Related
How do I select columns a and b from df, and save them into a new dataframe df1?
index a b c
1 2 3 4
2 3 4 5
Unsuccessful attempt:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
The column names (which are strings) cannot be sliced in the manner you tried.
Here you have a couple of options. If you know from context which variables you want to slice out, you can just return a view of only those columns by passing a list into the __getitem__ syntax (the []'s).
df1 = df[['a', 'b']]
Alternatively, if it matters to index them numerically and not by their name (say your code should automatically do this without knowing the names of the first two columns) then you can do this instead:
df1 = df.iloc[:, 0:2] # Remember that Python does not slice inclusive of the ending index.
Additionally, you should familiarize yourself with the idea of a view into a Pandas object vs. a copy of that object. The first of the above methods will return a new copy in memory of the desired sub-object (the desired slices).
Sometimes, however, there are indexing conventions in Pandas that don't do this and instead give you a new variable that just refers to the same chunk of memory as the sub-object or slice in the original object. This will happen with the second way of indexing, so you can modify it with the .copy() method to get a regular copy. When this happens, changing what you think is the sliced object can sometimes alter the original object. Always good to be on the look out for this.
df1 = df.iloc[0, 0:2].copy() # To avoid the case where changing df1 also changes df
To use iloc, you need to know the column positions (or indices). As the column positions may change, instead of hard-coding indices, you can use iloc along with get_loc function of columns method of dataframe object to obtain column indices.
{df.columns.get_loc(c): c for idx, c in enumerate(df.columns)}
Now you can use this dictionary to access columns through names and using iloc.
As of version 0.11.0, columns can be sliced in the manner you tried using the .loc indexer:
df.loc[:, 'C':'E']
is equivalent to
df[['C', 'D', 'E']] # or df.loc[:, ['C', 'D', 'E']]
and returns columns C through E.
A demo on a randomly generated DataFrame:
import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 6)),
columns=list('ABCDEF'),
index=['R{}'.format(i) for i in range(100)])
df.head()
Out:
A B C D E F
R0 99 78 61 16 73 8
R1 62 27 30 80 7 76
R2 15 53 80 27 44 77
R3 75 65 47 30 84 86
R4 18 9 41 62 1 82
To get the columns from C to E (note that unlike integer slicing, E is included in the columns):
df.loc[:, 'C':'E']
Out:
C D E
R0 61 16 73
R1 30 80 7
R2 80 27 44
R3 47 30 84
R4 41 62 1
R5 5 58 0
...
The same works for selecting rows based on labels. Get the rows R6 to R10 from those columns:
df.loc['R6':'R10', 'C':'E']
Out:
C D E
R6 51 27 31
R7 83 19 18
R8 11 67 65
R9 78 27 29
R10 7 16 94
.loc also accepts a Boolean array so you can select the columns whose corresponding entry in the array is True. For example, df.columns.isin(list('BCD')) returns array([False, True, True, True, False, False], dtype=bool) - True if the column name is in the list ['B', 'C', 'D']; False, otherwise.
df.loc[:, df.columns.isin(list('BCD'))]
Out:
B C D
R0 78 61 16
R1 27 30 80
R2 53 80 27
R3 65 47 30
R4 9 41 62
R5 78 5 58
...
Assuming your column names (df.columns) are ['index','a','b','c'], then the data you want is in the
third and fourth columns. If you don't know their names when your script runs, you can do this
newdf = df[df.columns[2:4]] # Remember, Python is zero-offset! The "third" entry is at slot two.
As EMS points out in his answer, df.ix slices columns a bit more concisely, but the .columns slicing interface might be more natural, because it uses the vanilla one-dimensional Python list indexing/slicing syntax.
Warning: 'index' is a bad name for a DataFrame column. That same label is also used for the real df.index attribute, an Index array. So your column is returned by df['index'] and the real DataFrame index is returned by df.index. An Index is a special kind of Series optimized for lookup of its elements' values. For df.index it's for looking up rows by their label. That df.columns attribute is also a pd.Index array, for looking up columns by their labels.
In the latest version of Pandas there is an easy way to do exactly this. Column names (which are strings) can be sliced in whatever manner you like.
columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)
In [39]: df
Out[39]:
index a b c
0 1 2 3 4
1 2 3 4 5
In [40]: df1 = df[['b', 'c']]
In [41]: df1
Out[41]:
b c
0 3 4
1 4 5
With Pandas,
wit column names
dataframe[['column1','column2']]
to select by iloc and specific columns with index number:
dataframe.iloc[:,[1,2]]
with loc column names can be used like
dataframe.loc[:,['column1','column2']]
You can use the pandas.DataFrame.filter method to either filter or reorder columns like this:
df1 = df.filter(['a', 'b'])
This is also very useful when you are chaining methods.
You could provide a list of columns to be dropped and return back the DataFrame with only the columns needed using the drop() function on a Pandas DataFrame.
Just saying
colsToDrop = ['a']
df.drop(colsToDrop, axis=1)
would return a DataFrame with just the columns b and c.
The drop method is documented here.
I found this method to be very useful:
# iloc[row slicing, column slicing]
surveys_df.iloc [0:3, 1:4]
More details can be found here.
Starting with 0.21.0, using .loc or [] with a list with one or more missing labels is deprecated in favor of .reindex. So, the answer to your question is:
df1 = df.reindex(columns=['b','c'])
In prior versions, using .loc[list-of-labels] would work as long as at least one of the keys was found (otherwise it would raise a KeyError). This behavior is deprecated and now shows a warning message. The recommended alternative is to use .reindex().
Read more at Indexing and Selecting Data.
You can use Pandas.
I create the DataFrame:
import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
index=['Jane', 'Peter','Alex','Ann'],
columns=['Test_1', 'Test_2', 'Test_3'])
The DataFrame:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
To select one or more columns by name:
df[['Test_1', 'Test_3']]
Test_1 Test_3
Jane 1 5
Peter 5 5
Alex 7 8
Ann 7 9
You can also use:
df.Test_2
And you get column Test_2:
Jane 2
Peter 4
Alex 7
Ann 6
You can also select columns and rows from these rows using .loc(). This is called "slicing". Notice that I take from column Test_1 to Test_3:
df.loc[:, 'Test_1':'Test_3']
The "Slice" is:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
And if you just want Peter and Ann from columns Test_1 and Test_3:
df.loc[['Peter', 'Ann'], ['Test_1', 'Test_3']]
You get:
Test_1 Test_3
Peter 5 5
Ann 7 9
If you want to get one element by row index and column name, you can do it just like df['b'][0]. It is as simple as you can imagine.
Or you can use df.ix[0,'b'] - mixed usage of index and label.
Note: Since v0.20, ix has been deprecated in favour of loc / iloc.
df[['a', 'b']] # Select all rows of 'a' and 'b'column
df.loc[0:10, ['a', 'b']] # Index 0 to 10 select column 'a' and 'b'
df.loc[0:10, 'a':'b'] # Index 0 to 10 select column 'a' to 'b'
df.iloc[0:10, 3:5] # Index 0 to 10 and column 3 to 5
df.iloc[3, 3:5] # Index 3 of column 3 to 5
Try to use pandas.DataFrame.get (see the documentation):
import pandas as pd
import numpy as np
dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])
One different and easy approach: iterating rows
Using iterows
df1 = pd.DataFrame() # Creating an empty dataframe
for index,i in df.iterrows():
df1.loc[index, 'A'] = df.loc[index, 'A']
df1.loc[index, 'B'] = df.loc[index, 'B']
df1.head()
The different approaches discussed in the previous answers are based on the assumption that either the user knows column indices to drop or subset on, or the user wishes to subset a dataframe using a range of columns (for instance between 'C' : 'E').
pandas.DataFrame.drop() is certainly an option to subset data based on a list of columns defined by user (though you have to be cautious that you always use copy of dataframe and inplace parameters should not be set to True!!)
Another option is to use pandas.columns.difference(), which does a set difference on column names, and returns an index type of array containing desired columns. Following is the solution:
df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)
The output would be:
b c
1 3 4
2 4 5
You can also use df.pop():
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))
>>> df
name class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal
>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object
>>> df
name max_speed
0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN
Please use df.pop(c).
I've seen several answers on that, but one remained unclear to me. How would you select those columns of interest?
The answer to that is that if you have them gathered in a list, you can just reference the columns using the list.
Example
print(extracted_features.shape)
print(extracted_features)
(63,)
['f000004' 'f000005' 'f000006' 'f000014' 'f000039' 'f000040' 'f000043'
'f000047' 'f000048' 'f000049' 'f000050' 'f000051' 'f000052' 'f000053'
'f000054' 'f000055' 'f000056' 'f000057' 'f000058' 'f000059' 'f000060'
'f000061' 'f000062' 'f000063' 'f000064' 'f000065' 'f000066' 'f000067'
'f000068' 'f000069' 'f000070' 'f000071' 'f000072' 'f000073' 'f000074'
'f000075' 'f000076' 'f000077' 'f000078' 'f000079' 'f000080' 'f000081'
'f000082' 'f000083' 'f000084' 'f000085' 'f000086' 'f000087' 'f000088'
'f000089' 'f000090' 'f000091' 'f000092' 'f000093' 'f000094' 'f000095'
'f000096' 'f000097' 'f000098' 'f000099' 'f000100' 'f000101' 'f000103']
I have the following list/NumPy array extracted_features, specifying 63 columns. The original dataset has 103 columns, and I would like to extract exactly those, then I would use
dataset[extracted_features]
And you will end up with this
This something you would use quite often in machine learning (more specifically, in feature selection). I would like to discuss other ways too, but I think that has already been covered by other Stack Overflower users.
To exclude some columns you can drop them in the column index. For example:
A B C D
0 1 10 100 1000
1 2 20 200 2000
Select all except two:
df[df.columns.drop(['B', 'D'])]
Output:
A C
0 1 100
1 2 200
You can also use the method truncate to select middle columns:
df.truncate(before='B', after='C', axis=1)
Output:
B C
0 10 100
1 20 200
To select multiple columns, extract and view them thereafter: df is the previously named data frame. Then create a new data frame df1, and select the columns A to D which you want to extract and view.
df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1
All required columns will show up!
def get_slize(dataframe, start_row, end_row, start_col, end_col):
assert len(dataframe) > end_row and start_row >= 0
assert len(dataframe.columns) > end_col and start_col >= 0
list_of_indexes = list(dataframe.columns)[start_col:end_col]
ans = dataframe.iloc[start_row:end_row][list_of_indexes]
return ans
Just use this function
I think this is the easiest way to reach your goal.
import pandas as pd
cols = ['a', 'b']
df1 = pd.DataFrame(df, columns=cols)
df1 = df.iloc[:, 0:2]
How do I select columns a and b from df, and save them into a new dataframe df1?
index a b c
1 2 3 4
2 3 4 5
Unsuccessful attempt:
df1 = df['a':'b']
df1 = df.ix[:, 'a':'b']
The column names (which are strings) cannot be sliced in the manner you tried.
Here you have a couple of options. If you know from context which variables you want to slice out, you can just return a view of only those columns by passing a list into the __getitem__ syntax (the []'s).
df1 = df[['a', 'b']]
Alternatively, if it matters to index them numerically and not by their name (say your code should automatically do this without knowing the names of the first two columns) then you can do this instead:
df1 = df.iloc[:, 0:2] # Remember that Python does not slice inclusive of the ending index.
Additionally, you should familiarize yourself with the idea of a view into a Pandas object vs. a copy of that object. The first of the above methods will return a new copy in memory of the desired sub-object (the desired slices).
Sometimes, however, there are indexing conventions in Pandas that don't do this and instead give you a new variable that just refers to the same chunk of memory as the sub-object or slice in the original object. This will happen with the second way of indexing, so you can modify it with the .copy() method to get a regular copy. When this happens, changing what you think is the sliced object can sometimes alter the original object. Always good to be on the look out for this.
df1 = df.iloc[0, 0:2].copy() # To avoid the case where changing df1 also changes df
To use iloc, you need to know the column positions (or indices). As the column positions may change, instead of hard-coding indices, you can use iloc along with get_loc function of columns method of dataframe object to obtain column indices.
{df.columns.get_loc(c): c for idx, c in enumerate(df.columns)}
Now you can use this dictionary to access columns through names and using iloc.
As of version 0.11.0, columns can be sliced in the manner you tried using the .loc indexer:
df.loc[:, 'C':'E']
is equivalent to
df[['C', 'D', 'E']] # or df.loc[:, ['C', 'D', 'E']]
and returns columns C through E.
A demo on a randomly generated DataFrame:
import pandas as pd
import numpy as np
np.random.seed(5)
df = pd.DataFrame(np.random.randint(100, size=(100, 6)),
columns=list('ABCDEF'),
index=['R{}'.format(i) for i in range(100)])
df.head()
Out:
A B C D E F
R0 99 78 61 16 73 8
R1 62 27 30 80 7 76
R2 15 53 80 27 44 77
R3 75 65 47 30 84 86
R4 18 9 41 62 1 82
To get the columns from C to E (note that unlike integer slicing, E is included in the columns):
df.loc[:, 'C':'E']
Out:
C D E
R0 61 16 73
R1 30 80 7
R2 80 27 44
R3 47 30 84
R4 41 62 1
R5 5 58 0
...
The same works for selecting rows based on labels. Get the rows R6 to R10 from those columns:
df.loc['R6':'R10', 'C':'E']
Out:
C D E
R6 51 27 31
R7 83 19 18
R8 11 67 65
R9 78 27 29
R10 7 16 94
.loc also accepts a Boolean array so you can select the columns whose corresponding entry in the array is True. For example, df.columns.isin(list('BCD')) returns array([False, True, True, True, False, False], dtype=bool) - True if the column name is in the list ['B', 'C', 'D']; False, otherwise.
df.loc[:, df.columns.isin(list('BCD'))]
Out:
B C D
R0 78 61 16
R1 27 30 80
R2 53 80 27
R3 65 47 30
R4 9 41 62
R5 78 5 58
...
Assuming your column names (df.columns) are ['index','a','b','c'], then the data you want is in the
third and fourth columns. If you don't know their names when your script runs, you can do this
newdf = df[df.columns[2:4]] # Remember, Python is zero-offset! The "third" entry is at slot two.
As EMS points out in his answer, df.ix slices columns a bit more concisely, but the .columns slicing interface might be more natural, because it uses the vanilla one-dimensional Python list indexing/slicing syntax.
Warning: 'index' is a bad name for a DataFrame column. That same label is also used for the real df.index attribute, an Index array. So your column is returned by df['index'] and the real DataFrame index is returned by df.index. An Index is a special kind of Series optimized for lookup of its elements' values. For df.index it's for looking up rows by their label. That df.columns attribute is also a pd.Index array, for looking up columns by their labels.
In the latest version of Pandas there is an easy way to do exactly this. Column names (which are strings) can be sliced in whatever manner you like.
columns = ['b', 'c']
df1 = pd.DataFrame(df, columns=columns)
In [39]: df
Out[39]:
index a b c
0 1 2 3 4
1 2 3 4 5
In [40]: df1 = df[['b', 'c']]
In [41]: df1
Out[41]:
b c
0 3 4
1 4 5
With Pandas,
wit column names
dataframe[['column1','column2']]
to select by iloc and specific columns with index number:
dataframe.iloc[:,[1,2]]
with loc column names can be used like
dataframe.loc[:,['column1','column2']]
You can use the pandas.DataFrame.filter method to either filter or reorder columns like this:
df1 = df.filter(['a', 'b'])
This is also very useful when you are chaining methods.
You could provide a list of columns to be dropped and return back the DataFrame with only the columns needed using the drop() function on a Pandas DataFrame.
Just saying
colsToDrop = ['a']
df.drop(colsToDrop, axis=1)
would return a DataFrame with just the columns b and c.
The drop method is documented here.
I found this method to be very useful:
# iloc[row slicing, column slicing]
surveys_df.iloc [0:3, 1:4]
More details can be found here.
Starting with 0.21.0, using .loc or [] with a list with one or more missing labels is deprecated in favor of .reindex. So, the answer to your question is:
df1 = df.reindex(columns=['b','c'])
In prior versions, using .loc[list-of-labels] would work as long as at least one of the keys was found (otherwise it would raise a KeyError). This behavior is deprecated and now shows a warning message. The recommended alternative is to use .reindex().
Read more at Indexing and Selecting Data.
You can use Pandas.
I create the DataFrame:
import pandas as pd
df = pd.DataFrame([[1, 2,5], [5,4, 5], [7,7, 8], [7,6,9]],
index=['Jane', 'Peter','Alex','Ann'],
columns=['Test_1', 'Test_2', 'Test_3'])
The DataFrame:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
To select one or more columns by name:
df[['Test_1', 'Test_3']]
Test_1 Test_3
Jane 1 5
Peter 5 5
Alex 7 8
Ann 7 9
You can also use:
df.Test_2
And you get column Test_2:
Jane 2
Peter 4
Alex 7
Ann 6
You can also select columns and rows from these rows using .loc(). This is called "slicing". Notice that I take from column Test_1 to Test_3:
df.loc[:, 'Test_1':'Test_3']
The "Slice" is:
Test_1 Test_2 Test_3
Jane 1 2 5
Peter 5 4 5
Alex 7 7 8
Ann 7 6 9
And if you just want Peter and Ann from columns Test_1 and Test_3:
df.loc[['Peter', 'Ann'], ['Test_1', 'Test_3']]
You get:
Test_1 Test_3
Peter 5 5
Ann 7 9
If you want to get one element by row index and column name, you can do it just like df['b'][0]. It is as simple as you can imagine.
Or you can use df.ix[0,'b'] - mixed usage of index and label.
Note: Since v0.20, ix has been deprecated in favour of loc / iloc.
df[['a', 'b']] # Select all rows of 'a' and 'b'column
df.loc[0:10, ['a', 'b']] # Index 0 to 10 select column 'a' and 'b'
df.loc[0:10, 'a':'b'] # Index 0 to 10 select column 'a' to 'b'
df.iloc[0:10, 3:5] # Index 0 to 10 and column 3 to 5
df.iloc[3, 3:5] # Index 3 of column 3 to 5
Try to use pandas.DataFrame.get (see the documentation):
import pandas as pd
import numpy as np
dates = pd.date_range('20200102', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
df.get(['A', 'C'])
One different and easy approach: iterating rows
Using iterows
df1 = pd.DataFrame() # Creating an empty dataframe
for index,i in df.iterrows():
df1.loc[index, 'A'] = df.loc[index, 'A']
df1.loc[index, 'B'] = df.loc[index, 'B']
df1.head()
The different approaches discussed in the previous answers are based on the assumption that either the user knows column indices to drop or subset on, or the user wishes to subset a dataframe using a range of columns (for instance between 'C' : 'E').
pandas.DataFrame.drop() is certainly an option to subset data based on a list of columns defined by user (though you have to be cautious that you always use copy of dataframe and inplace parameters should not be set to True!!)
Another option is to use pandas.columns.difference(), which does a set difference on column names, and returns an index type of array containing desired columns. Following is the solution:
df = pd.DataFrame([[2,3,4], [3,4,5]], columns=['a','b','c'], index=[1,2])
columns_for_differencing = ['a']
df1 = df.copy()[df.columns.difference(columns_for_differencing)]
print(df1)
The output would be:
b c
1 3 4
2 4 5
You can also use df.pop():
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
... ('parrot', 'bird', 24.0),
... ('lion', 'mammal', 80.5),
... ('monkey', 'mammal', np.nan)],
... columns=('name', 'class', 'max_speed'))
>>> df
name class max_speed
0 falcon bird 389.0
1 parrot bird 24.0
2 lion mammal 80.5
3 monkey mammal
>>> df.pop('class')
0 bird
1 bird
2 mammal
3 mammal
Name: class, dtype: object
>>> df
name max_speed
0 falcon 389.0
1 parrot 24.0
2 lion 80.5
3 monkey NaN
Please use df.pop(c).
I've seen several answers on that, but one remained unclear to me. How would you select those columns of interest?
The answer to that is that if you have them gathered in a list, you can just reference the columns using the list.
Example
print(extracted_features.shape)
print(extracted_features)
(63,)
['f000004' 'f000005' 'f000006' 'f000014' 'f000039' 'f000040' 'f000043'
'f000047' 'f000048' 'f000049' 'f000050' 'f000051' 'f000052' 'f000053'
'f000054' 'f000055' 'f000056' 'f000057' 'f000058' 'f000059' 'f000060'
'f000061' 'f000062' 'f000063' 'f000064' 'f000065' 'f000066' 'f000067'
'f000068' 'f000069' 'f000070' 'f000071' 'f000072' 'f000073' 'f000074'
'f000075' 'f000076' 'f000077' 'f000078' 'f000079' 'f000080' 'f000081'
'f000082' 'f000083' 'f000084' 'f000085' 'f000086' 'f000087' 'f000088'
'f000089' 'f000090' 'f000091' 'f000092' 'f000093' 'f000094' 'f000095'
'f000096' 'f000097' 'f000098' 'f000099' 'f000100' 'f000101' 'f000103']
I have the following list/NumPy array extracted_features, specifying 63 columns. The original dataset has 103 columns, and I would like to extract exactly those, then I would use
dataset[extracted_features]
And you will end up with this
This something you would use quite often in machine learning (more specifically, in feature selection). I would like to discuss other ways too, but I think that has already been covered by other Stack Overflower users.
To exclude some columns you can drop them in the column index. For example:
A B C D
0 1 10 100 1000
1 2 20 200 2000
Select all except two:
df[df.columns.drop(['B', 'D'])]
Output:
A C
0 1 100
1 2 200
You can also use the method truncate to select middle columns:
df.truncate(before='B', after='C', axis=1)
Output:
B C
0 10 100
1 20 200
To select multiple columns, extract and view them thereafter: df is the previously named data frame. Then create a new data frame df1, and select the columns A to D which you want to extract and view.
df1 = pd.DataFrame(data_frame, columns=['Column A', 'Column B', 'Column C', 'Column D'])
df1
All required columns will show up!
def get_slize(dataframe, start_row, end_row, start_col, end_col):
assert len(dataframe) > end_row and start_row >= 0
assert len(dataframe.columns) > end_col and start_col >= 0
list_of_indexes = list(dataframe.columns)[start_col:end_col]
ans = dataframe.iloc[start_row:end_row][list_of_indexes]
return ans
Just use this function
I think this is the easiest way to reach your goal.
import pandas as pd
cols = ['a', 'b']
df1 = pd.DataFrame(df, columns=cols)
df1 = df.iloc[:, 0:2]
I set up a simple DataFrame in pandas:
a = pandas.DataFrame([[1,2,3], [4,5,6], [7,8,9]], columns=['a','b','c'])
>>> print a
a b c
0 1 2 3
1 4 5 6
2 7 8 9
I would like to be able to alter a single element in the last row of. In pandas==0.13.1 I could use the following:
a.iloc[-1]['a'] = 77
>>> print a
a b c
0 1 2 3
1 4 5 6
2 77 8 9
but after updating to pandas==0.14.1, I get the following warning when doing this:
SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_index,col_indexer] = value instead
The problem of course being that -1 is not an index of a, so I can't use loc. As the warning indicates, I have not changed column 'a' of the last row, I've only altered a discarded local copy.
How do I do this in the newer version of pandas? I realize I could use the index of the last row like:
a.loc[2,'a'] = 77
But I'll be working with tables where multiple rows have the same index, and I don't want to reindex my table every time. Is there a way to do this without knowing the index of the last row before hand?
Taking elements from the solutions of #PallavBakshi and #Mike, the following works in Pandas >= 0.19:
a.loc[a.index[-1], 'a'] = 4.0
Just using iloc[-1, 'a'] won't work as 'a' is not a location.
Alright I've found a way to solve this problem without chaining, and without worrying about multiple indices.
a.iloc[-1, a.columns.get_loc('a')] = 77
>>> a
a b c
0 1 2 3
1 4 5 6
2 77 8 9
I wasn't able to use iloc before because I couldn't supply the column index as an int, but get_loc solves that problem. Thanks for the helpful comments everyone!
For pandas 0.22,
a.at[a.index[-1], 'a'] = 77
this is just one of the ways.
I have an almost embarrassingly simple question, which I cannot figure out for myself.
Here's a toy example to demonstrate what I want to do, suppose I have this simple data frame:
df = pd.DataFrame([[1,2,3,4,5,6],[7,8,9,10,11,12]],index=range(2),columns=list('abcdef'))
a b c d e f
0 1 2 3 4 5 6
1 7 8 9 10 11 12
What I want is to stack it so that it takes the following form, where the columns identifiers have been changed (to X and Y) so that they are the same for all re-stacked values:
X Y
0 1 2
3 4
5 6
1 7 8
9 10
11 12
I am pretty sure you can do it with pd.stack() or pd.pivot_table() but I have read the documentation, but cannot figure out how to do it. But instead of appending all columns to the end of the next, I just want to append a pairs (or triplets of values actually) of values from each row.
Just to add some more flesh to the bones of what I want to do;
df = pd.DataFrame(np.random.randn(3,6),index=range(3),columns=list('abcdef'))
a b c d e f
0 -0.168636 -1.878447 -0.985152 -0.101049 1.244617 1.256772
1 0.395110 -0.237559 0.034890 -1.244669 -0.721756 0.473696
2 -0.973043 1.784627 0.601250 -1.718324 0.145479 -0.099530
I want this to re-stacked into this form (where column labels have been changed again, to the same for all values):
X Y Z
0 -0.168636 -1.878447 -0.985152
-0.101049 1.244617 1.256772
1 0.395110 -0.237559 0.034890
-1.244669 -0.721756 0.473696
2 -0.973043 1.784627 0.601250
-1.718324 0.145479 -0.099530
Yes, one could just make a for-loop with the following logic operating on each row:
df.values.reshape(df.shape[1]/3,2)
But then you would have to compute each row individually and my actual data has tens of thousands of rows.
So I want to stack each individual row selectively (e.g. by pairs of values or triplets), and then stack that row-stack, for the entire data frame, basically. Preferably done on the entire data frame at once (if possible).
Apologies for such a trivial question.
Use numpy.reshape to reshape the underlying data in the DataFrame:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(3,6),index=range(3),columns=list('abcdef'))
print(df)
# a b c d e f
# 0 -0.889810 1.348811 -1.071198 0.091841 -0.781704 -1.672864
# 1 0.398858 0.004976 1.280942 1.185749 1.260551 0.858973
# 2 1.279742 0.946470 -1.122450 -0.355737 1.457966 0.034319
result = pd.DataFrame(df.values.reshape(-1,3),
index=df.index.repeat(2), columns=list('XYZ'))
print(result)
yields
X Y Z
0 -0.889810 1.348811 -1.071198
0 0.091841 -0.781704 -1.672864
1 0.398858 0.004976 1.280942
1 1.185749 1.260551 0.858973
2 1.279742 0.946470 -1.122450
2 -0.355737 1.457966 0.034319
I am trying to transform DataFrame, such that some of the rows will be replicated a given number of times. For example:
df = pd.DataFrame({'class': ['A', 'B', 'C'], 'count':[1,0,2]})
class count
0 A 1
1 B 0
2 C 2
should be transformed to:
class
0 A
1 C
2 C
This is the reverse of aggregation with count function. Is there an easy way to achieve it in pandas (without using for loops or list comprehensions)?
One possibility might be to allow DataFrame.applymap function return multiple rows (akin apply method of GroupBy). However, I do not think it is possible in pandas now.
You could use groupby:
def f(group):
row = group.irow(0)
return DataFrame({'class': [row['class']] * row['count']})
df.groupby('class', group_keys=False).apply(f)
so you get
In [25]: df.groupby('class', group_keys=False).apply(f)
Out[25]:
class
0 A
0 C
1 C
You can fix the index of the result however you like
I know this is an old question, but I was having trouble getting Wes' answer to work for multiple columns in the dataframe so I made his code a bit more generic. Thought I'd share in case anyone else stumbles on this question with the same problem.
You just basically specify what column has the counts in it in and you get an expanded dataframe in return.
import pandas as pd
df = pd.DataFrame({'class 1': ['A','B','C','A'],
'class 2': [ 1, 2, 3, 1],
'count': [ 3, 3, 3, 1]})
print df,"\n"
def f(group, *args):
row = group.irow(0)
Dict = {}
row_dict = row.to_dict()
for item in row_dict: Dict[item] = [row[item]] * row[args[0]]
return pd.DataFrame(Dict)
def ExpandRows(df,WeightsColumnName):
df_expand = df.groupby(df.columns.tolist(), group_keys=False).apply(f,WeightsColumnName).reset_index(drop=True)
return df_expand
df_expanded = ExpandRows(df,'count')
print df_expanded
Returns:
class 1 class 2 count
0 A 1 3
1 B 2 3
2 C 3 3
3 A 1 1
class 1 class 2 count
0 A 1 1
1 A 1 3
2 A 1 3
3 A 1 3
4 B 2 3
5 B 2 3
6 B 2 3
7 C 3 3
8 C 3 3
9 C 3 3
With regards to speed, my base df is 10 columns by ~6k rows and when expanded is ~100,000 rows takes ~7 seconds. I'm not sure in this case if grouping is necessary or wise since it's taking all the columns to group form, but hey whatever only 7 seconds.
There is even a simpler and significantly more efficient solution.
I had to make similar modification for a table of about 3.5M rows, and the previous suggested solutions were extremely slow.
A better way is to use numpy's repeat procedure for generating a new index in which each row index is repeated multiple times according to its given count, and use iloc to select rows of the original table according to this index:
import pandas as pd
import numpy as np
df = pd.DataFrame({'class': ['A', 'B', 'C'], 'count': [1, 0, 2]})
spread_ixs = np.repeat(range(len(df)), df['count'])
spread_ixs
array([0, 2, 2])
df.iloc[spread_ixs, :].drop(columns='count').reset_index(drop=True)
class
0 A
1 C
2 C
This question is very old and the answers do not reflect pandas modern capabilities. You can use iterrows to loop over every row and then use the DataFrame constructor to create new DataFrames with the correct number of rows. Finally, use pd.concat to concatenate all the rows together.
pd.concat([pd.DataFrame(data=[row], index=range(row['count']))
for _, row in df.iterrows()], ignore_index=True)
class count
0 A 1
1 C 2
2 C 2
This has the benefit of working with any size DataFrame.