Related
I'm doing it like:
def set_property(property,value):
def get_property(property):
or
object.property = value
value = object.property
What's the pythonic way to use getters and setters?
Try this: Python Property
The sample code is:
class C(object):
def __init__(self):
self._x = None
#property
def x(self):
"""I'm the 'x' property."""
print("getter of x called")
return self._x
#x.setter
def x(self, value):
print("setter of x called")
self._x = value
#x.deleter
def x(self):
print("deleter of x called")
del self._x
c = C()
c.x = 'foo' # setter called
foo = c.x # getter called
del c.x # deleter called
What's the pythonic way to use getters and setters?
The "Pythonic" way is not to use "getters" and "setters", but to use plain attributes, like the question demonstrates, and del for deleting (but the names are changed to protect the innocent... builtins):
value = 'something'
obj.attribute = value
value = obj.attribute
del obj.attribute
If later, you want to modify the setting and getting, you can do so without having to alter user code, by using the property decorator:
class Obj:
"""property demo"""
#
#property # first decorate the getter method
def attribute(self): # This getter method name is *the* name
return self._attribute
#
#attribute.setter # the property decorates with `.setter` now
def attribute(self, value): # name, e.g. "attribute", is the same
self._attribute = value # the "value" name isn't special
#
#attribute.deleter # decorate with `.deleter`
def attribute(self): # again, the method name is the same
del self._attribute
(Each decorator usage copies and updates the prior property object, so note that you should use the same name for each set, get, and delete function/method.)
After defining the above, the original setting, getting, and deleting code is the same:
obj = Obj()
obj.attribute = value
the_value = obj.attribute
del obj.attribute
You should avoid this:
def set_property(property,value):
def get_property(property):
Firstly, the above doesn't work, because you don't provide an argument for the instance that the property would be set to (usually self), which would be:
class Obj:
def set_property(self, property, value): # don't do this
...
def get_property(self, property): # don't do this either
...
Secondly, this duplicates the purpose of two special methods, __setattr__ and __getattr__.
Thirdly, we also have the setattr and getattr builtin functions.
setattr(object, 'property_name', value)
getattr(object, 'property_name', default_value) # default is optional
The #property decorator is for creating getters and setters.
For example, we could modify the setting behavior to place restrictions the value being set:
class Protective(object):
#property
def protected_value(self):
return self._protected_value
#protected_value.setter
def protected_value(self, value):
if acceptable(value): # e.g. type or range check
self._protected_value = value
In general, we want to avoid using property and just use direct attributes.
This is what is expected by users of Python. Following the rule of least-surprise, you should try to give your users what they expect unless you have a very compelling reason to the contrary.
Demonstration
For example, say we needed our object's protected attribute to be an integer between 0 and 100 inclusive, and prevent its deletion, with appropriate messages to inform the user of its proper usage:
class Protective(object):
"""protected property demo"""
#
def __init__(self, start_protected_value=0):
self.protected_value = start_protected_value
#
#property
def protected_value(self):
return self._protected_value
#
#protected_value.setter
def protected_value(self, value):
if value != int(value):
raise TypeError("protected_value must be an integer")
if 0 <= value <= 100:
self._protected_value = int(value)
else:
raise ValueError("protected_value must be " +
"between 0 and 100 inclusive")
#
#protected_value.deleter
def protected_value(self):
raise AttributeError("do not delete, protected_value can be set to 0")
(Note that __init__ refers to self.protected_value but the property methods refer to self._protected_value. This is so that __init__ uses the property through the public API, ensuring it is "protected".)
And usage:
>>> p1 = Protective(3)
>>> p1.protected_value
3
>>> p1 = Protective(5.0)
>>> p1.protected_value
5
>>> p2 = Protective(-5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in __init__
File "<stdin>", line 15, in protected_value
ValueError: protectected_value must be between 0 and 100 inclusive
>>> p1.protected_value = 7.3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 17, in protected_value
TypeError: protected_value must be an integer
>>> p1.protected_value = 101
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 15, in protected_value
ValueError: protectected_value must be between 0 and 100 inclusive
>>> del p1.protected_value
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 18, in protected_value
AttributeError: do not delete, protected_value can be set to 0
Do the names matter?
Yes they do. .setter and .deleter make copies of the original property. This allows subclasses to properly modify behavior without altering the behavior in the parent.
class Obj:
"""property demo"""
#
#property
def get_only(self):
return self._attribute
#
#get_only.setter
def get_or_set(self, value):
self._attribute = value
#
#get_or_set.deleter
def get_set_or_delete(self):
del self._attribute
Now for this to work, you have to use the respective names:
obj = Obj()
# obj.get_only = 'value' # would error
obj.get_or_set = 'value'
obj.get_set_or_delete = 'new value'
the_value = obj.get_only
del obj.get_set_or_delete
# del obj.get_or_set # would error
I'm not sure where this would be useful, but the use-case is if you want a get, set, and/or delete-only property. Probably best to stick to semantically same property having the same name.
Conclusion
Start with simple attributes.
If you later need functionality around the setting, getting, and deleting, you can add it with the property decorator.
Avoid functions named set_... and get_... - that's what properties are for.
In [1]: class test(object):
def __init__(self):
self.pants = 'pants'
#property
def p(self):
return self.pants
#p.setter
def p(self, value):
self.pants = value * 2
....:
In [2]: t = test()
In [3]: t.p
Out[3]: 'pants'
In [4]: t.p = 10
In [5]: t.p
Out[5]: 20
Using #property and #attribute.setter helps you to not only use the "pythonic" way but also to check the validity of attributes both while creating the object and when altering it.
class Person(object):
def __init__(self, p_name=None):
self.name = p_name
#property
def name(self):
return self._name
#name.setter
def name(self, new_name):
if type(new_name) == str: #type checking for name property
self._name = new_name
else:
raise Exception("Invalid value for name")
By this, you actually 'hide' _name attribute from client developers and also perform checks on name property type. Note that by following this approach even during the initiation the setter gets called. So:
p = Person(12)
Will lead to:
Exception: Invalid value for name
But:
>>>p = person('Mike')
>>>print(p.name)
Mike
>>>p.name = 'George'
>>>print(p.name)
George
>>>p.name = 2.3 # Causes an exception
This is an old question but the topic is very important and always current. In case anyone wants to go beyond simple getters/setters i have wrote an article about superpowered properties in python with support for slots, observability and reduced boilerplate code.
from objects import properties, self_properties
class Car:
with properties(locals(), 'meta') as meta:
#meta.prop(read_only=True)
def brand(self) -> str:
"""Brand"""
#meta.prop(read_only=True)
def max_speed(self) -> float:
"""Maximum car speed"""
#meta.prop(listener='_on_acceleration')
def speed(self) -> float:
"""Speed of the car"""
return 0 # Default stopped
#meta.prop(listener='_on_off_listener')
def on(self) -> bool:
"""Engine state"""
return False
def __init__(self, brand: str, max_speed: float = 200):
self_properties(self, locals())
def _on_off_listener(self, prop, old, on):
if on:
print(f"{self.brand} Turned on, Runnnnnn")
else:
self._speed = 0
print(f"{self.brand} Turned off.")
def _on_acceleration(self, prop, old, speed):
if self.on:
if speed > self.max_speed:
print(f"{self.brand} {speed}km/h Bang! Engine exploded!")
self.on = False
else:
print(f"{self.brand} New speed: {speed}km/h")
else:
print(f"{self.brand} Car is off, no speed change")
This class can be used like this:
mycar = Car('Ford')
# Car is turned off
for speed in range(0, 300, 50):
mycar.speed = speed
# Car is turned on
mycar.on = True
for speed in range(0, 350, 50):
mycar.speed = speed
This code will produce the following output:
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Turned on, Runnnnnn
Ford New speed: 0km/h
Ford New speed: 50km/h
Ford New speed: 100km/h
Ford New speed: 150km/h
Ford New speed: 200km/h
Ford 250km/h Bang! Engine exploded!
Ford Turned off.
Ford Car is off, no speed change
More info about how and why here: https://mnesarco.github.io/blog/2020/07/23/python-metaprogramming-properties-on-steroids
Properties are pretty useful since you can use them with assignment but then can include validation as well. You can see this code where you use the decorator #property and also #<property_name>.setter to create the methods:
# Python program displaying the use of #property
class AgeSet:
def __init__(self):
self._age = 0
# using property decorator a getter function
#property
def age(self):
print("getter method called")
return self._age
# a setter function
#age.setter
def age(self, a):
if(a < 18):
raise ValueError("Sorry your age is below eligibility criteria")
print("setter method called")
self._age = a
pkj = AgeSet()
pkj.age = int(input("set the age using setter: "))
print(pkj.age)
There are more details in this post I wrote about this as well: https://pythonhowtoprogram.com/how-to-create-getter-setter-class-properties-in-python-3/
You can use accessors/mutators (i.e. #attr.setter and #property) or not, but the most important thing is to be consistent!
If you're using #property to simply access an attribute, e.g.
class myClass:
def __init__(a):
self._a = a
#property
def a(self):
return self._a
use it to access every* attribute! It would be a bad practice to access some attributes using #property and leave some other properties public (i.e. name without an underscore) without an accessor, e.g. do not do
class myClass:
def __init__(a, b):
self.a = a
self.b = b
#property
def a(self):
return self.a
Note that self.b does not have an explicit accessor here even though it's public.
Similarly with setters (or mutators), feel free to use #attribute.setter but be consistent! When you do e.g.
class myClass:
def __init__(a, b):
self.a = a
self.b = b
#a.setter
def a(self, value):
return self.a = value
It's hard for me to guess your intention. On one hand you're saying that both a and b are public (no leading underscore in their names) so I should theoretically be allowed to access/mutate (get/set) both. But then you specify an explicit mutator only for a, which tells me that maybe I should not be able to set b. Since you've provided an explicit mutator I am not sure if the lack of explicit accessor (#property) means I should not be able to access either of those variables or you were simply being frugal in using #property.
*The exception is when you explicitly want to make some variables accessible or mutable but not both or you want to perform some additional logic when accessing or mutating an attribute. This is when I am personally using #property and #attribute.setter (otherwise no explicit acessors/mutators for public attributes).
Lastly, PEP8 and Google Style Guide suggestions:
PEP8, Designing for Inheritance says:
For simple public data attributes, it is best to expose just the attribute name, without complicated accessor/mutator methods. Keep in mind that Python provides an easy path to future enhancement, should you find that a simple data attribute needs to grow functional behavior. In that case, use properties to hide functional implementation behind simple data attribute access syntax.
On the other hand, according to Google Style Guide Python Language Rules/Properties the recommendation is to:
Use properties in new code to access or set data where you would normally have used simple, lightweight accessor or setter methods. Properties should be created with the #property decorator.
The pros of this approach:
Readability is increased by eliminating explicit get and set method calls for simple attribute access. Allows calculations to be lazy. Considered the Pythonic way to maintain the interface of a class. In terms of performance, allowing properties bypasses needing trivial accessor methods when a direct variable access is reasonable. This also allows accessor methods to be added in the future without breaking the interface.
and cons:
Must inherit from object in Python 2. Can hide side-effects much like operator overloading. Can be confusing for subclasses.
You can use the magic methods __getattribute__ and __setattr__.
class MyClass:
def __init__(self, attrvalue):
self.myattr = attrvalue
def __getattribute__(self, attr):
if attr == "myattr":
#Getter for myattr
def __setattr__(self, attr):
if attr == "myattr":
#Setter for myattr
Be aware that __getattr__ and __getattribute__ are not the same. __getattr__ is only invoked when the attribute is not found.
I'm doing it like:
def set_property(property,value):
def get_property(property):
or
object.property = value
value = object.property
What's the pythonic way to use getters and setters?
Try this: Python Property
The sample code is:
class C(object):
def __init__(self):
self._x = None
#property
def x(self):
"""I'm the 'x' property."""
print("getter of x called")
return self._x
#x.setter
def x(self, value):
print("setter of x called")
self._x = value
#x.deleter
def x(self):
print("deleter of x called")
del self._x
c = C()
c.x = 'foo' # setter called
foo = c.x # getter called
del c.x # deleter called
What's the pythonic way to use getters and setters?
The "Pythonic" way is not to use "getters" and "setters", but to use plain attributes, like the question demonstrates, and del for deleting (but the names are changed to protect the innocent... builtins):
value = 'something'
obj.attribute = value
value = obj.attribute
del obj.attribute
If later, you want to modify the setting and getting, you can do so without having to alter user code, by using the property decorator:
class Obj:
"""property demo"""
#
#property # first decorate the getter method
def attribute(self): # This getter method name is *the* name
return self._attribute
#
#attribute.setter # the property decorates with `.setter` now
def attribute(self, value): # name, e.g. "attribute", is the same
self._attribute = value # the "value" name isn't special
#
#attribute.deleter # decorate with `.deleter`
def attribute(self): # again, the method name is the same
del self._attribute
(Each decorator usage copies and updates the prior property object, so note that you should use the same name for each set, get, and delete function/method.)
After defining the above, the original setting, getting, and deleting code is the same:
obj = Obj()
obj.attribute = value
the_value = obj.attribute
del obj.attribute
You should avoid this:
def set_property(property,value):
def get_property(property):
Firstly, the above doesn't work, because you don't provide an argument for the instance that the property would be set to (usually self), which would be:
class Obj:
def set_property(self, property, value): # don't do this
...
def get_property(self, property): # don't do this either
...
Secondly, this duplicates the purpose of two special methods, __setattr__ and __getattr__.
Thirdly, we also have the setattr and getattr builtin functions.
setattr(object, 'property_name', value)
getattr(object, 'property_name', default_value) # default is optional
The #property decorator is for creating getters and setters.
For example, we could modify the setting behavior to place restrictions the value being set:
class Protective(object):
#property
def protected_value(self):
return self._protected_value
#protected_value.setter
def protected_value(self, value):
if acceptable(value): # e.g. type or range check
self._protected_value = value
In general, we want to avoid using property and just use direct attributes.
This is what is expected by users of Python. Following the rule of least-surprise, you should try to give your users what they expect unless you have a very compelling reason to the contrary.
Demonstration
For example, say we needed our object's protected attribute to be an integer between 0 and 100 inclusive, and prevent its deletion, with appropriate messages to inform the user of its proper usage:
class Protective(object):
"""protected property demo"""
#
def __init__(self, start_protected_value=0):
self.protected_value = start_protected_value
#
#property
def protected_value(self):
return self._protected_value
#
#protected_value.setter
def protected_value(self, value):
if value != int(value):
raise TypeError("protected_value must be an integer")
if 0 <= value <= 100:
self._protected_value = int(value)
else:
raise ValueError("protected_value must be " +
"between 0 and 100 inclusive")
#
#protected_value.deleter
def protected_value(self):
raise AttributeError("do not delete, protected_value can be set to 0")
(Note that __init__ refers to self.protected_value but the property methods refer to self._protected_value. This is so that __init__ uses the property through the public API, ensuring it is "protected".)
And usage:
>>> p1 = Protective(3)
>>> p1.protected_value
3
>>> p1 = Protective(5.0)
>>> p1.protected_value
5
>>> p2 = Protective(-5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 3, in __init__
File "<stdin>", line 15, in protected_value
ValueError: protectected_value must be between 0 and 100 inclusive
>>> p1.protected_value = 7.3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 17, in protected_value
TypeError: protected_value must be an integer
>>> p1.protected_value = 101
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 15, in protected_value
ValueError: protectected_value must be between 0 and 100 inclusive
>>> del p1.protected_value
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 18, in protected_value
AttributeError: do not delete, protected_value can be set to 0
Do the names matter?
Yes they do. .setter and .deleter make copies of the original property. This allows subclasses to properly modify behavior without altering the behavior in the parent.
class Obj:
"""property demo"""
#
#property
def get_only(self):
return self._attribute
#
#get_only.setter
def get_or_set(self, value):
self._attribute = value
#
#get_or_set.deleter
def get_set_or_delete(self):
del self._attribute
Now for this to work, you have to use the respective names:
obj = Obj()
# obj.get_only = 'value' # would error
obj.get_or_set = 'value'
obj.get_set_or_delete = 'new value'
the_value = obj.get_only
del obj.get_set_or_delete
# del obj.get_or_set # would error
I'm not sure where this would be useful, but the use-case is if you want a get, set, and/or delete-only property. Probably best to stick to semantically same property having the same name.
Conclusion
Start with simple attributes.
If you later need functionality around the setting, getting, and deleting, you can add it with the property decorator.
Avoid functions named set_... and get_... - that's what properties are for.
In [1]: class test(object):
def __init__(self):
self.pants = 'pants'
#property
def p(self):
return self.pants
#p.setter
def p(self, value):
self.pants = value * 2
....:
In [2]: t = test()
In [3]: t.p
Out[3]: 'pants'
In [4]: t.p = 10
In [5]: t.p
Out[5]: 20
Using #property and #attribute.setter helps you to not only use the "pythonic" way but also to check the validity of attributes both while creating the object and when altering it.
class Person(object):
def __init__(self, p_name=None):
self.name = p_name
#property
def name(self):
return self._name
#name.setter
def name(self, new_name):
if type(new_name) == str: #type checking for name property
self._name = new_name
else:
raise Exception("Invalid value for name")
By this, you actually 'hide' _name attribute from client developers and also perform checks on name property type. Note that by following this approach even during the initiation the setter gets called. So:
p = Person(12)
Will lead to:
Exception: Invalid value for name
But:
>>>p = person('Mike')
>>>print(p.name)
Mike
>>>p.name = 'George'
>>>print(p.name)
George
>>>p.name = 2.3 # Causes an exception
This is an old question but the topic is very important and always current. In case anyone wants to go beyond simple getters/setters i have wrote an article about superpowered properties in python with support for slots, observability and reduced boilerplate code.
from objects import properties, self_properties
class Car:
with properties(locals(), 'meta') as meta:
#meta.prop(read_only=True)
def brand(self) -> str:
"""Brand"""
#meta.prop(read_only=True)
def max_speed(self) -> float:
"""Maximum car speed"""
#meta.prop(listener='_on_acceleration')
def speed(self) -> float:
"""Speed of the car"""
return 0 # Default stopped
#meta.prop(listener='_on_off_listener')
def on(self) -> bool:
"""Engine state"""
return False
def __init__(self, brand: str, max_speed: float = 200):
self_properties(self, locals())
def _on_off_listener(self, prop, old, on):
if on:
print(f"{self.brand} Turned on, Runnnnnn")
else:
self._speed = 0
print(f"{self.brand} Turned off.")
def _on_acceleration(self, prop, old, speed):
if self.on:
if speed > self.max_speed:
print(f"{self.brand} {speed}km/h Bang! Engine exploded!")
self.on = False
else:
print(f"{self.brand} New speed: {speed}km/h")
else:
print(f"{self.brand} Car is off, no speed change")
This class can be used like this:
mycar = Car('Ford')
# Car is turned off
for speed in range(0, 300, 50):
mycar.speed = speed
# Car is turned on
mycar.on = True
for speed in range(0, 350, 50):
mycar.speed = speed
This code will produce the following output:
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Car is off, no speed change
Ford Turned on, Runnnnnn
Ford New speed: 0km/h
Ford New speed: 50km/h
Ford New speed: 100km/h
Ford New speed: 150km/h
Ford New speed: 200km/h
Ford 250km/h Bang! Engine exploded!
Ford Turned off.
Ford Car is off, no speed change
More info about how and why here: https://mnesarco.github.io/blog/2020/07/23/python-metaprogramming-properties-on-steroids
Properties are pretty useful since you can use them with assignment but then can include validation as well. You can see this code where you use the decorator #property and also #<property_name>.setter to create the methods:
# Python program displaying the use of #property
class AgeSet:
def __init__(self):
self._age = 0
# using property decorator a getter function
#property
def age(self):
print("getter method called")
return self._age
# a setter function
#age.setter
def age(self, a):
if(a < 18):
raise ValueError("Sorry your age is below eligibility criteria")
print("setter method called")
self._age = a
pkj = AgeSet()
pkj.age = int(input("set the age using setter: "))
print(pkj.age)
There are more details in this post I wrote about this as well: https://pythonhowtoprogram.com/how-to-create-getter-setter-class-properties-in-python-3/
You can use accessors/mutators (i.e. #attr.setter and #property) or not, but the most important thing is to be consistent!
If you're using #property to simply access an attribute, e.g.
class myClass:
def __init__(a):
self._a = a
#property
def a(self):
return self._a
use it to access every* attribute! It would be a bad practice to access some attributes using #property and leave some other properties public (i.e. name without an underscore) without an accessor, e.g. do not do
class myClass:
def __init__(a, b):
self.a = a
self.b = b
#property
def a(self):
return self.a
Note that self.b does not have an explicit accessor here even though it's public.
Similarly with setters (or mutators), feel free to use #attribute.setter but be consistent! When you do e.g.
class myClass:
def __init__(a, b):
self.a = a
self.b = b
#a.setter
def a(self, value):
return self.a = value
It's hard for me to guess your intention. On one hand you're saying that both a and b are public (no leading underscore in their names) so I should theoretically be allowed to access/mutate (get/set) both. But then you specify an explicit mutator only for a, which tells me that maybe I should not be able to set b. Since you've provided an explicit mutator I am not sure if the lack of explicit accessor (#property) means I should not be able to access either of those variables or you were simply being frugal in using #property.
*The exception is when you explicitly want to make some variables accessible or mutable but not both or you want to perform some additional logic when accessing or mutating an attribute. This is when I am personally using #property and #attribute.setter (otherwise no explicit acessors/mutators for public attributes).
Lastly, PEP8 and Google Style Guide suggestions:
PEP8, Designing for Inheritance says:
For simple public data attributes, it is best to expose just the attribute name, without complicated accessor/mutator methods. Keep in mind that Python provides an easy path to future enhancement, should you find that a simple data attribute needs to grow functional behavior. In that case, use properties to hide functional implementation behind simple data attribute access syntax.
On the other hand, according to Google Style Guide Python Language Rules/Properties the recommendation is to:
Use properties in new code to access or set data where you would normally have used simple, lightweight accessor or setter methods. Properties should be created with the #property decorator.
The pros of this approach:
Readability is increased by eliminating explicit get and set method calls for simple attribute access. Allows calculations to be lazy. Considered the Pythonic way to maintain the interface of a class. In terms of performance, allowing properties bypasses needing trivial accessor methods when a direct variable access is reasonable. This also allows accessor methods to be added in the future without breaking the interface.
and cons:
Must inherit from object in Python 2. Can hide side-effects much like operator overloading. Can be confusing for subclasses.
You can use the magic methods __getattribute__ and __setattr__.
class MyClass:
def __init__(self, attrvalue):
self.myattr = attrvalue
def __getattribute__(self, attr):
if attr == "myattr":
#Getter for myattr
def __setattr__(self, attr):
if attr == "myattr":
#Setter for myattr
Be aware that __getattr__ and __getattribute__ are not the same. __getattr__ is only invoked when the attribute is not found.
I have a program that generates a dictionary of objects that are referring to each other. The data in the objects and the references are read from a csv file. Everytime a reference to a new object is encuntered, a new object is generated. Depending on the some attributes, the objects can have slightly different behaviour. The most logical way to account for the difference in behaviour by using different subclasses for each type of behaviour.
My problems is that when a first reference to an object is encountered in the csv file, the desired subclass is not yet known. Creating a temporary object until the final type is known and copying all attributes to a new object will not work since this invalidates all existing references to the object.
I can solve this in two ways:
class A:
fun(self.x):
pass
fun1(self, x):
print("fun1: ", x)
fun2(self, x):
print("fun2: ", x)
a = A()
if <some condition>:
a.fun = fun1
else:
a.fun = fun2
In this case the relation between the class and the behaviour of the instance is lost, which might not be nice when debugging.
My other solution is on the one hand more elegant, but feels like bad programming habits:
class A:
pass
class B(A):
def fun(self, x):
print("B: ", x)
class C(A):
def fun(self, x):
print("C: ", x)
a = A()
if <some condition>:
a.__class__ = B
else:
a.__class__ = C
If think most of the objections to assignment to __class__ mentioned in this How dangerous is setting self.__class__ to something else? thread are not valid. Nevertheless, it does not feel good.
I prefer not to include all variants of the method of interest in a single class and call one of these, depending on some data attribute. That would results in objects having methods that are invalid for them.
Does anybody have another, clean, solution?
You can refer to the objects indirectly through some intermediate data structure, e.g.:
objs = []
class Base(object):
def __init__(self, name):
self.name = name
self.id = len(objs)
objs.append(self)
self._refs = []
def link(self, obj):
self._refs.append(obj.id)
#property
def refs(self):
return [objs[r] for r in self._refs]
#classmethod
def replace(cls, obj):
new_obj = cls(obj.name)
objs[obj.id] = new_obj
new_obj.id = obj.id
return new_obj
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, self.name)
class A(Base):
pass
class B(Base):
pass
a1 = A('a1')
a2 = A('a2')
a1.link(a2)
print(a1.refs) # [A('a2')]
B.replace(a2)
print(a1.refs) # [B('a2')]
Say I have a simple class Foo, which comes from an external library, thus I cannot change it directly:
class Foo(object):
def __init__(self, x):
self.x = x
I want to create a subclass Bar and prevent x from being change from an instance of Bar, but still use the x in Bar's methods.
Here's what I tried, and it will probably enlighten the basic idea, but unfortunately it doesn't work:
class Bar(Foo):
#property
def x(self):
return super().x
#x.setter
def x(self, value):
raise NotImplementedError('Do not change x directly, use "do_stuff()" instead')
def do_stuff(self, value):
if <something>:
super().x = value
So basically I've created some wrapper functions (do_stuff()) around an attribute, and now I want to prevent the attribute from being changed directly, as it might mess up some functionality of the wrapper functions. Is this possible in a reasonable way?
Edited with a better example of what I want. I'm not trying to prevent them from seeing the variable x, but instead changing it from outside of do_stuff()
This should be much simpler to accomplish if you are willing to avoid inheritance altogether:
def main():
bar = Bar(123)
bar.fizz()
bar.buzz()
bar.fizz()
bar.set_x(456)
print('bar.x =', bar.x)
try:
bar.x = 123
except AttributeError:
print('bar.x cannot be set directly')
else:
raise AssertionError('an AttributeError should have been raised')
bar.mutate_x(789)
bar.fizz()
bar.set_x(0)
bar.fizz()
bar.mutate_x(1)
bar.fizz()
bar.set_x('Hello World')
bar.fizz()
class Foo:
def __init__(self, x):
self.x = x
def fizz(self):
print(self.x)
def buzz(self):
self.x = None
class Bar:
def __init__(self, x):
self.__foo = foo = Foo(x)
self.__copy_methods(foo)
def __copy_methods(self, obj):
for name in dir(obj):
if name.startswith('__') or name.endswith('__'):
continue
attr = getattr(obj, name)
if callable(attr):
setattr(self, name, attr)
#property
def x(self):
return self.__foo.x
def set_x(self, value):
if isinstance(value, int) and value > 0:
self.__foo.x = value
mutate_x = set_x
if __name__ == '__main__':
main()
The short answer is: No, this is not possible in a reasonable way.
Python's guiding principle here, to use the phrasing from the style guide is that we are all responsible users. Meaning that code is trusted not to do silly things, and people should generally avoid messing with members of other people's classes without a good reason.
The first and best way to prevent people from accidentally changing a value is to mark it using the single underscore (_variable). This however may not offer you the protection you want against accidental modification of your variables.
The next step up in protection is to use a double underscore. Quoting from PEP-8:
To avoid name clashes with subclasses, use two leading underscores to invoke Python's name mangling rules.
Python mangles these names with the class name: if class Foo has an attribute named __a , it cannot be accessed by Foo.__a . (An insistent user could still gain access by calling Foo._Foo__a .) Generally, double leading underscores should be used only to avoid name conflicts with attributes in classes designed to be subclassed.
The mangling makes it more difficult to accidentally overwrite a value.
I added emphasis to that last sentence because it is important. Using this mechanism for preventing accidental access to a member is not really the something that should be done for a lot of members.
In your specific case, the way that I'd solve the problem would be to not subclass at all. Consider:
class Foo(object):
def __init__(self, x):
self.x = x
class Bar():
def __init__(self, x):
self._foo = Foo(x)
#property
def x(self):
return self._foo.x
def do_stuff(self, value):
# Validate the value, and the wrapped object's state
if valid:
self._foo.x = value
Of course this means that Bar has to wrap all of Foo's methods that you want to wrap. Yes, someone could still,
b = Bar(100)
b._foo.x = 127 # shame on them :)
or
b = Bar(100)
b._foo = EvilFoo(127)
but it's harder to unintentionally do.
You're on the right track, you want to make x a property instead of having it be an attribute in the subclass. Where you went wrong was trying to store the raw data for x on super. What you want to do is exploit the fact that the parent class can use the new property of the subclass transparently and does not need to know that it is now a property and not a attribute. Something like this should work for you:
class Foo(object):
def __init__(self, x):
self.x = x
class Bar(Foo):
_protected_x = None
#property
def x(self):
return self._protected_x
#x.setter
def x(self, value):
if self._protected_x is None:
self._protected_x = value
else:
raise ValueError("Use set_x to change x.")
def set_x(self, value):
self._protected_x = value
b = Bar(12)
print b.x
b.set_x(5)
print b.x
I am programming a simulations for single neurons. Therefore I have to handle a lot of Parameters. Now the Idea is that I have two classes, one for a SingleParameter and a Collection of parameters. I use property() to access the parameter value easy and to make the code more readable. This works perfect for a sinlge parameter but I don't know how to implement it for the collection as I want to name the property in Collection after the SingleParameter. Here an example:
class SingleParameter(object):
def __init__(self, name, default_value=0, unit='not specified'):
self.name = name
self.default_value = default_value
self.unit = unit
self.set(default_value)
def get(self):
return self._v
def set(self, value):
self._v = value
v = property(fget=get, fset=set, doc='value of parameter')
par1 = SingleParameter(name='par1', default_value=10, unit='mV')
par2 = SingleParameter(name='par2', default_value=20, unit='mA')
# par1 and par2 I can access perfectly via 'p1.v = ...'
# or get its value with 'p1.v'
class Collection(object):
def __init__(self):
self.dict = {}
def __getitem__(self, name):
return self.dict[name] # get the whole object
# to get the value instead:
# return self.dict[name].v
def add(self, parameter):
self.dict[parameter.name] = parameter
# now comes the part that I don't know how to implement with property():
# It shoule be something like
# self.__dict__[parameter.name] = property(...) ?
col = Collection()
col.add(par1)
col.add(par2)
col['par1'] # gives the whole object
# Now here is what I would like to get:
# col.par1 -> should result like col['par1'].v
# col.par1 = 5 -> should result like col['par1'].v = 5
Other questions that I put to understand property():
Why do managed attributes just work for class attributes and not for instance attributes in python?
How can I assign a new class attribute via __dict__ in python?
Look at built-in functions getattr and setattr. You'll probably be a lot happier.
Using the same get/set functions for both classes forces you into an ugly hack with the argument list. Very sketchy, this is how I would do it:
In class SingleParameter, define get and set as usual:
def get(self):
return self._s
def set(self, value):
self._s = value
In class Collection, you cannot know the information until you create the property, so you define the metaset/metaget function and particularize them only later with a lambda function:
def metaget(self, par):
return par.s
def metaset(self, value, par):
par.s = value
def add(self, par):
self[par.name] = par
setattr(Collection, par.name,
property(
fget=lambda x : Collection.metaget(x, par),
fset=lambda x, y : Collection.metaset(x,y, par))
Properties are meant to dynamically evaluate attributes or to make them read-only. What you need is customizing attribute access. __getattr__ and __setattr__ do that really fine, and there's also __getattribute__ if __getattr__ is not enough.
See Python docs on customizing attribute access for details.
Have you looked at the traits package? It seems that you are reinventing the wheel here with your parameter classes. Traits also have additional features that might be useful for your type of application (incidently I know a person that happily uses traits in neural simulations).
Now I implemented a solution with set-/getattr:
class Collection(object):
...
def __setattr__(self, name, value):
if 'dict' in self.__dict__:
if name in self.dict:
self[name].v = value
else:
self.__dict__[name] = value
def __getattr__(self, name):
return self[name].v
There is one thing I quite don't like that much: The attributes are not in the __dict__. And if I have them there as well I would have a copy of the value - which can be dangerous...
Finally I succeded to implement the classes with property(). Thanks a lot for the advice. It took me quite a bit to work it out - but I can promise you that this exercise helps you to understand better pythons OOP.
I implemented it also with __getattr__ and __setattr__ but still don't know the advantages and disadvantages to the property-solution. But this seems to be worth another question. The property-solutions seems to be quit clean.
So here is the code:
class SingleParameter(object):
def __init__(self, name, default_value=0, unit='not specified'):
self.name = name
self.default_value = default_value
self.unit = unit
self.set(default_value)
def get(*args):
self = args[0]
print "get(): "
print args
return self._v
def set(*args):
print "set(): "
print args
self = args[0]
value = args[-1]
self._v = value
v = property(fget=get, fset=set, doc='value of parameter')
class Collection(dict):
# inheriting from dict saves the methods: __getitem__ and __init__
def add(self, par):
self[par.name] = par
# Now here comes the tricky part.
# (Note: this property call the get() and set() methods with one
# more argument than the property of SingleParameter)
setattr(Collection, par.name,
property(fget=par.get, fset=par.set))
# Applying the classes:
par1 = SingleParameter(name='par1', default_value=10, unit='mV')
par2 = SingleParameter(name='par2', default_value=20, unit='mA')
col = Collection()
col.add(par1)
col.add(par2)
# Setting parameter values:
par1.v = 13
col.par1 = 14
# Getting parameter values:
par1.v
col.par1
# checking identity:
par1.v is col.par1
# to access the whole object:
col['par1']
As I am new I am not sure how to move on:
how to treat follow up questions (like this itself):
get() is seems to be called twice - why?
oop-design: property vs. "__getattr__ & __setattr__" - when should I use what?
is it rude to check the own answer to the own question as accepted?
is it recommended to rename the title in order to put correlated questions or questions elaborated with the same example into the same context?
Other questions that I put to understand property():
Why do managed attributes just work for class attributes and not for instance attributes in python?
How can I assign a new class attribute via __dict__ in python?
I have a class that does something similar, but I did the following in the collection object:
setattr(self, par.name, par.v)