Python descriptors - python

From the descriptor docs:
A descriptor can be called directly by its method name. For example, d.__get__(obj).
What would be an example of this with the following class?
class Descriptor:
def __init__(self, color="red"):
self.color = color
For example, what is d and what is obj? How would "d.__get__(obj)" be called with the above class/instance?

Working Example
To make your example a descriptor, it needs to have a __get__() method:
class Descriptor:
def __init__(self, color="red"):
self.color = color
def __get__(self, obj, objtype=None):
return obj.size + ' ' + self.color
Use that descriptor in another class:
class A:
pair = Descriptor('green')
def __init__(self, size):
self.size = size
Invoke the descriptor like this:
>>> a = A('big')
>>> a.pair
'big green'
Hope this working example helps :-)
Key points
1) A class is a descriptor if defines any one of __get__(), __set__(), or __delete__().
2) Put it to work by making an instance of the descriptor and storing it as a class variable in another class.
3) Invoke the descriptor with normal attribute lookup using the dot operator.
That's really all there is to it :-)

Descriptors are a way to make code look like data and also to achieve polymorphism.
There's a good example on the page that you linked to, under "Descriptor Example"
I'll copy it here:
class RevealAccess(object):
"""A data descriptor that sets and returns values
normally and prints a message logging their access.
"""
def __init__(self, initval=None, name='var'):
self.val = initval
self.name = name
def __get__(self, obj, objtype):
print('Retrieving', self.name)
return self.val
def __set__(self, obj, val):
print('Updating', self.name)
self.val = val
>>> class MyClass(object):
... x = RevealAccess(10, 'var "x"')
... y = 5
...
>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5
Do you see how the class MyClass assigns the RevealAccess descriptor to it's x attribute?
In your case, you would need to also need to add a class that uses the descriptor you made.

Related

Python setter and getter for class attributes [duplicate]

I have a class with two class methods (using the classmethod() function) for getting and setting what is essentially a static variable. I tried to use the property() function with these, but it results in an error. I was able to reproduce the error with the following in the interpreter:
class Foo(object):
_var = 5
#classmethod
def getvar(cls):
return cls._var
#classmethod
def setvar(cls, value):
cls._var = value
var = property(getvar, setvar)
I can demonstrate the class methods, but they don't work as properties:
>>> f = Foo()
>>> f.getvar()
5
>>> f.setvar(4)
>>> f.getvar()
4
>>> f.var
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'classmethod' object is not callable
>>> f.var=5
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: 'classmethod' object is not callable
Is it possible to use the property() function with #classmethod decorated functions?
3.8 < Python < 3.11
Can use both decorators together. See this answer.
Python < 3.9
A property is created on a class but affects an instance. So if you want a classmethod property, create the property on the metaclass.
>>> class foo(object):
... _var = 5
... class __metaclass__(type): # Python 2 syntax for metaclasses
... pass
... #classmethod
... def getvar(cls):
... return cls._var
... #classmethod
... def setvar(cls, value):
... cls._var = value
...
>>> foo.__metaclass__.var = property(foo.getvar.im_func, foo.setvar.im_func)
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
But since you're using a metaclass anyway, it will read better if you just move the classmethods in there.
>>> class foo(object):
... _var = 5
... class __metaclass__(type): # Python 2 syntax for metaclasses
... #property
... def var(cls):
... return cls._var
... #var.setter
... def var(cls, value):
... cls._var = value
...
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
or, using Python 3's metaclass=... syntax, and the metaclass defined outside of the foo class body, and the metaclass responsible for setting the initial value of _var:
>>> class foo_meta(type):
... def __init__(cls, *args, **kwargs):
... cls._var = 5
... #property
... def var(cls):
... return cls._var
... #var.setter
... def var(cls, value):
... cls._var = value
...
>>> class foo(metaclass=foo_meta):
... pass
...
>>> foo.var
5
>>> foo.var = 3
>>> foo.var
3
In Python 3.9 You could use them together, but (as noted in #xgt's comment) it was deprecated in Python 3.11, so it is not recommended to use it.
Check the version remarks here:
https://docs.python.org/3.11/library/functions.html#classmethod
However, it used to work like so:
class G:
#classmethod
#property
def __doc__(cls):
return f'A doc for {cls.__name__!r}'
Order matters - due to how the descriptors interact, #classmethod has to be on top.
I hope this dead-simple read-only #classproperty decorator would help somebody looking for classproperties.
class classproperty(property):
def __get__(self, owner_self, owner_cls):
return self.fget(owner_cls)
class C(object):
#classproperty
def x(cls):
return 1
assert C.x == 1
assert C().x == 1
Reading the Python 2.2 release notes, I find the following.
The get method [of a property] won't be called when
the property is accessed as a class
attribute (C.x) instead of as an
instance attribute (C().x). If you
want to override the __get__ operation
for properties when used as a class
attribute, you can subclass property -
it is a new-style type itself - to
extend its __get__ method, or you can
define a descriptor type from scratch
by creating a new-style class that
defines __get__, __set__ and
__delete__ methods.
NOTE: The below method doesn't actually work for setters, only getters.
Therefore, I believe the prescribed solution is to create a ClassProperty as a subclass of property.
class ClassProperty(property):
def __get__(self, cls, owner):
return self.fget.__get__(None, owner)()
class foo(object):
_var=5
def getvar(cls):
return cls._var
getvar=classmethod(getvar)
def setvar(cls,value):
cls._var=value
setvar=classmethod(setvar)
var=ClassProperty(getvar,setvar)
assert foo.getvar() == 5
foo.setvar(4)
assert foo.getvar() == 4
assert foo.var == 4
foo.var = 3
assert foo.var == 3
However, the setters don't actually work:
foo.var = 4
assert foo.var == foo._var # raises AssertionError
foo._var is unchanged, you've simply overwritten the property with a new value.
You can also use ClassProperty as a decorator:
class foo(object):
_var = 5
#ClassProperty
#classmethod
def var(cls):
return cls._var
#var.setter
#classmethod
def var(cls, value):
cls._var = value
assert foo.var == 5
Is it possible to use the property() function with classmethod decorated functions?
No.
However, a classmethod is simply a bound method (a partial function) on a class accessible from instances of that class.
Since the instance is a function of the class and you can derive the class from the instance, you can can get whatever desired behavior you might want from a class-property with property:
class Example(object):
_class_property = None
#property
def class_property(self):
return self._class_property
#class_property.setter
def class_property(self, value):
type(self)._class_property = value
#class_property.deleter
def class_property(self):
del type(self)._class_property
This code can be used to test - it should pass without raising any errors:
ex1 = Example()
ex2 = Example()
ex1.class_property = None
ex2.class_property = 'Example'
assert ex1.class_property is ex2.class_property
del ex2.class_property
assert not hasattr(ex1, 'class_property')
And note that we didn't need metaclasses at all - and you don't directly access a metaclass through its classes' instances anyways.
writing a #classproperty decorator
You can actually create a classproperty decorator in just a few lines of code by subclassing property (it's implemented in C, but you can see equivalent Python here):
class classproperty(property):
def __get__(self, obj, objtype=None):
return super(classproperty, self).__get__(objtype)
def __set__(self, obj, value):
super(classproperty, self).__set__(type(obj), value)
def __delete__(self, obj):
super(classproperty, self).__delete__(type(obj))
Then treat the decorator as if it were a classmethod combined with property:
class Foo(object):
_bar = 5
#classproperty
def bar(cls):
"""this is the bar attribute - each subclass of Foo gets its own.
Lookups should follow the method resolution order.
"""
return cls._bar
#bar.setter
def bar(cls, value):
cls._bar = value
#bar.deleter
def bar(cls):
del cls._bar
And this code should work without errors:
def main():
f = Foo()
print(f.bar)
f.bar = 4
print(f.bar)
del f.bar
try:
f.bar
except AttributeError:
pass
else:
raise RuntimeError('f.bar must have worked - inconceivable!')
help(f) # includes the Foo.bar help.
f.bar = 5
class Bar(Foo):
"a subclass of Foo, nothing more"
help(Bar) # includes the Foo.bar help!
b = Bar()
b.bar = 'baz'
print(b.bar) # prints baz
del b.bar
print(b.bar) # prints 5 - looked up from Foo!
if __name__ == '__main__':
main()
But I'm not sure how well-advised this would be. An old mailing list article suggests it shouldn't work.
Getting the property to work on the class:
The downside of the above is that the "class property" isn't accessible from the class, because it would simply overwrite the data descriptor from the class __dict__.
However, we can override this with a property defined in the metaclass __dict__. For example:
class MetaWithFooClassProperty(type):
#property
def foo(cls):
"""The foo property is a function of the class -
in this case, the trivial case of the identity function.
"""
return cls
And then a class instance of the metaclass could have a property that accesses the class's property using the principle already demonstrated in the prior sections:
class FooClassProperty(metaclass=MetaWithFooClassProperty):
#property
def foo(self):
"""access the class's property"""
return type(self).foo
And now we see both the instance
>>> FooClassProperty().foo
<class '__main__.FooClassProperty'>
and the class
>>> FooClassProperty.foo
<class '__main__.FooClassProperty'>
have access to the class property.
Python 3!
See #Amit Portnoy's answer for an even cleaner method in python >= 3.9
Old question, lots of views, sorely in need of a one-true Python 3 way.
Luckily, it's easy with the metaclass kwarg:
class FooProperties(type):
#property
def var(cls):
return cls._var
class Foo(object, metaclass=FooProperties):
_var = 'FOO!'
Then, >>> Foo.var
'FOO!'
There is no reasonable way to make this "class property" system to work in Python.
Here is one unreasonable way to make it work. You can certainly make it more seamless with increasing amounts of metaclass magic.
class ClassProperty(object):
def __init__(self, getter, setter):
self.getter = getter
self.setter = setter
def __get__(self, cls, owner):
return getattr(cls, self.getter)()
def __set__(self, cls, value):
getattr(cls, self.setter)(value)
class MetaFoo(type):
var = ClassProperty('getvar', 'setvar')
class Foo(object):
__metaclass__ = MetaFoo
_var = 5
#classmethod
def getvar(cls):
print "Getting var =", cls._var
return cls._var
#classmethod
def setvar(cls, value):
print "Setting var =", value
cls._var = value
x = Foo.var
print "Foo.var = ", x
Foo.var = 42
x = Foo.var
print "Foo.var = ", x
The knot of the issue is that properties are what Python calls "descriptors". There is no short and easy way to explain how this sort of metaprogramming works, so I must point you to the descriptor howto.
You only ever need to understand this sort of things if you are implementing a fairly advanced framework. Like a transparent object persistence or RPC system, or a kind of domain-specific language.
However, in a comment to a previous answer, you say that you
need to modify an attribute that in such a way that is seen by all instances of a class, and in the scope from which these class methods are called does not have references to all instances of the class.
It seems to me, what you really want is an Observer design pattern.
Setting it only on the meta class doesn't help if you want to access the class property via an instantiated object, in this case you need to install a normal property on the object as well (which dispatches to the class property). I think the following is a bit more clear:
#!/usr/bin/python
class classproperty(property):
def __get__(self, obj, type_):
return self.fget.__get__(None, type_)()
def __set__(self, obj, value):
cls = type(obj)
return self.fset.__get__(None, cls)(value)
class A (object):
_foo = 1
#classproperty
#classmethod
def foo(cls):
return cls._foo
#foo.setter
#classmethod
def foo(cls, value):
cls.foo = value
a = A()
print a.foo
b = A()
print b.foo
b.foo = 5
print a.foo
A.foo = 10
print b.foo
print A.foo
Half a solution, __set__ on the class does not work, still. The solution is a custom property class implementing both a property and a staticmethod
class ClassProperty(object):
def __init__(self, fget, fset):
self.fget = fget
self.fset = fset
def __get__(self, instance, owner):
return self.fget()
def __set__(self, instance, value):
self.fset(value)
class Foo(object):
_bar = 1
def get_bar():
print 'getting'
return Foo._bar
def set_bar(value):
print 'setting'
Foo._bar = value
bar = ClassProperty(get_bar, set_bar)
f = Foo()
#__get__ works
f.bar
Foo.bar
f.bar = 2
Foo.bar = 3 #__set__ does not
Because I need to modify an attribute that in such a way that is seen by all instances of a class, and in the scope from which these class methods are called does not have references to all instances of the class.
Do you have access to at least one instance of the class? I can think of a way to do it then:
class MyClass (object):
__var = None
def _set_var (self, value):
type (self).__var = value
def _get_var (self):
return self.__var
var = property (_get_var, _set_var)
a = MyClass ()
b = MyClass ()
a.var = "foo"
print b.var
Give this a try, it gets the job done without having to change/add a lot of existing code.
>>> class foo(object):
... _var = 5
... def getvar(cls):
... return cls._var
... getvar = classmethod(getvar)
... def setvar(cls, value):
... cls._var = value
... setvar = classmethod(setvar)
... var = property(lambda self: self.getvar(), lambda self, val: self.setvar(val))
...
>>> f = foo()
>>> f.var
5
>>> f.var = 3
>>> f.var
3
The property function needs two callable arguments. give them lambda wrappers (which it passes the instance as its first argument) and all is well.
Here's a solution which should work for both access via the class and access via an instance which uses a metaclass.
In [1]: class ClassPropertyMeta(type):
...: #property
...: def prop(cls):
...: return cls._prop
...: def __new__(cls, name, parents, dct):
...: # This makes overriding __getattr__ and __setattr__ in the class impossible, but should be fixable
...: dct['__getattr__'] = classmethod(lambda cls, attr: getattr(cls, attr))
...: dct['__setattr__'] = classmethod(lambda cls, attr, val: setattr(cls, attr, val))
...: return super(ClassPropertyMeta, cls).__new__(cls, name, parents, dct)
...:
In [2]: class ClassProperty(object):
...: __metaclass__ = ClassPropertyMeta
...: _prop = 42
...: def __getattr__(self, attr):
...: raise Exception('Never gets called')
...:
In [3]: ClassProperty.prop
Out[3]: 42
In [4]: ClassProperty.prop = 1
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-4-e2e8b423818a> in <module>()
----> 1 ClassProperty.prop = 1
AttributeError: can't set attribute
In [5]: cp = ClassProperty()
In [6]: cp.prop
Out[6]: 42
In [7]: cp.prop = 1
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-7-e8284a3ee950> in <module>()
----> 1 cp.prop = 1
<ipython-input-1-16b7c320d521> in <lambda>(cls, attr, val)
6 # This makes overriding __getattr__ and __setattr__ in the class impossible, but should be fixable
7 dct['__getattr__'] = classmethod(lambda cls, attr: getattr(cls, attr))
----> 8 dct['__setattr__'] = classmethod(lambda cls, attr, val: setattr(cls, attr, val))
9 return super(ClassPropertyMeta, cls).__new__(cls, name, parents, dct)
AttributeError: can't set attribute
This also works with a setter defined in the metaclass.
I found one clean solution to this problem. It's a package called classutilities (pip install classutilities), see the documentation here on PyPi.
Consider example:
import classutilities
class SomeClass(classutilities.ClassPropertiesMixin):
_some_variable = 8 # Some encapsulated class variable
#classutilities.classproperty
def some_variable(cls): # class property getter
return cls._some_variable
#some_variable.setter
def some_variable(cls, value): # class property setter
cls._some_variable = value
You can use it on both class level and instance level:
# Getter on class level:
value = SomeClass.some_variable
print(value) # >>> 8
# Getter on instance level
inst = SomeClass()
value = inst.some_variable
print(value) # >>> 8
# Setter on class level:
new_value = 9
SomeClass.some_variable = new_value
print(SomeClass.some_variable) # >>> 9
print(SomeClass._some_variable) # >>> 9
# Setter on instance level
inst = SomeClass()
inst.some_variable = new_value
print(SomeClass.some_variable) # >>> 9
print(SomeClass._some_variable) # >>> 9
print(inst.some_variable) # >>> 9
print(inst._some_variable) # >>> 9
As you can see, it works correctly under all circumstances.
Based on https://stackoverflow.com/a/1800999/2290820
class MetaProperty(type):
def __init__(cls, *args, **kwargs):
super()
#property
def praparty(cls):
return cls._var
#praparty.setter
def praparty(cls, val):
cls._var = val
class A(metaclass=MetaProperty):
_var = 5
print(A.praparty)
A.praparty = 6
print(A.praparty)
For a functional approach pre Python 3.9 you can use this:
def classproperty(fget):
return type(
'classproperty',
(),
{'__get__': lambda self, _, cls: fget(cls), '__module__': None}
)()
class Item:
a = 47
#classproperty
def x(cls):
return cls.a
Item.x
After searching different places, I found a method to define a classproperty
valid with Python 2 and 3.
from future.utils import with_metaclass
class BuilderMetaClass(type):
#property
def load_namespaces(self):
return (self.__sourcepath__)
class BuilderMixin(with_metaclass(BuilderMetaClass, object)):
__sourcepath__ = 'sp'
print(BuilderMixin.load_namespaces)
Hope this can help somebody :)
A code completion friendly solution for Python < 3.9
from typing import (
Callable,
Generic,
TypeVar,
)
T = TypeVar('T')
class classproperty(Generic[T]):
"""Converts a method to a class property.
"""
def __init__(self, f: Callable[..., T]):
self.fget = f
def __get__(self, instance, owner) -> T:
return self.fget(owner)
Here is my solution that also caches the class property
class class_property(object):
# this caches the result of the function call for fn with cls input
# use this as a decorator on function methods that you want converted
# into cached properties
def __init__(self, fn):
self._fn_name = fn.__name__
if not isinstance(fn, (classmethod, staticmethod)):
fn = classmethod(fn)
self._fn = fn
def __get__(self, obj, cls=None):
if cls is None:
cls = type(obj)
if (
self._fn_name in vars(cls) and
type(vars(cls)[self._fn_name]).__name__ != "class_property"
):
return vars(cls)[self._fn_name]
else:
value = self._fn.__get__(obj, cls)()
setattr(cls, self._fn_name, value)
return value
Here's my suggestion. Don't use class methods.
Seriously.
What's the reason for using class methods in this case? Why not have an ordinary object of an ordinary class?
If you simply want to change the value, a property isn't really very helpful is it? Just set the attribute value and be done with it.
A property should only be used if there's something to conceal -- something that might change in a future implementation.
Maybe your example is way stripped down, and there is some hellish calculation you've left off. But it doesn't look like the property adds significant value.
The Java-influenced "privacy" techniques (in Python, attribute names that begin with _) aren't really very helpful. Private from whom? The point of private is a little nebulous when you have the source (as you do in Python.)
The Java-influenced EJB-style getters and setters (often done as properties in Python) are there to facilitate Java's primitive introspection as well as to pass muster with the static language compiler. All those getters and setters aren't as helpful in Python.

How to fetch class instance from class variable (from outside the class)?

Let's say I have this:
from PySide2 import QtWidgets
class MyClass(object):
def __init__(self, parent=None):
self.class_variable = QtWidgets.QWidget()
class_instance = MyClass()
variable = class_instance.class_variable
class_instance_returned = mystery_method(variable) # How to make this return class_instance?
How should I define mystery_method so that it would return the class_instance instance?
The real-world case I have is that I'm sending a QWidget which I'm using as a base instance for .ui file loading into a function. Inside this function I need to figure out which class instance it belongs to.
Python 2.7
class MyClass(object):
def foo():
return 'bar'
instance = MyClass()
def mystery_method(method):
return method.im_self.__class__
print mystery_method(instance.foo)
Python 3
class MyClass(object):
def foo():
return 'bar'
instance = MyClass()
def mystery_method(method):
return method.__self__.__class__
print mystery_method(instance.foo)
EDIT
After the OP was edited:
class ParentClass():
def foo():
return 'bar'
class MyClass(object):
def __init__(self, parent=None):
self.instance_attribute = ParentClass()
def mystery_method(method):
return method.__class__
class_instance = MyClass()
print mystery_method(class_instance.instance_attribute)
One way would we to define foo as a custom property that returns both its value and the related instance when its value is fetched:
from collections import namedtuple
class Prop(object):
def __init__(self, val):
self.val = val
def __get__(self, instance, type):
return namedtuple('Prop', ('value', 'instance'))(self.val, instance)
def __set__(self, instance, val):
self.val = val
class MyClass(object):
foo = Prop('bar')
Now in your program you can explicitly use its value and the related instance using foo's value and instance attributes respectively.
Demo:
>>> instance = MyClass()
>>> instance.foo
Prop(value='bar', instance=<__main__.MyClass object at 0x10effbcd0>)
>>> instance.foo.value
'bar'
>>> instance.foo.instance
<__main__.MyClass object at 0x10effbcd0>
In general you cannot (at least not without a lot of searching through all the objects in the system) but if all you want is to find which instances of a class match a particular value then it's fairly easy.
You can create a set of all instances and iterate over them to find what you need.
from weakref import WeakSet
class MyClass(object):
_instances = WeakSet()
def __init__(self, foo):
self._instances.add(self)
self.foo = foo
#classmethod
def findFoo(cls, foo):
return [instance for instance in cls._instances if instance.foo == foo]
>>> instance1 = MyClass('bar')
>>> instance2 = MyClass('baz')
>>> MyClass.findFoo('baz')
[<__main__.MyClass object at 0x7f6723308f50>]
>>> MyClass.findFoo('bar')
[<__main__.MyClass object at 0x7f6723308c50>]
Note that deleting the object won't remove it immediately, it may not go until garbage collected:
>>> del instance1
>>> MyClass.findFoo('bar')
[<__main__.MyClass object at 0x7f6723308c50>]
>>> import gc
>>> gc.collect()
16
>>> MyClass.findFoo('bar')
[]
However in general you would be better to keep the reference to the original object hanging around and just use that.
Also, note that you cannot reliably tell which instance holds 'bar' if it is stored in more than one object: they could be the same 'bar' or they could be different ones, and whether they are the same or different is an implementation detail.

Understanding Python Descriptors

I am trying to understand descriptors better.
I don't understand why in the foo method the descriptors __get__ method doesn't get called.
As far as I understand descriptors the __get__ method always get called when I access the objects attribute via dot operator or when I use __getattribute__().
According to the Python documentation:
class RevealAccess(object):
def __init__(self, initval=None, name='var'):
self.val = initval
self.name = name
def __get__(self, obj, objtype):
print('Retrieving', self.name)
return self.val
def __set__(self, obj, val):
print('Updating', self.name)
self.val = val
class MyClass(object):
x = RevealAccess(10, 'var "x"')
y = 5
def foo(self):
self.z = RevealAccess(13, 'var "z"')
self.__getattribute__('z')
print(self.z)
m = MyClass()
m.foo()
m.z # no print
m.x # prints var x
z is an attribute on the instance, not on the class. The descriptor protocol only applies to attributes retrieved from a class.
From the Descriptor HOWTO:
For objects, the machinery is in object.__getattribute__() which transforms b.x into type(b).__dict__['x'].__get__(b, type(b)).
and in the Implementing Descriptors section of the Python Data Model:
The following methods only apply when an instance of the class containing the method (a so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one of its parents).
Your m.z cannot be found in the class dict; type(m).__dict__['z'] does not exist; it is found in m.__dict__['z'] instead. Here m is the instance and the owner class is MyClass, and z does not appear in the owner class dictionary.

How do I get a reference to all classes implementing descriptor object in python

I am creating a descriptor, and I want to create a list inside it that holds references to all objects implementing it, it is supposed to be some kind of a shortcut where I can call the method on the next instance in line from the instances.
The only daft solution I could find is just on __init__ of each objects trigger the setter on descriptor that adds the item to the list, even though that solution does work indeed, I can sense that something is wrong with it.
Does anyone have a better way of adding the class instance to a descriptor list other than setting arbitrary value on __init__, just to trigger the setter?
class GetResult(object):
def __init__(self, value):
self.instances = []
def __get__(self, instance, owner):
return self
def __set__(self, instance, value):
self.instances.append(instance)
def getInstances(self):
return self.instances
class A(object):
result = GetResult(0)
def __init__(self):
self.result = 0
def getAll(self):
print self.result.getInstances()
a1 = A()
a2 = A()
a3 = A()
print a2.result.getInstances()
>> [<__main__.A object at 0x02302DF0>, <__main__.A object at 0x02302E10>, <__main__.Aobject at 0x02302E30>]
If that's all your descriptor do, it's a bit of an abuse of the descriptor protocol. Just overriding your class __new__ or __init__ would be simpler:
class Foo(object):
_instances = []
def __new__(cls, *args, **kw):
instance = object.__new__(cls)
cls._instances.append(instance)
return instance
#classmethod
def get_instances(cls):
return self._instances

dynamically adding callable to class as instance "method"

I implemented a metaclass that tears down the class attributes for classes created with it and builds methods from the data from those arguments, then attaches those dynamically created methods directly to the class object (the class in question allows for easy definition of web form objects for use in a web testing framework). It has been working just fine, but now I have a need to add a more complex type of method, which, to try to keep things clean, I implemented as a callable class. Unfortunately, when I try to call the callable class on an instance, it is treated as a class attribute instead of an instance method, and when called, only receives its own self. I can see why this happens, but I was hoping someone might have a better solution than the ones I've come up with. Simplified illustration of the problem:
class Foo(object):
def __init__(self, name, val):
self.name = name
self.val = val
self.__name__ = name + '_foo'
self.name = name
# This doesn't work as I'd wish
def __call__(self, instance):
return self.name + str(self.val + instance.val)
def get_methods(name, foo_val):
foo = Foo(name, foo_val)
def bar(self):
return name + str(self.val + 2)
bar.__name__ = name + '_bar'
return foo, bar
class Baz(object):
def __init__(self, val):
self.val = val
for method in get_methods('biff', 1):
setattr(Baz, method.__name__, method)
baz = Baz(10)
# baz.val == 10
# baz.biff_foo() == 'biff11'
# baz.biff_bar() == 'biff12'
I've thought of:
Using a descriptor, but that seems way more complex than is necessary here
Using a closure inside of a factory for foo, but nested closures are ugly and messy replacements for objects most of the time, imo
Wrapping the Foo instance in a method that passes its self down to the Foo instance as instance, basically a decorator, that is what I actually add to Baz, but that seems superfluous and basically just a more complicated way of doing the same thing as (2)
Is there a better way then any of these to try to accomplish what I want, or should I just bite the bullet and use some closure factory type pattern?
One way to do this is to attach the callable objects to the class as unbound methods. The method constructor will work with arbitrary callables (i.e. instances of classes with a __call__() method)—not just functions.
from types import MethodType
class Foo(object):
def __init__(self, name, val):
self.name = name
self.val = val
self.__name__ = name + '_foo'
self.name = name
def __call__(self, instance):
return self.name + str(self.val + instance.val)
class Baz(object):
def __init__(self, val):
self.val = val
Baz.biff = MethodType(Foo("biff", 42), None, Baz)
b = Baz(13)
print b.biff()
>>> biff55
In Python 3, there's no such thing as an unbound instance method (classes just have regular functions attached) so you might instead make your Foo class a descriptor that returns a bound instance method by giving it a __get__() method. (Actually, that approach will work in Python 2.x as well, but the above will perform a little better.)
from types import MethodType
class Foo(object):
def __init__(self, name, val):
self.name = name
self.val = val
self.__name__ = name + '_foo'
self.name = name
def __call__(self, instance):
return self.name + str(self.val + instance.val)
def __get__(self, instance, owner):
return MethodType(self, instance) if instance else self
# Python 2: MethodType(self, instance, owner)
class Baz(object):
def __init__(self, val):
self.val = val
Baz.biff = Foo("biff", 42)
b = Baz(13)
print b.biff()
>>> biff55
The trouble you're running into is that your object is not being bound as a method of the Baz class you're putting it in. This is because it is not a descriptor, which regular functions are!
You can fix this by adding a simple __get__ method to your Foo class that makes it into a method when it's accessed as a descriptor:
import types
class Foo(object):
# your other stuff here
def __get__(self, obj, objtype=None):
if obj is None:
return self # unbound
else:
return types.MethodType(self, obj) # bound to obj

Categories