Related
I am running a python script on a raspberry-pi.
Essentially, I would like a camera to take a picture every 5 seconds, but only if I have set a boolean to true, which gets toggled on a physical button.
initially I set it to true, and then in my while(true) loop, I want to check to see if the variable is set to true, and if so, start taking pictures every 5 seconds. The issue is if I use something like time time.sleep(5), it essentially freezes everything, including the check. Combine that with the fact that I am using debouncing for the button, it then becomes impossible for me to actually toggle the script since I would have to press it exactly after the 5s wait time, right for the value check... I've been searching around and I think the likely solution would have to include threading, but I can't wrap my head around it. One kind of workaround I thought of would be to look at the system time and if the seconds is a multiple of 5, then take picture (all within the main loop). This seems a bit sketchy.
Script below:
### Imports
from goprocam import GoProCamera, constants
import board
import digitalio
from adafruit_debouncer import Debouncer
import os
import shutil
import time
### GoPro settings
goproCamera = GoProCamera.GoPro()
### Button settings
pin = digitalio.DigitalInOut(board.D12)
pin.direction = digitalio.Direction.INPUT
pin.pull = digitalio.Pull.UP
switch = Debouncer(pin, interval=0.1)
save = False #this is the variable
while(True):
switch.update()
if switch.fell:
print("Pressed, toggling value")
save = not save
if save:
goproCamera.take_photo()
goproCamera.downloadLastMedia()
time.sleep(5)
Here's something to try:
while(True):
switch.update()
if switch.fell:
print("Pressed, toggling value")
save = not save
if save:
current_time = time.time()
if current_time - last_pic_time >= 5:
goproCamera.take_photo()
goproCamera.downloadLastMedia()
last_pic_time = current_time
Depending on exactly what sort of behavior you want, you may have to fiddle with when and how often time.time() is called.
Cheers!
Maybe something like this?
import threading
def set_interval(func, sec):
def func_wrapper():
set_interval(func, sec)
func()
t = threading.Timer(sec, func_wrapper)
t.start()
return t
We call the function above inside the main loop.
Wrap your while loop content on a function:
def take_photo:
goproCamera.take_photo()
goproCamera.downloadLastMedia()
Now we create a flag initially set to False to avoid creating multiple threads.
Notice that I did this before the while loop. We just need a starting value here.
active = False
while(True):
switch.update()
if switch.fell:
print("Pressed, toggling value")
save = not save
if save: # we need to start taking photos.
if not active: # it is not active... so it is the first time it is being called or it has been toggled to save as True again.
photo_thread = set_interval(take_photo, 5) # grabbing a handle to the thread - photo_thread - so we can cancel it later when save is set to False.
active = True # marking as active to be skipped from the loop until save is False
else:
try: # photo_thread may not exist yet so I wrapped it inside a try statement here.
photo_thread.cancel() # if we have a thread we kill it
active = False #setting to False so the next time the button is pressed we can create a new one.
Let me know if it works. =)
What I ended up doing:
### Imports
from goprocam import GoProCamera, constants
import board
import digitalio
from adafruit_debouncer import Debouncer
import os
import time
import threading
### GoPro settings
gopro = GoProCamera.GoPro()
### Button settings
pin = digitalio.DigitalInOut(board.D12)
pin.direction = digitalio.Direction.INPUT
pin.pull = digitalio.Pull.UP
switch = Debouncer(pin, interval=0.1)
### Picture save location
dir_path = os.path.dirname(os.path.realpath(__file__))
new_path = dir_path+"/pictures/"
save = False
### Functions
def takePhoto(e):
while e.isSet():
gopro.take_photo()
gopro.downloadLastMedia()
fname = '100GOPRO-' + gopro.getMedia().split("/")[-1]
current_file = dir_path+'/'+fname
if os.path.isfile(current_file):
os.replace(current_file, new_path+fname) #move file, would be cleaner to download the file directly to the right folder, but the API doesn't work the way I thought it did
e.wait(5)
### Initial settings
e = threading.Event()
t1 = threading.Thread(target=takePhoto, args=([e]))
print("Starting script")
while(True):
switch.update()
if switch.fell:
#toggle value
save = not save
if save:
e.set() #should be taking pictures
else:
e.clear() #not taking pictures
if not t1.is_alive(): #start the thread if it hasn't been yet
if e.is_set():
t1.start()
I am trying to create a memory scanner. similar to Cheat Engine. but only for extract information.
I know how to get the pid (in this case is "notepad.exe"). But I don't have any Idea about how to know wicht especific adress belong to the program that I am scanning.
Trying to looking for examples. I could see someone it was trying to scan every adress since one point to other. But it's to slow. Then I try to create a batch size (scan a part of memory and not one by one each adress). The problem is if the size is to short. still will take a long time. and if it is to long, is possible to lose many adress who are belong to the program. Because result from ReadMemoryScan is False in the first Adress, but It can be the next one is true. Here is my example.
import ctypes as c
from ctypes import wintypes as w
import psutil
from sys import stdout
write = stdout.write
import numpy as np
def get_client_pid(process_name):
pid = None
for proc in psutil.process_iter():
if proc.name() == process_name:
pid = int(proc.pid)
print(f"Found '{process_name}' PID = ", pid,f" hex_value = {hex(pid)}")
break
if pid == None:
print('Program Not found')
return pid
pid = get_client_pid("notepad.exe")
if pid == None:
sys.exit()
k32 = c.WinDLL('kernel32', use_last_error=True)
OpenProcess = k32.OpenProcess
OpenProcess.argtypes = [w.DWORD,w.BOOL,w.DWORD]
OpenProcess.restype = w.HANDLE
ReadProcessMemory = k32.ReadProcessMemory
ReadProcessMemory.argtypes = [w.HANDLE,w.LPCVOID,w.LPVOID,c.c_size_t,c.POINTER(c.c_size_t)]
ReadProcessMemory.restype = w.BOOL
GetLastError = k32.GetLastError
GetLastError.argtypes = None
GetLastError.restype = w.DWORD
CloseHandle = k32.CloseHandle
CloseHandle.argtypes = [w.HANDLE]
CloseHandle.restype = w.BOOL
processHandle = OpenProcess(0x10, False, int(pid))
# addr = 0x0FFFFFFFFFFF
data = c.c_ulonglong()
bytesRead = c.c_ulonglong()
start = 0x000000000000
end = 0x7fffffffffff
batch_size = 2**13
MemoryData = np.zeros(batch_size, 'l')
Size = MemoryData.itemsize*MemoryData.size
index = 0
Data_address = []
for c_adress in range(start,end,batch_size):
result = ReadProcessMemory(processHandle,c.c_void_p(c_adress), MemoryData.ctypes.data,
Size, c.byref(bytesRead))
if result: # Save adress
Data_address.extend(list(range(c_adress,c_adress+batch_size)))
e = GetLastError()
CloseHandle(processHandle)
I decided from 0x000000000000 to 0x7fffffffffff Because cheat engine scan this size. I am still a begginer with this kind of this about memory scan. maybe there are things that I can do to improve the efficiency.
I suggest you take advantage of existing python libraries that can analyse Windows 10 memory.
I'm no specialist but I've found Volatility. Seems to be pretty useful for your problem.
For running that tool you need Python 2 (Python 3 won't work).
For running python 2 and 3 in the same Windows 10 machine, follow this tutorial (The screenshots are in Spanish but it can easily be followed).
Then see this cheat sheet with main commands. You can dump the memory and then operate on the file.
Perhaps this leads you to the solution :) At least the most basic command pslist dumps all the running processes addresses.
psutil has proc.memory_maps()
pass the result as map to this function
TargetProcess eaxample 'Calculator.exe'
def get_memSize(self,TargetProcess,map):
for m in map:
if TargetProcess in m.path:
memSize= m.rss
break
return memSize
if you use this function, it returns the memory size of your Target Process
my_pid is the pid for 'Calculator.exe'
def getBaseAddressWmi(self,my_pid):
PROCESS_ALL_ACCESS = 0x1F0FFF
processHandle = win32api.OpenProcess(PROCESS_ALL_ACCESS, False, my_pid)
modules = win32process.EnumProcessModules(processHandle)
processHandle.close()
base_addr = modules[0] # for me it worked to select the first item in list...
return base_addr
to get the base address of your prog
so you search range is from base_addr to base_addr + memSize
I am trying to add drop down in excel cell using python win32com api. But not able to implement it.
Here is my code
from win32com.client import Dispatch
import os
import win32api
path = os.getcwd()
path1 = path + '\\myExcel.xlsx'
try:
xl = Dispatch("Excel.Application")
xl.Visible = 1 # fun to watch!
wb = xl.Workbooks.Open(Filename=path1)
ws = wb.Worksheets(1)
ws.Cells(1,1).Value = "GREEN"
ws.Cells(2,1).Value = "YELLOW"
ws.Cells(3,1).Value = "RED"
ws.Cells(4,1).Value = "WHITE"
ws.Cells(5,1).Value = "NOT SURE"
ws.Cells(6,1).Value = "["GREEN", "YELLOW", "RED", "WHITE", "NOT SURE"]" //I want drop down here
wb.Close(SaveChanges=True)
xl.Quit()
except Exception as e:
print(e)
What you are doing isn't working because this line
ws.Cells(6,1).Value = "["GREEN", "YELLOW", "RED", "WHITE", "NOT SURE"]" //I want drop down here
is setting the value of the cell, just like the previous lines did. (Or rather, attempting to set it: that line contains two syntax errors, one in the quoting and one in the comment.)
But you don't want to set the value of the cell, you want to apply validation to the cell. So you need to set attributes of the object ws.Cells(6,1).Validation.
Taking just the code inside your try...except clause, that would look like this:
xl = Dispatch("Excel.Application")
xl.Visible = 0 # Not really such fun to watch because the code below closes down Excel
# straightaway. xl.Visible = 1 will just show a screen flicker.
wb = xl.Workbooks.Open(Filename=path1)
ws = wb.Worksheets(1)
ws.Cells(1,1).Value = "GREEN"
ws.Cells(2,1).Value = "YELLOW"
ws.Cells(3,1).Value = "RED"
ws.Cells(4,1).Value = "WHITE"
ws.Cells(5,1).Value = "NOT SURE"
# Set up validation
val = ws.Cells(6,1).Validation
val.Add(Type=3, AlertStyle=1, Operator=1, Formula1="=Sheet1!A1:A5")
val.IgnoreBlank = -1
val.InCellDropdown = -1
val.InputTitle = ""
val.ErrorTitle = ""
val.InputMessage = ""
val.ErrorMessage = ""
val.ShowInput = -1
val.ShowError = -1
wb.Close(SaveChanges=True)
xl.Quit()
The lines that set up the validation follow exactly the example in the reference given in my comment. The objects that win32com gets from Excel are not Python objects: they are thin Python wrappers around VBA objects, and these VBA objects follow their own conventions, not Python's. So the Python code follows the VBA exactly, except for syntax. The only differences are cosmetic.
.Add gets parentheses because functions in Python have to have them (VBA methods don't).
Named parameters to methods get a Python = not a VBA :=.
Constants like xlBetween represent integer values; you can find the values on MSDN.
VBA defines True as -1. 1 or True will probably also work: I didn't try.
Python doesn't have an equivalent of VBA's with statement so val has to be explicit in assignments like val.ErrorMessage = "" instead of implicit as in VBA.
This is the result I got.
I'm working on a Raspberry Pi (3 B+) making a data collection device and I'm
trying to spawn a process to record the data coming in and write it to a file. I have a function for the writing that works fine when I call it directly.
When I call it using the multiprocess approach however, nothing seems to happen. I can see in task monitors in Linux that the process does in fact get spawned but no file gets written, and when I try to pass a flag to it to shut down it doesn't work, meaning I end up terminating the process and nothing seems to have happened.
I've been over this every which way and can't see what I'm doing wrong; does anyone else? In case it's relevant, these are functions inside a parent class, and one of the functions is meant to spawn another as a thread.
Code I'm using:
from datetime import datetime, timedelta
import csv
from drivers.IMU_SEN0 import IMU_SEN0
import multiprocessing, os
class IMU_data_logger:
_output_filename = ''
_csv_headers = []
_accelerometer_headers = ['Accelerometer X','Accelerometer Y','Accelerometer Z']
_gyroscope_headers = ['Gyroscope X','Gyroscope Y','Gyroscope Z']
_magnetometer_headers = ['Bearing']
_log_accelerometer = False
_log_gyroscope= False
_log_magnetometer = False
IMU = None
_writer=[]
_run_underway = False
_process=[]
_stop_value = 0
def __init__(self,output_filename='/home/pi/blah.csv',log_accelerometer = True,log_gyroscope= True,log_magnetometer = True):
"""data logging device
NOTE! Multiple instances of this class should not use the same IMU devices simultaneously!"""
self._output_filename = output_filename
self._log_accelerometer = log_accelerometer
self._log_gyroscope = log_gyroscope
self._log_magnetometer = log_magnetometer
def __del__(self):
# TODO Update this
if self._run_underway: # If there's still a run underway, end it first
self.end_recording()
def _set_up(self):
self.IMU = IMU_SEN0(self._log_accelerometer,self._log_gyroscope,self._log_magnetometer)
self._set_up_headers()
def _set_up_headers(self):
"""Set up the headers of the CSV file based on the header substrings at top and the input flags on what will be measured"""
self._csv_headers = []
if self._log_accelerometer is not None:
self._csv_headers+= self._accelerometer_headers
if self._log_gyroscope is not None:
self._csv_headers+= self._gyroscope_headers
if self._log_magnetometer is not None:
self._csv_headers+= self._magnetometer_headers
def _record_data(self,frequency,stop_value):
self._set_up() #Run setup in thread
"""Record data function, which takes a recording frequency, in herz, as an input"""
previous_read_time=datetime.now()-timedelta(1,0,0)
self._run_underway = True # Note that a run is now going
Period = 1/frequency # Period, in seconds, of a recording based on the input frequency
print("Writing output data to",self._output_filename)
with open(self._output_filename,'w',newline='') as outcsv:
self._writer = csv.writer(outcsv)
self._writer.writerow(self._csv_headers) # Write headers to file
while stop_value.value==0: # While a run continues
if datetime.now()-previous_read_time>=timedelta(0,1,0): # If we've waited a period, collect the data; otherwise keep looping
print("run underway value",self._run_underway)
if datetime.now()-previous_read_time>=timedelta(0,Period,0): # If we've waited a period, collect the data; otherwise keep looping
previous_read_time = datetime.now() # Update previous readtime
next_row = []
if self._log_accelerometer:
# Get values in m/s^2
axes = self.IMU.read_accelerometer_values()
next_row += [axes['x'],axes['y'],axes['z']]
if self._log_gyroscope:
# Read gyro values
gyro = self.IMU.read_gyroscope_values()
next_row += [gyro['x'],gyro['y'],gyro['z']]
if self._log_magnetometer:
# Read magnetometer value
b= self.IMU.read_magnetometer_bearing()
next_row += b
self._writer.writerow(next_row)
# Close the csv when done
outcsv.close()
def start_recording(self,frequency_in_hz):
# Create recording process
self._stop_value = multiprocessing.Value('i',0)
self._process = multiprocessing.Process(target=self._record_data,args=(frequency_in_hz,self._stop_value))
# Start recording process
self._process.start()
print(datetime.now().strftime("%H:%M:%S.%f"),"Data logging process spawned")
print("Logging Accelerometer:",self._log_accelerometer)
print("Logging Gyroscope:",self._log_gyroscope)
print("Logging Magnetometer:",self._log_magnetometer)
print("ID of data logging process: {}".format(self._process.pid))
def end_recording(self,terminate_wait = 2):
"""Function to end the recording multithread that's been spawned.
Args: terminate_wait: This is the time, in seconds, to wait after attempting to shut down the process before terminating it."""
# Get process id
id = self._process.pid
# Set stop event for process
self._stop_value.value = 1
self._process.join(terminate_wait) # Wait two seconds for the process to terminate
if self._process.is_alive(): # If it's still alive after waiting
self._process.terminate()
print(datetime.now().strftime("%H:%M:%S.%f"),"Process",id,"needed to be terminated.")
else:
print(datetime.now().strftime("%H:%M:%S.%f"),"Process",id,"successfully ended itself.")
====================================================================
ANSWER: For anyone following up here, it turns out the problem was my use of the VS Code debugger which apparently doesn't work with multiprocessing and was somehow preventing the success of the spawned process. Many thanks to Tomasz Swider below for helping me work through issues and, eventually, find my idiocy. The help was very deeply appreciated!!
I can see few thing wrong in your code:
First thing
stop_value == 0 will not work as the multiprocess.Value('i', 0) != 0, change that line to
while stop_value.value == 0
Second, you never update previous_read_time so it will write the readings as fast as it can, you will run out of disk quick
Third, try use time.sleep() the thing you are doing is called busy looping and it is bad, it is wasting CPU cycles needlessly.
Four, terminating with self._stop_value = 1 probably will not work there must be other way to set that value maybe self._stop_value.value = 1.
Well here is a pice of example code based on the code that you have provided that is working just fine:
import csv
import multiprocessing
import time
from datetime import datetime, timedelta
from random import randint
class IMU(object):
#staticmethod
def read_accelerometer_values():
return dict(x=randint(0, 100), y=randint(0, 100), z=randint(0, 10))
class Foo(object):
def __init__(self, output_filename):
self._output_filename = output_filename
self._csv_headers = ['xxxx','y','z']
self._log_accelerometer = True
self.IMU = IMU()
def _record_data(self, frequency, stop_value):
#self._set_up() # Run setup functions for the data collection device and store it in the self.IMU variable
"""Record data function, which takes a recording frequency, in herz, as an input"""
previous_read_time = datetime.now() - timedelta(1, 0, 0)
self._run_underway = True # Note that a run is now going
Period = 1 / frequency # Period, in seconds, of a recording based on the input frequency
print("Writing output data to", self._output_filename)
with open(self._output_filename, 'w', newline='') as outcsv:
self._writer = csv.writer(outcsv)
self._writer.writerow(self._csv_headers) # Write headers to file
while stop_value.value == 0: # While a run continues
if datetime.now() - previous_read_time >= timedelta(0, 1,
0): # If we've waited a period, collect the data; otherwise keep looping
print("run underway value", self._run_underway)
if datetime.now() - previous_read_time >= timedelta(0, Period,
0): # If we've waited a period, collect the data; otherwise keep looping
next_row = []
if self._log_accelerometer:
# Get values in m/s^2
axes = self.IMU.read_accelerometer_values()
next_row += [axes['x'], axes['y'], axes['z']]
previous_read_time = datetime.now()
self._writer.writerow(next_row)
# Close the csv when done
outcsv.close()
def start_recording(self, frequency_in_hz):
# Create recording process
self._stop_value = multiprocessing.Value('i', 0)
self._process = multiprocessing.Process(target=self._record_data, args=(frequency_in_hz, self._stop_value))
# Start recording process
self._process.start()
print(datetime.now().strftime("%H:%M:%S.%f"), "Data logging process spawned")
print("ID of data logging process: {}".format(self._process.pid))
def end_recording(self, terminate_wait=2):
"""Function to end the recording multithread that's been spawned.
Args: terminate_wait: This is the time, in seconds, to wait after attempting to shut down the process before terminating it."""
# Get process id
id = self._process.pid
# Set stop event for process
self._stop_value.value = 1
self._process.join(terminate_wait) # Wait two seconds for the process to terminate
if self._process.is_alive(): # If it's still alive after waiting
self._process.terminate()
print(datetime.now().strftime("%H:%M:%S.%f"), "Process", id, "needed to be terminated.")
else:
print(datetime.now().strftime("%H:%M:%S.%f"), "Process", id, "successfully ended itself.")
if __name__ == '__main__':
foo = Foo('/tmp/foometer.csv')
foo.start_recording(20)
time.sleep(5)
print('Ending recording')
foo.end_recording()
so I have been trying to add a chart object to an Excel file using IronPython and I keep getting an error whenever I call ws.ChartObjects. For some reason it tells me that its a DispCallable and that it has no Add property.
clr.AddReferenceByName('Microsoft.Office.Interop.Excel, Version=11.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e9429c')
from Microsoft.Office.Interop import Excel
System.Threading.Thread.CurrentThread.CurrentCulture = System.Globalization.CultureInfo("en-US")
from System.Runtime.InteropServices import Marshal
def SetUp(xlApp):
# supress updates and warning pop ups
xlApp.Visible = False
xlApp.DisplayAlerts = False
xlApp.ScreenUpdating = False
return xlApp
def ExitExcel(filePath, xlApp, wb, ws):
# clean up before exiting excel, if any COM object remains
# unreleased then excel crashes on open following time
def CleanUp(_list):
if isinstance(_list, list):
for i in _list:
Marshal.ReleaseComObject(i)
else:
Marshal.ReleaseComObject(_list)
return None
wb.SaveAs(str(filePath))
xlApp.ActiveWorkbook.Close(False)
xlApp.ScreenUpdating = True
CleanUp([ws,wb,xlApp])
return None
def GetWidthHeight(origin, extent, ws):
left = ws.Cells(bb.xlRange(cellRange)[1], bb.xlRange(cellRange)[0]).Left
top = ws.Cells(bb.xlRange(cellRange)[1], bb.xlRange(cellRange)[0]).Top
width = ws.Range[origin, extent].Width
height = ws.Range[origin, extent].Height
return [left, top, width, height]
if runMe:
message = None
try:
xlApp = SetUp(Excel.ApplicationClass())
errorReport = None
xlApp.Workbooks.open(str(filePath))
wb = xlApp.ActiveWorkbook
ws = xlApp.Sheets(sheetName)
# i have no clue why ws.ChartObjects.Count throws an error all the time
origin = ws.Cells(bb.xlRange(cellRange)[1], bb.xlRange(cellRange)[0])
extent = ws.Cells(bb.xlRange(cellRange)[3], bb.xlRange(cellRange)[2])
left = GetWidthHeight(origin, extent, ws)[0]
top = GetWidthHeight(origin, extent, ws)[1]
width = GetWidthHeight(origin, extent, ws)[2]
height = GetWidthHeight(origin, extent, ws)[3]
xlChartObject = ws.ChartObjects.Add(int(left), int(top), int(width), int(height))
Marshal.ReleaseComObject(extent)
Marshal.ReleaseComObject(origin)
ExitExcel(filePath, xlApp, wb, ws)
except:
# if error accurs anywhere in the process catch it
import traceback
errorReport = traceback.format_exc()
My problem is with calling ws.ChartObjects.Add() which throws an exception 'DispCallable' object has no attribute 'Add'. How do i go around this? What is wrong?
Based on a similar issue indicating that ChartObjects is a function you should use
ChartObjects().Add(...)
As per official documentation, the arguments should be double. If this is not the issue, you can split
xlChartObject = ws.ChartObjects.Add(...
into
xlChartObjects = ws.ChartObjects
xlChartObject = xlChartObjects.Add(...
to start debugging. It is a good idea to:
Check available methods (for the class of xlChartObjects, e.g.) with How do I get list of methods in a Python class?, or Finding what methods an object has.
Check type with What's the canonical way to check for type in python?.
You will likely learn how to fix these lines.
PS: In the code you posted sheetName and bb are not defined, although you probably define them earlier.