Related
I have two list as below:
latt=[42.0,41.978567980875397,41.96622693388357,41.963791391892457,...,41.972407378075879]
lont=[-66.706920989908909,-66.703116557977069,-66.707351643324543,...-66.718218142021925]
now I want to plot this as a line, separate each 10 of those 'latt' and 'lont' records as a period and give it a unique color.
what should I do?
There are several different ways to do this. The "best" approach will depend mostly on how many line segments you want to plot.
If you're just going to be plotting a handful (e.g. 10) line segments, then just do something like:
import numpy as np
import matplotlib.pyplot as plt
def uniqueish_color():
"""There're better ways to generate unique colors, but this isn't awful."""
return plt.cm.gist_ncar(np.random.random())
xy = (np.random.random((10, 2)) - 0.5).cumsum(axis=0)
fig, ax = plt.subplots()
for start, stop in zip(xy[:-1], xy[1:]):
x, y = zip(start, stop)
ax.plot(x, y, color=uniqueish_color())
plt.show()
If you're plotting something with a million line segments, though, this will be terribly slow to draw. In that case, use a LineCollection. E.g.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
xy = (np.random.random((1000, 2)) - 0.5).cumsum(axis=0)
# Reshape things so that we have a sequence of:
# [[(x0,y0),(x1,y1)],[(x0,y0),(x1,y1)],...]
xy = xy.reshape(-1, 1, 2)
segments = np.hstack([xy[:-1], xy[1:]])
fig, ax = plt.subplots()
coll = LineCollection(segments, cmap=plt.cm.gist_ncar)
coll.set_array(np.random.random(xy.shape[0]))
ax.add_collection(coll)
ax.autoscale_view()
plt.show()
For both of these cases, we're just drawing random colors from the "gist_ncar" coloramp. Have a look at the colormaps here (gist_ncar is about 2/3 of the way down): http://matplotlib.org/examples/color/colormaps_reference.html
Copied from this example:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
x = np.linspace(0, 3 * np.pi, 500)
y = np.sin(x)
z = np.cos(0.5 * (x[:-1] + x[1:])) # first derivative
# Create a colormap for red, green and blue and a norm to color
# f' < -0.5 red, f' > 0.5 blue, and the rest green
cmap = ListedColormap(['r', 'g', 'b'])
norm = BoundaryNorm([-1, -0.5, 0.5, 1], cmap.N)
# Create a set of line segments so that we can color them individually
# This creates the points as a N x 1 x 2 array so that we can stack points
# together easily to get the segments. The segments array for line collection
# needs to be numlines x points per line x 2 (x and y)
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# Create the line collection object, setting the colormapping parameters.
# Have to set the actual values used for colormapping separately.
lc = LineCollection(segments, cmap=cmap, norm=norm)
lc.set_array(z)
lc.set_linewidth(3)
fig1 = plt.figure()
plt.gca().add_collection(lc)
plt.xlim(x.min(), x.max())
plt.ylim(-1.1, 1.1)
plt.show()
See the answer here to generate the "periods" and then use the matplotlib scatter function as #tcaswell mentioned. Using the plot.hold function you can plot each period, colors will increment automatically.
Cribbing the color choice off of #JoeKington,
import numpy as np
import matplotlib.pyplot as plt
def uniqueish_color(n):
"""There're better ways to generate unique colors, but this isn't awful."""
return plt.cm.gist_ncar(np.random.random(n))
plt.scatter(latt, lont, c=uniqueish_color(len(latt)))
You can do this with scatter.
I have been searching for a short solution how to use pyplots line plot to show a time series coloured by a label feature without using scatter due to the amount of data points.
I came up with the following workaround:
plt.plot(np.where(df["label"]==1, df["myvalue"], None), color="red", label="1")
plt.plot(np.where(df["label"]==0, df["myvalue"], None), color="blue", label="0")
plt.legend()
The drawback is you are creating two different line plots so the connection between the different classes is not shown. For my purposes it is not a big deal. It may help someone.
I have a sequence of line plots for two variables (x,y) for a number of different values of a variable z. I would normally add the line plots with legends like this:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
# suppose mydata is a list of tuples containing (xs, ys, z)
# where xs and ys are lists of x's and y's and z is a number.
legns = []
for(xs,ys,z) in mydata:
pl = ax.plot(xs,ys,color = (z,0,0))
legns.append("z = %f"%(z))
ax.legends(legns)
plt.show()
But I have too many graphs and the legends will cover the graph. I'd rather have a colorbar indicating the value of z corresponding to the color. I can't find anything like that in the galery and all my attempts do deal with the colorbar failed. Apparently I must create a collection of plots before trying to add a colorbar.
Is there an easy way to do this? Thanks.
EDIT (clarification):
I wanted to do something like this:
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig = plt.figure()
ax = fig.add_subplot(111)
mycmap = cm.hot
# suppose mydata is a list of tuples containing (xs, ys, z)
# where xs and ys are lists of x's and y's and z is a number between 0 and 1
plots = []
for(xs,ys,z) in mydata:
pl = ax.plot(xs,ys,color = mycmap(z))
plots.append(pl)
fig.colorbar(plots)
plt.show()
But this won't work according to the Matplotlib reference because a list of plots is not a "mappable", whatever this means.
I've created an alternative plot function using LineCollection:
def myplot(ax,xs,ys,zs, cmap):
plot = lc([zip(x,y) for (x,y) in zip(xs,ys)], cmap = cmap)
plot.set_array(array(zs))
x0,x1 = amin(xs),amax(xs)
y0,y1 = amin(ys),amax(ys)
ax.add_collection(plot)
ax.set_xlim(x0,x1)
ax.set_ylim(y0,y1)
return plot
xs and ys are lists of lists of x and y coordinates and zs is a list of the different conditions to colorize each line. It feels a bit like a cludge though... I thought that there would be a more neat way to do this. I like the flexibility of the plt.plot() function.
(I know this is an old question but...) Colorbars require a matplotlib.cm.ScalarMappable, plt.plot produces lines which are not scalar mappable, therefore, in order to make a colorbar, we are going to need to make a scalar mappable.
Ok. So the constructor of a ScalarMappable takes a cmap and a norm instance. (norms scale data to the range 0-1, cmaps you have already worked with and take a number between 0-1 and returns a color). So in your case:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.normalize(min=0, max=1))
plt.colorbar(sm)
Because your data is in the range 0-1 already, you can simplify the sm creation to:
sm = plt.cm.ScalarMappable(cmap=my_cmap)
EDIT: For matplotlib v1.2 or greater the code becomes:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.normalize(vmin=0, vmax=1))
# fake up the array of the scalar mappable. Urgh...
sm._A = []
plt.colorbar(sm)
EDIT: For matplotlib v1.3 or greater the code becomes:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.Normalize(vmin=0, vmax=1))
# fake up the array of the scalar mappable. Urgh...
sm._A = []
plt.colorbar(sm)
EDIT: For matplotlib v3.1 or greater simplifies to:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.Normalize(vmin=0, vmax=1))
plt.colorbar(sm)
Here's one way to do it while still using plt.plot(). Basically, you make a throw-away plot and get the colorbar from there.
import matplotlib as mpl
import matplotlib.pyplot as plt
min, max = (-40, 30)
step = 10
# Setting up a colormap that's a simple transtion
mymap = mpl.colors.LinearSegmentedColormap.from_list('mycolors',['blue','red'])
# Using contourf to provide my colorbar info, then clearing the figure
Z = [[0,0],[0,0]]
levels = range(min,max+step,step)
CS3 = plt.contourf(Z, levels, cmap=mymap)
plt.clf()
# Plotting what I actually want
X=[[1,2],[1,2],[1,2],[1,2]]
Y=[[1,2],[1,3],[1,4],[1,5]]
Z=[-40,-20,0,30]
for x,y,z in zip(X,Y,Z):
# setting rgb color based on z normalized to my range
r = (float(z)-min)/(max-min)
g = 0
b = 1-r
plt.plot(x,y,color=(r,g,b))
plt.colorbar(CS3) # using the colorbar info I got from contourf
plt.show()
It's a little wasteful, but convenient. It's also not very wasteful if you make multiple plots as you can call plt.colorbar() without regenerating the info for it.
Here is a slightly simplied example inspired by the top answer given by Boris and Hooked (Thanks for the great idea!):
1. Discrete colorbar
Discrete colorbar is more involved, because colormap generated by mpl.cm.get_cmap() is not a mappable image needed as a colorbar() argument. A dummie mappable needs to generated as shown below:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1, n_lines + 1)
cmap = mpl.cm.get_cmap('jet', n_lines)
fig, ax = plt.subplots(dpi=100)
# Make dummie mappable
dummie_cax = ax.scatter(c, c, c=c, cmap=cmap)
# Clear axis
ax.cla()
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap(i))
fig.colorbar(dummie_cax, ticks=c)
plt.show();
This will produce a plot with a discrete colorbar:
2. Continuous colorbar
Continuous colorbar is less involved, as mpl.cm.ScalarMappable() allows us to obtain an "image" for colorbar().
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1, n_lines + 1)
norm = mpl.colors.Normalize(vmin=c.min(), vmax=c.max())
cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.jet)
cmap.set_array([])
fig, ax = plt.subplots(dpi=100)
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap.to_rgba(i + 1))
fig.colorbar(cmap, ticks=c)
plt.show();
This will produce a plot with a continuous colorbar:
[Side note] In this example, I personally don't know why cmap.set_array([]) is necessary (otherwise we'd get error messages). If someone understand the principles under the hood, please comment :)
As other answers here do try to use dummy plots, which is not really good style, here is a generic code for a
Discrete colorbar
A discrete colorbar is produced in the same way a continuous colorbar is created, just with a different Normalization. In this case a BoundaryNorm should be used.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1., n_lines + 1)
cmap = plt.get_cmap("jet", len(c))
norm = matplotlib.colors.BoundaryNorm(np.arange(len(c)+1)+0.5,len(c))
sm = plt.cm.ScalarMappable(norm=norm, cmap=cmap)
sm.set_array([]) # this line may be ommitted for matplotlib >= 3.1
fig, ax = plt.subplots(dpi=100)
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap(i))
fig.colorbar(sm, ticks=c)
plt.show()
Below is my code and plot:
import matplotlib
import matplotlib.mlab as mlab
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
delta = 0.00025
A=0
x = np.arange(0, 0.10, delta)
y = np.arange(0, 0.1, delta)
X, Y = np.meshgrid(x, y)
Z = A*(X**2+Y**2)+2*X*Y
manual_locations = [(0.1,0.1), (0.2,0.2), (0.3,0.3),
(0.015, 0.015), (0.00255, 0.0025), (0.00005,0.00005)]
line_widths = (1, 1, 1, 1, 1, 1)
plt.figure()
CS = plt.contour(X, Y, Z, 6, # add 6 contour lines
linewidths=line_widths, # line widths
colors = line_colours) # line colours
plt.clabel(CS, inline=1, # add labels
fontsize=10, # label font size
manual=manual_locations) # label locations
plt.title('Indifference Map') # title
plt.show()
It seems my manual_locations does nothing, python picks equally spaced contour lines automatically. While I want to investigate more details around 0. How can I see more curves/contour lines converging to (0,0)?
Thanks in advance.
The easiest way to explore parts of your data in more details is with levels. This sets what Z-values to examine, and in your question you phrase this as an (x,y) location to inspect, but it's a bit backwards from how contour works to specify the location points directly.
You could also do inspect the (0,0) region by changing the boundaries of the plot appropriately.
Below, I use log values for levels, but linear values work equally well, are far more common, and are easier to interpret. The log values just easily emphasis the part of the plot you're most interested in.
import matplotlib
import matplotlib.mlab as mlab
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
#%matplotlib inline
delta = 0.00025
A=0
x = np.arange(0, 0.10, delta)
y = np.arange(0, 0.1, delta)
X, Y = np.meshgrid(x, y)
Z = A*(X**2+Y**2)+2*X*Y
manual_locations = [(0.1,0.1), (0.2,0.2), (0.3,0.3),
(0.015, 0.015), (0.00255, 0.0025), (0.00005,0.00005)]
line_widths = (1, 1, 1, 1, 1, 1)
plt.figure()
CS = plt.contour(X, Y, Z, 6, # add 6 contour lines
linewidths=line_widths,
#levels=np.linspace(0, .003, 20))
levels=np.logspace(-5, -2, 20))
plt.clabel(CS, inline=1, # add labels
fontsize=10,
fmt="%.5f")
plt.title('Indifference Map') # title
plt.show()
If you really need the contour at a specific location, you could put the (x,y) values for that location into your equation to calculate the z-value at that location, and then use this value as one of the values in the levels argument.
I have two list as below:
latt=[42.0,41.978567980875397,41.96622693388357,41.963791391892457,...,41.972407378075879]
lont=[-66.706920989908909,-66.703116557977069,-66.707351643324543,...-66.718218142021925]
now I want to plot this as a line, separate each 10 of those 'latt' and 'lont' records as a period and give it a unique color.
what should I do?
There are several different ways to do this. The "best" approach will depend mostly on how many line segments you want to plot.
If you're just going to be plotting a handful (e.g. 10) line segments, then just do something like:
import numpy as np
import matplotlib.pyplot as plt
def uniqueish_color():
"""There're better ways to generate unique colors, but this isn't awful."""
return plt.cm.gist_ncar(np.random.random())
xy = (np.random.random((10, 2)) - 0.5).cumsum(axis=0)
fig, ax = plt.subplots()
for start, stop in zip(xy[:-1], xy[1:]):
x, y = zip(start, stop)
ax.plot(x, y, color=uniqueish_color())
plt.show()
If you're plotting something with a million line segments, though, this will be terribly slow to draw. In that case, use a LineCollection. E.g.
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
xy = (np.random.random((1000, 2)) - 0.5).cumsum(axis=0)
# Reshape things so that we have a sequence of:
# [[(x0,y0),(x1,y1)],[(x0,y0),(x1,y1)],...]
xy = xy.reshape(-1, 1, 2)
segments = np.hstack([xy[:-1], xy[1:]])
fig, ax = plt.subplots()
coll = LineCollection(segments, cmap=plt.cm.gist_ncar)
coll.set_array(np.random.random(xy.shape[0]))
ax.add_collection(coll)
ax.autoscale_view()
plt.show()
For both of these cases, we're just drawing random colors from the "gist_ncar" coloramp. Have a look at the colormaps here (gist_ncar is about 2/3 of the way down): http://matplotlib.org/examples/color/colormaps_reference.html
Copied from this example:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
x = np.linspace(0, 3 * np.pi, 500)
y = np.sin(x)
z = np.cos(0.5 * (x[:-1] + x[1:])) # first derivative
# Create a colormap for red, green and blue and a norm to color
# f' < -0.5 red, f' > 0.5 blue, and the rest green
cmap = ListedColormap(['r', 'g', 'b'])
norm = BoundaryNorm([-1, -0.5, 0.5, 1], cmap.N)
# Create a set of line segments so that we can color them individually
# This creates the points as a N x 1 x 2 array so that we can stack points
# together easily to get the segments. The segments array for line collection
# needs to be numlines x points per line x 2 (x and y)
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# Create the line collection object, setting the colormapping parameters.
# Have to set the actual values used for colormapping separately.
lc = LineCollection(segments, cmap=cmap, norm=norm)
lc.set_array(z)
lc.set_linewidth(3)
fig1 = plt.figure()
plt.gca().add_collection(lc)
plt.xlim(x.min(), x.max())
plt.ylim(-1.1, 1.1)
plt.show()
See the answer here to generate the "periods" and then use the matplotlib scatter function as #tcaswell mentioned. Using the plot.hold function you can plot each period, colors will increment automatically.
Cribbing the color choice off of #JoeKington,
import numpy as np
import matplotlib.pyplot as plt
def uniqueish_color(n):
"""There're better ways to generate unique colors, but this isn't awful."""
return plt.cm.gist_ncar(np.random.random(n))
plt.scatter(latt, lont, c=uniqueish_color(len(latt)))
You can do this with scatter.
I have been searching for a short solution how to use pyplots line plot to show a time series coloured by a label feature without using scatter due to the amount of data points.
I came up with the following workaround:
plt.plot(np.where(df["label"]==1, df["myvalue"], None), color="red", label="1")
plt.plot(np.where(df["label"]==0, df["myvalue"], None), color="blue", label="0")
plt.legend()
The drawback is you are creating two different line plots so the connection between the different classes is not shown. For my purposes it is not a big deal. It may help someone.
I have a sequence of line plots for two variables (x,y) for a number of different values of a variable z. I would normally add the line plots with legends like this:
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
# suppose mydata is a list of tuples containing (xs, ys, z)
# where xs and ys are lists of x's and y's and z is a number.
legns = []
for(xs,ys,z) in mydata:
pl = ax.plot(xs,ys,color = (z,0,0))
legns.append("z = %f"%(z))
ax.legends(legns)
plt.show()
But I have too many graphs and the legends will cover the graph. I'd rather have a colorbar indicating the value of z corresponding to the color. I can't find anything like that in the galery and all my attempts do deal with the colorbar failed. Apparently I must create a collection of plots before trying to add a colorbar.
Is there an easy way to do this? Thanks.
EDIT (clarification):
I wanted to do something like this:
import matplotlib.pyplot as plt
import matplotlib.cm as cm
fig = plt.figure()
ax = fig.add_subplot(111)
mycmap = cm.hot
# suppose mydata is a list of tuples containing (xs, ys, z)
# where xs and ys are lists of x's and y's and z is a number between 0 and 1
plots = []
for(xs,ys,z) in mydata:
pl = ax.plot(xs,ys,color = mycmap(z))
plots.append(pl)
fig.colorbar(plots)
plt.show()
But this won't work according to the Matplotlib reference because a list of plots is not a "mappable", whatever this means.
I've created an alternative plot function using LineCollection:
def myplot(ax,xs,ys,zs, cmap):
plot = lc([zip(x,y) for (x,y) in zip(xs,ys)], cmap = cmap)
plot.set_array(array(zs))
x0,x1 = amin(xs),amax(xs)
y0,y1 = amin(ys),amax(ys)
ax.add_collection(plot)
ax.set_xlim(x0,x1)
ax.set_ylim(y0,y1)
return plot
xs and ys are lists of lists of x and y coordinates and zs is a list of the different conditions to colorize each line. It feels a bit like a cludge though... I thought that there would be a more neat way to do this. I like the flexibility of the plt.plot() function.
(I know this is an old question but...) Colorbars require a matplotlib.cm.ScalarMappable, plt.plot produces lines which are not scalar mappable, therefore, in order to make a colorbar, we are going to need to make a scalar mappable.
Ok. So the constructor of a ScalarMappable takes a cmap and a norm instance. (norms scale data to the range 0-1, cmaps you have already worked with and take a number between 0-1 and returns a color). So in your case:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.normalize(min=0, max=1))
plt.colorbar(sm)
Because your data is in the range 0-1 already, you can simplify the sm creation to:
sm = plt.cm.ScalarMappable(cmap=my_cmap)
EDIT: For matplotlib v1.2 or greater the code becomes:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.normalize(vmin=0, vmax=1))
# fake up the array of the scalar mappable. Urgh...
sm._A = []
plt.colorbar(sm)
EDIT: For matplotlib v1.3 or greater the code becomes:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.Normalize(vmin=0, vmax=1))
# fake up the array of the scalar mappable. Urgh...
sm._A = []
plt.colorbar(sm)
EDIT: For matplotlib v3.1 or greater simplifies to:
import matplotlib.pyplot as plt
sm = plt.cm.ScalarMappable(cmap=my_cmap, norm=plt.Normalize(vmin=0, vmax=1))
plt.colorbar(sm)
Here's one way to do it while still using plt.plot(). Basically, you make a throw-away plot and get the colorbar from there.
import matplotlib as mpl
import matplotlib.pyplot as plt
min, max = (-40, 30)
step = 10
# Setting up a colormap that's a simple transtion
mymap = mpl.colors.LinearSegmentedColormap.from_list('mycolors',['blue','red'])
# Using contourf to provide my colorbar info, then clearing the figure
Z = [[0,0],[0,0]]
levels = range(min,max+step,step)
CS3 = plt.contourf(Z, levels, cmap=mymap)
plt.clf()
# Plotting what I actually want
X=[[1,2],[1,2],[1,2],[1,2]]
Y=[[1,2],[1,3],[1,4],[1,5]]
Z=[-40,-20,0,30]
for x,y,z in zip(X,Y,Z):
# setting rgb color based on z normalized to my range
r = (float(z)-min)/(max-min)
g = 0
b = 1-r
plt.plot(x,y,color=(r,g,b))
plt.colorbar(CS3) # using the colorbar info I got from contourf
plt.show()
It's a little wasteful, but convenient. It's also not very wasteful if you make multiple plots as you can call plt.colorbar() without regenerating the info for it.
Here is a slightly simplied example inspired by the top answer given by Boris and Hooked (Thanks for the great idea!):
1. Discrete colorbar
Discrete colorbar is more involved, because colormap generated by mpl.cm.get_cmap() is not a mappable image needed as a colorbar() argument. A dummie mappable needs to generated as shown below:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1, n_lines + 1)
cmap = mpl.cm.get_cmap('jet', n_lines)
fig, ax = plt.subplots(dpi=100)
# Make dummie mappable
dummie_cax = ax.scatter(c, c, c=c, cmap=cmap)
# Clear axis
ax.cla()
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap(i))
fig.colorbar(dummie_cax, ticks=c)
plt.show();
This will produce a plot with a discrete colorbar:
2. Continuous colorbar
Continuous colorbar is less involved, as mpl.cm.ScalarMappable() allows us to obtain an "image" for colorbar().
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1, n_lines + 1)
norm = mpl.colors.Normalize(vmin=c.min(), vmax=c.max())
cmap = mpl.cm.ScalarMappable(norm=norm, cmap=mpl.cm.jet)
cmap.set_array([])
fig, ax = plt.subplots(dpi=100)
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap.to_rgba(i + 1))
fig.colorbar(cmap, ticks=c)
plt.show();
This will produce a plot with a continuous colorbar:
[Side note] In this example, I personally don't know why cmap.set_array([]) is necessary (otherwise we'd get error messages). If someone understand the principles under the hood, please comment :)
As other answers here do try to use dummy plots, which is not really good style, here is a generic code for a
Discrete colorbar
A discrete colorbar is produced in the same way a continuous colorbar is created, just with a different Normalization. In this case a BoundaryNorm should be used.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
n_lines = 5
x = np.linspace(0, 10, 100)
y = np.sin(x[:, None] + np.pi * np.linspace(0, 1, n_lines))
c = np.arange(1., n_lines + 1)
cmap = plt.get_cmap("jet", len(c))
norm = matplotlib.colors.BoundaryNorm(np.arange(len(c)+1)+0.5,len(c))
sm = plt.cm.ScalarMappable(norm=norm, cmap=cmap)
sm.set_array([]) # this line may be ommitted for matplotlib >= 3.1
fig, ax = plt.subplots(dpi=100)
for i, yi in enumerate(y.T):
ax.plot(x, yi, c=cmap(i))
fig.colorbar(sm, ticks=c)
plt.show()