 NaN 0 2 0 10
So a NaN will lead to a 0.
Use DataFrame.filter to filter the columns like value from dataframe then use DataFrame.div along axis=0 to divide it by column Divider, finally use DataFrame.update to update the values in dataframe:
d = df.filter(like='_value').div(df['Divider'], axis=0).fillna(0)
df.update(d)
Result:
Name TypA TypB TypF TypA_value TypB_value TypF_value Divider
0 1 1.0 1 NaN 2.0 1.0 0.0 5
1 2 NaN 2 NaN 0.0 2.0 0.0 10
You could select the columns of interest using DataFrame.filter, and divide as:
value_cols = df.filter(regex=r'_value$').columns
df[value_cols] /= df['Divider'].to_numpy()[:,None]
# df[value_cols] = df[value_cols].fillna(0)
print(df)
Name TypA TypB TypF TypA_value TypB_value TypF_value Divider
0 1 1.0 1 NaN 2.0 1.0 NaN 5
1 2 NaN 2 NaN NaN 2.0 NaN 10
Taking two sample columns A and B :
import pandas as pd
import numpy as np
a={ 'Name':[1,2],
'TypA':[1,np.nan],
'TypB':[1,2],
'TypA_value':[10,np.nan],
'TypB_value':[5,20],
'Divider':[5,10]
}
df = pd.DataFrame(a)
cols_all = df.columns
Find columns for which calculations are to be done. Assuming there all have 'value' and an underscore :
cols_to_calc = [c for c in cols_all if '_value' in c]
For these columns: first, divide with the divider column then replace nan with 0 in those columns.
for c in cols_to_calc:
df[c] = df[c] / df.Divider
df[c] = df[c].fillna(0)

Unable to update Pandas row in For loop

I am using bnp-paribas-cardif-claims-management from Kaggle.
Dataset : https://www.kaggle.com/c/bnp-paribas-cardif-claims-management/data
df=pd.read_csv('F:\\Data\\Paribas_Claim\\train.csv',nrows=5000)
df.info() gives
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Columns: 133 entries, ID to v131
dtypes: float64(108), int64(6), object(19)
memory usage: 5.1+ MB
My requirement is :
I am trying to fill null values for columns with datatypes as int and object. I am trying to fill the nulls based on the target column.
My code is
df_obj = df.select_dtypes(['object','int64']).columns.to_list()
for cols in df_obj:
df[( df['target'] == 1 )&( df[cols].isnull() )][cols] = df[df['target'] == 1][cols].mode()
df[( df['target'] == 0 )&( df[cols].isnull() )][cols] = df[df['target'] == 0][cols].mode()
I am able to get output in below print statement:
df[( df['target'] == 1 )&( df[cols].isnull() )][cols]
also the able to print the values for df[df['target'] == 0][cols].mode() if I substitute cols.
But unable to replace the null values with mode values.
I tried df.loc, df.at options instead of df[] and df[...] == np.nan instead of df[...].isnull() but of no use.
Please assist if I need to do any changes in the code. Thanks.
Here is problem is select integers columns, then no contain missing values (because NaN is float), so cannot be replaced. Possible solution is select all numeric columns and in loop set first value of mode per conditions with DataFrame.loc for avoid chain indexing and Series.iat for return only first value (mode should return sometimes 2 values):
df=pd.read_csv('train.csv',nrows=5000)
#only numeric columns
df_obj = df.select_dtypes(np.number).columns.to_list()
#all columns
#df_obj = df.columns.to_list()
#print (df_obj)
for cols in df_obj:
m1 = df['target'] == 1
m2 = df['target'] == 0
df.loc[m1 & (df[cols].isnull()), cols] = df.loc[m1, cols].mode().iat[0]
df.loc[m2 & (df[cols].isnull()), cols] = df.loc[m2, cols].mode().iat[0]
Another solution with replace missing values by Series.fillna:
for cols in df_obj:
m1 = df['target'] == 1
m2 = df['target'] == 0
df.loc[m1, cols] = df.loc[m1, cols].fillna(df.loc[m1, cols].mode().iat[0])
df.loc[m2, cols] = df.loc[m2, cols].fillna(df.loc[m2, cols].mode().iat[0])
print (df.head())
ID target v1 v2 v3 v4 v5 v6 \
0 3 1 1.335739e+00 8.727474 C 3.921026 7.915266 2.599278e+00
1 4 1 -9.543625e-07 1.245405 C 0.586622 9.191265 2.126825e-07
2 5 1 9.438769e-01 5.310079 C 4.410969 5.326159 3.979592e+00
3 6 1 7.974146e-01 8.304757 C 4.225930 11.627438 2.097700e+00
4 8 1 -9.543625e-07 1.245405 C 0.586622 2.151983 2.126825e-07
v7 v8 ... v122 v123 v124 v125 \
0 3.176895e+00 1.294147e-02 ... 8.000000 1.989780 3.575369e-02 AU
1 -9.468765e-07 2.301630e+00 ... 1.499437 0.149135 5.988956e-01 AF
2 3.928571e+00 1.964513e-02 ... 9.333333 2.477596 1.345191e-02 AE
3 1.987549e+00 1.719467e-01 ... 7.018256 1.812795 2.267384e-03 CJ
4 -9.468765e-07 -7.783778e-07 ... 1.499437 0.149135 -9.962319e-07 Z
v126 v127 v128 v129 v130 v131
0 1.804126e+00 3.113719e+00 2.024285 0 0.636365 2.857144e+00
1 5.521558e-07 3.066310e-07 1.957825 0 0.173913 -9.932825e-07
2 1.773709e+00 3.922193e+00 1.120468 2 0.883118 1.176472e+00
3 1.415230e+00 2.954381e+00 1.990847 1 1.677108 1.034483e+00
4 5.521558e-07 3.066310e-07 0.100455 0 0.173913 -9.932825e-07
[5 rows x 133 columns]
You don't have a sample data so I'll just give the methods I think you can use to solve your problem.
Try to read your DataFrame with na_filter = False that way your columns with np.nan or has null values will be replaced by blanks instead.
Then, during your loop use the '' as your identifier for null values. Easier to tag than trying to use the type of the value you are parsing.
I think pd.fillna should help.
# random dataset
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 2, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, 4]],
columns=list('ABCD'))
print(df)
A B C D
0 NaN 2.0 NaN 0
1 3.0 2.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
Assuming you want to replace missing values with the mode value of a given column, I'd just use:
df.fillna({'A':df.A.mode()[0],'B':df.B.mode()[0]})
A B C D
0 3.0 2.0 NaN 0
1 3.0 2.0 NaN 1
2 3.0 2.0 NaN 5
3 3.0 3.0 NaN 4
This would also work if you needed a mode value from a subset of values from given column to fill NaNs with.
# let's add 'type' column
A B C D type
0 NaN 2.0 0 1
1 3.0 2.0 1 1
2 NaN NaN 5 2
3 NaN 3.0 4 2
For example, if you want to fill df['B'] NaNs with the mode value of each row that is equal to df['type'] 2:
df.fillna({
'B': df.loc[df.type.eq(2)].B.mode()[0] # type 2
})
A B C D type
0 NaN 2.0 NaN 0 1
1 3.0 2.0 NaN 1 1
2 NaN 3.0 NaN 5 2
3 NaN 3.0 NaN 4 2
# ↑ this would have been '2.0' hadn't we filtered the column with df.loc[]
Your problem is this
df[( df['target'] == 1 )&( df[cols].isnull() )][cols] = ...
Do NOT chain index, especially when assigning. See Why does assignment fail when using chained indexing? section in this doc.
Instead use loc:
df.loc[(df['target'] == 1) & (df[cols].isnull()),
cols] = df.loc[df['target'] == 1,
cols].mode()

How to do a Python DataFrame Boolean Mask on nan values [duplicate]

Given a pandas dataframe containing possible NaN values scattered here and there:
Question: How do I determine which columns contain NaN values? In particular, can I get a list of the column names containing NaNs?
UPDATE: using Pandas 0.22.0
Newer Pandas versions have new methods 'DataFrame.isna()' and 'DataFrame.notna()'
In [71]: df
Out[71]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [72]: df.isna().any()
Out[72]:
a True
b True
c False
dtype: bool
as list of columns:
In [74]: df.columns[df.isna().any()].tolist()
Out[74]: ['a', 'b']
to select those columns (containing at least one NaN value):
In [73]: df.loc[:, df.isna().any()]
Out[73]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
OLD answer:
Try to use isnull():
In [97]: df
Out[97]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [98]: pd.isnull(df).sum() > 0
Out[98]:
a True
b True
c False
dtype: bool
or as #root proposed clearer version:
In [5]: df.isnull().any()
Out[5]:
a True
b True
c False
dtype: bool
In [7]: df.columns[df.isnull().any()].tolist()
Out[7]: ['a', 'b']
to select a subset - all columns containing at least one NaN value:
In [31]: df.loc[:, df.isnull().any()]
Out[31]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
You can use df.isnull().sum(). It shows all columns and the total NaNs of each feature.
I had a problem where I had to many columns to visually inspect on the screen so a shortlist comp that filters and returns the offending columns is
nan_cols = [i for i in df.columns if df[i].isnull().any()]
if that's helpful to anyone
Adding to that if you want to filter out columns having more nan values than a threshold, say 85% then use
nan_cols85 = [i for i in df.columns if df[i].isnull().sum() > 0.85*len(data)]
This worked for me,
1. For getting Columns having at least 1 null value. (column names)
data.columns[data.isnull().any()]
2. For getting Columns with count, with having at least 1 null value.
data[data.columns[data.isnull().any()]].isnull().sum()
[Optional]
3. For getting percentage of the null count.
data[data.columns[data.isnull().any()]].isnull().sum() * 100 / data.shape[0]
In datasets having large number of columns its even better to see how many columns contain null values and how many don't.
print("No. of columns containing null values")
print(len(df.columns[df.isna().any()]))
print("No. of columns not containing null values")
print(len(df.columns[df.notna().all()]))
print("Total no. of columns in the dataframe")
print(len(df.columns))
For example in my dataframe it contained 82 columns, of which 19 contained at least one null value.
Further you can also automatically remove cols and rows depending on which has more null values
Here is the code which does this intelligently:
df = df.drop(df.columns[df.isna().sum()>len(df.columns)],axis = 1)
df = df.dropna(axis = 0).reset_index(drop=True)
Note: Above code removes all of your null values. If you want null values, process them before.
df.columns[df.isnull().any()].tolist()
it will return name of columns that contains null rows
I know this is a very well-answered question but I wanted to add a slight adjustment. This answer only returns columns containing nulls, and also still shows the count of the nulls.
As 1-liner:
pd.isnull(df).sum()[pd.isnull(df).sum() > 0]
Description
Count nulls in each column
null_count_ser = pd.isnull(df).sum()
True|False series describing if that column had nulls
is_null_ser = null_count_ser > 0
Use the T|F series to filter out those without
null_count_ser[is_null_ser]
Example Output
name 5
phone 187
age 644
i use these three lines of code to print out the column names which contain at least one null value:
for column in dataframe:
if dataframe[column].isnull().any():
print('{0} has {1} null values'.format(column, dataframe[column].isnull().sum()))
This is one of the methods..
import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
print(pd.isnull(df).sum())
enter image description here
Both of these should work:
df.isnull().sum()
df.isna().sum()
DataFrame methods isna() or isnull() are completely identical.
Note: Empty strings '' is considered as False (not considered NA)
df.isna() return True values for NaN, False for the rest. So, doing:
df.isna().any()
will return True for any column having a NaN, False for the rest
To see just the columns containing NaNs and just the rows containing NaNs:
isnulldf = df.isnull()
columns_containing_nulls = isnulldf.columns[isnulldf.any()]
rows_containing_nulls = df[isnulldf[columns_containing_nulls].any(axis='columns')].index
only_nulls_df = df[columns_containing_nulls].loc[rows_containing_nulls]
print(only_nulls_df)
features_with_na=[features for features in dataframe.columns if dataframe[features].isnull().sum()>0]
for feature in features_with_na:
print(feature, np.round(dataframe[feature].isnull().mean(), 4), '% missing values')
print(features_with_na)
it will give % of missing value for each column in dataframe
The code works if you want to find columns containing NaN values and get a list of the column names.
na_names = df.isnull().any()
list(na_names.where(na_names == True).dropna().index)
If you want to find columns whose values are all NaNs, you can replace any with all.

How to find which columns contain any NaN value in Pandas dataframe

Given a pandas dataframe containing possible NaN values scattered here and there:
Question: How do I determine which columns contain NaN values? In particular, can I get a list of the column names containing NaNs?
UPDATE: using Pandas 0.22.0
Newer Pandas versions have new methods 'DataFrame.isna()' and 'DataFrame.notna()'
In [71]: df
Out[71]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [72]: df.isna().any()
Out[72]:
a True
b True
c False
dtype: bool
as list of columns:
In [74]: df.columns[df.isna().any()].tolist()
Out[74]: ['a', 'b']
to select those columns (containing at least one NaN value):
In [73]: df.loc[:, df.isna().any()]
Out[73]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
OLD answer:
Try to use isnull():
In [97]: df
Out[97]:
a b c
0 NaN 7.0 0
1 0.0 NaN 4
2 2.0 NaN 4
3 1.0 7.0 0
4 1.0 3.0 9
5 7.0 4.0 9
6 2.0 6.0 9
7 9.0 6.0 4
8 3.0 0.0 9
9 9.0 0.0 1
In [98]: pd.isnull(df).sum() > 0
Out[98]:
a True
b True
c False
dtype: bool
or as #root proposed clearer version:
In [5]: df.isnull().any()
Out[5]:
a True
b True
c False
dtype: bool
In [7]: df.columns[df.isnull().any()].tolist()
Out[7]: ['a', 'b']
to select a subset - all columns containing at least one NaN value:
In [31]: df.loc[:, df.isnull().any()]
Out[31]:
a b
0 NaN 7.0
1 0.0 NaN
2 2.0 NaN
3 1.0 7.0
4 1.0 3.0
5 7.0 4.0
6 2.0 6.0
7 9.0 6.0
8 3.0 0.0
9 9.0 0.0
You can use df.isnull().sum(). It shows all columns and the total NaNs of each feature.
I had a problem where I had to many columns to visually inspect on the screen so a shortlist comp that filters and returns the offending columns is
nan_cols = [i for i in df.columns if df[i].isnull().any()]
if that's helpful to anyone
Adding to that if you want to filter out columns having more nan values than a threshold, say 85% then use
nan_cols85 = [i for i in df.columns if df[i].isnull().sum() > 0.85*len(data)]
This worked for me,
1. For getting Columns having at least 1 null value. (column names)
data.columns[data.isnull().any()]
2. For getting Columns with count, with having at least 1 null value.
data[data.columns[data.isnull().any()]].isnull().sum()
[Optional]
3. For getting percentage of the null count.
data[data.columns[data.isnull().any()]].isnull().sum() * 100 / data.shape[0]
In datasets having large number of columns its even better to see how many columns contain null values and how many don't.
print("No. of columns containing null values")
print(len(df.columns[df.isna().any()]))
print("No. of columns not containing null values")
print(len(df.columns[df.notna().all()]))
print("Total no. of columns in the dataframe")
print(len(df.columns))
For example in my dataframe it contained 82 columns, of which 19 contained at least one null value.
Further you can also automatically remove cols and rows depending on which has more null values
Here is the code which does this intelligently:
df = df.drop(df.columns[df.isna().sum()>len(df.columns)],axis = 1)
df = df.dropna(axis = 0).reset_index(drop=True)
Note: Above code removes all of your null values. If you want null values, process them before.
df.columns[df.isnull().any()].tolist()
it will return name of columns that contains null rows
I know this is a very well-answered question but I wanted to add a slight adjustment. This answer only returns columns containing nulls, and also still shows the count of the nulls.
As 1-liner:
pd.isnull(df).sum()[pd.isnull(df).sum() > 0]
Description
Count nulls in each column
null_count_ser = pd.isnull(df).sum()
True|False series describing if that column had nulls
is_null_ser = null_count_ser > 0
Use the T|F series to filter out those without
null_count_ser[is_null_ser]
Example Output
name 5
phone 187
age 644
i use these three lines of code to print out the column names which contain at least one null value:
for column in dataframe:
if dataframe[column].isnull().any():
print('{0} has {1} null values'.format(column, dataframe[column].isnull().sum()))
This is one of the methods..
import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan],'c':[np.nan,2,np.nan], 'd':[np.nan,np.nan,np.nan]})
print(pd.isnull(df).sum())
enter image description here
Both of these should work:
df.isnull().sum()
df.isna().sum()
DataFrame methods isna() or isnull() are completely identical.
Note: Empty strings '' is considered as False (not considered NA)
df.isna() return True values for NaN, False for the rest. So, doing:
df.isna().any()
will return True for any column having a NaN, False for the rest
To see just the columns containing NaNs and just the rows containing NaNs:
isnulldf = df.isnull()
columns_containing_nulls = isnulldf.columns[isnulldf.any()]
rows_containing_nulls = df[isnulldf[columns_containing_nulls].any(axis='columns')].index
only_nulls_df = df[columns_containing_nulls].loc[rows_containing_nulls]
print(only_nulls_df)
features_with_na=[features for features in dataframe.columns if dataframe[features].isnull().sum()>0]
for feature in features_with_na:
print(feature, np.round(dataframe[feature].isnull().mean(), 4), '% missing values')
print(features_with_na)
it will give % of missing value for each column in dataframe
The code works if you want to find columns containing NaN values and get a list of the column names.
na_names = df.isnull().any()
list(na_names.where(na_names == True).dropna().index)
If you want to find columns whose values are all NaNs, you can replace any with all.

Categories