I want to install rpy into my conda installation, but I get the UnsatisfiableError
$ conda install rpy2
Collecting package metadata (current_repodata.json): done
Solving environment: failed
Collecting package metadata (repodata.json): done
Solving environment: failed
UnsatisfiableError: The following specifications were found to be incompatible with each other:
- blas
- conda-forge/linux-64::statsmodels==0.10.1=py37hc1659b7_1 -> numpy[version='>=1.14.6,<2.0a0'] -> blas==1.0=mkl
- conda-forge/noarch::descartes==1.1.0=py_3 -> matplotlib -> numpy -> blas==1.0=mkl
- conda-forge/noarch::mizani==0.6.0=py_0 -> matplotlib[version='>=3.1.1'] -> numpy -> blas==1.0=mkl
- conda-forge/noarch::patsy==0.5.1=py_0 -> numpy[version='>=1.4.0'] -> blas==1.0=mkl
- conda-forge/noarch::plotnine==0.6.0=py_0 -> descartes[version='>=1.1.0'] -> matplotlib -> numpy -> blas==1.0=mkl
- mkl_fft -> blas==1.0=mkl
- mkl_random -> numpy[version='>=1.14.6,<2.0a0'] -> blas==1.0=mkl
- numpy -> blas==1.0=mkl
- numpy-base -> blas==1.0=mkl
- pkgs/main/linux-64::matplotlib==3.1.1=py37h5429711_0 -> numpy -> blas==1.0=mkl
- pkgs/main/linux-64::pandas==0.25.2=py37he6710b0_0 -> numpy[version='>=1.14.6,<2.0a0'] -> blas==1.0=mkl
- scipy -> blas==1.0=mkl
I have tried other conda installations (like using conda-forge) but I still get UnsatisfiableError - though with different details.
Funny enough, installing it with pip worked...
I have the conda installation
# Name Version Build Channel
_libgcc_mutex 0.1 main
blas 1.0 mkl
ca-certificates 2019.9.11 hecc5488_0 conda-forge
certifi 2019.9.11 py37_0 conda-forge
cycler 0.10.0 py_2 conda-forge
dbus 1.13.6 he372182_0 conda-forge
descartes 1.1.0 py_3 conda-forge
expat 2.2.5 he1b5a44_1004 conda-forge
fontconfig 2.13.1 he4413a7_1000 conda-forge
freetype 2.10.0 he983fc9_1 conda-forge
gettext 0.19.8.1 hc5be6a0_1002 conda-forge
glib 2.58.3 h6f030ca_1002 conda-forge
gst-plugins-base 1.14.5 h0935bb2_0 conda-forge
gstreamer 1.14.5 h36ae1b5_0 conda-forge
icu 58.2 hf484d3e_1000 conda-forge
intel-openmp 2019.4 243
jpeg 9c h14c3975_1001 conda-forge
kiwisolver 1.1.0 py37hc9558a2_0 conda-forge
libedit 3.1.20181209 hc058e9b_0
libffi 3.2.1 hd88cf55_4
libgcc-ng 9.1.0 hdf63c60_0
libgfortran-ng 7.3.0 hdf63c60_0
libiconv 1.15 h516909a_1005 conda-forge
libpng 1.6.37 hed695b0_0 conda-forge
libstdcxx-ng 9.1.0 hdf63c60_0
libuuid 2.32.1 h14c3975_1000 conda-forge
libxcb 1.13 h14c3975_1002 conda-forge
libxml2 2.9.9 h13577e0_2 conda-forge
matplotlib 3.1.1 py37h5429711_0
mizani 0.6.0 py_0 conda-forge
mkl 2019.4 243
mkl-service 2.3.0 py37he904b0f_0
mkl_fft 1.0.14 py37ha843d7b_0
mkl_random 1.1.0 py37hd6b4f25_0
ncurses 6.1 he6710b0_1
numpy 1.17.2 py37haad9e8e_0
numpy-base 1.17.2 py37hde5b4d6_0
openssl 1.1.1c h516909a_0 conda-forge
palettable 3.3.0 py_0 conda-forge
pandas 0.25.2 py37he6710b0_0
patsy 0.5.1 py_0 conda-forge
pcre 8.43 he1b5a44_0 conda-forge
pip 19.3.1 py37_0
plotnine 0.6.0 py_0 conda-forge
pthread-stubs 0.4 h14c3975_1001 conda-forge
pyparsing 2.4.2 py_0 conda-forge
pyqt 5.9.2 py37hcca6a23_4 conda-forge
python 3.7.4 h265db76_1
python-dateutil 2.8.0 py37_0
pytz 2019.3 py_0
qt 5.9.7 h52cfd70_2 conda-forge
readline 7.0 h7b6447c_5
scipy 1.3.1 py37h7c811a0_0
setuptools 41.4.0 py37_0
sip 4.19.8 py37hf484d3e_0
six 1.12.0 py37_0
sqlite 3.30.1 h7b6447c_0
statsmodels 0.10.1 py37hc1659b7_1 conda-forge
tk 8.6.8 hbc83047_0
tornado 6.0.3 py37h516909a_0 conda-forge
wheel 0.33.6 py37_0
xorg-libxau 1.0.9 h14c3975_0 conda-forge
xorg-libxdmcp 1.1.3 h516909a_0 conda-forge
xz 5.2.4 h14c3975_4
zlib 1.2.11 h7b6447c_3
Related
I am trying to install pytorch-geometric for a deep-learning project. Torch-sparse is throwing segmentation faults when I attempt to import it (see below). Initially I tried different versions of each required library, as I thought it might be a GPU issue, but I've since tried to simplify by installing cpu-only versions.
Python 3.9.12 (main, Apr 5 2022, 06:56:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import torch_scatter
>>> import torch_cluster
>>> import torch_sparse
Segmentation fault (core dumped)
And the same issue, presumably due to torch_sparse, when importing pytorch_geometric:
Python 3.9.12 (main, Apr 5 2022, 06:56:58)
[GCC 7.5.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch_geometric
Segmentation fault (core dumped)
I'm on an Ubuntu distribution:
Distributor ID: Ubuntu
Description: Ubuntu 22.04.1 LTS
Release: 22.04
Codename: jammy
Here's my (lightweight for DL) conda installs:
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
blas 1.0 mkl
brotlipy 0.7.0 py310h7f8727e_1002
bzip2 1.0.8 h7b6447c_0
ca-certificates 2022.07.19 h06a4308_0
certifi 2022.9.24 py310h06a4308_0
cffi 1.15.1 py310h74dc2b5_0
charset-normalizer 2.0.4 pyhd3eb1b0_0
cpuonly 2.0 0 pytorch
cryptography 37.0.1 py310h9ce1e76_0
fftw 3.3.9 h27cfd23_1
idna 3.4 py310h06a4308_0
intel-openmp 2021.4.0 h06a4308_3561
jinja2 3.0.3 pyhd3eb1b0_0
joblib 1.1.1 py310h06a4308_0
ld_impl_linux-64 2.38 h1181459_1
libffi 3.3 he6710b0_2
libgcc-ng 11.2.0 h1234567_1
libgfortran-ng 11.2.0 h00389a5_1
libgfortran5 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libstdcxx-ng 11.2.0 h1234567_1
libuuid 1.0.3 h7f8727e_2
markupsafe 2.1.1 py310h7f8727e_0
mkl 2021.4.0 h06a4308_640
mkl-service 2.4.0 py310h7f8727e_0
mkl_fft 1.3.1 py310hd6ae3a3_0
mkl_random 1.2.2 py310h00e6091_0
ncurses 6.3 h5eee18b_3
numpy 1.23.3 py310hd5efca6_0
numpy-base 1.23.3 py310h8e6c178_0
openssl 1.1.1q h7f8727e_0
pip 22.2.2 py310h06a4308_0
pycparser 2.21 pyhd3eb1b0_0
pyg 2.1.0 py310_torch_1.12.0_cpu pyg
pyopenssl 22.0.0 pyhd3eb1b0_0
pyparsing 3.0.9 py310h06a4308_0
pysocks 1.7.1 py310h06a4308_0
python 3.10.6 haa1d7c7_0
pytorch 1.12.1 py3.10_cpu_0 pytorch
pytorch-cluster 1.6.0 py310_torch_1.12.0_cpu pyg
pytorch-mutex 1.0 cpu pytorch
pytorch-scatter 2.0.9 py310_torch_1.12.0_cpu pyg
pytorch-sparse 0.6.15 py310_torch_1.12.0_cpu pyg
readline 8.1.2 h7f8727e_1
requests 2.28.1 py310h06a4308_0
scikit-learn 1.1.2 py310h6a678d5_0
scipy 1.9.1 py310hd5efca6_0
setuptools 63.4.1 py310h06a4308_0
six 1.16.0 pyhd3eb1b0_1
sqlite 3.39.3 h5082296_0
threadpoolctl 2.2.0 pyh0d69192_0
tk 8.6.12 h1ccaba5_0
tqdm 4.64.1 py310h06a4308_0
typing_extensions 4.3.0 py310h06a4308_0
tzdata 2022e h04d1e81_0
urllib3 1.26.12 py310h06a4308_0
wheel 0.37.1 pyhd3eb1b0_0
xz 5.2.6 h5eee18b_0
zlib 1.2.13 h5eee18b_0
Any help would be greatly appreciated!
I've found a combination of packages that works for me - hopefully someone else will have this issue at some point and be able to reproduce the steps from me talking to myself here. The full process for getting stuff working was:
Fresh conda environment with forced Python=3.9 (conda create -n ENVNAME python=3.9)
Activate that environment
Install basic python packages (conda install numpy pandas matplotlib scikit-learn)
Check CUDA version if working with a GPU (nvidia-smi in terminal prints these details for NVIDIA cards)
Install Pytorch using their suggested conda command (conda install pytorch torchvision torchaudio cudatoolkit=CUDA_VERSION -c pytorch -c conda-forge). This had to go through the env solving process on my machine.
Install pytorch geometric (or just torch sparse if that's all you need) with conda install pyg -c pyg. Again this had a solving process.
Check that torch_sparse imports without fault
Here's the conda list for this working combination of packages:
# Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
blas 1.0 mkl
bottleneck 1.3.5 py39h7deecbd_0
brotli 1.0.9 h5eee18b_7
brotli-bin 1.0.9 h5eee18b_7
brotlipy 0.7.0 py39hb9d737c_1004 conda-forge
bzip2 1.0.8 h7f98852_4 conda-forge
ca-certificates 2022.9.24 ha878542_0 conda-forge
certifi 2022.9.24 py39h06a4308_0
cffi 1.14.6 py39he32792d_0 conda-forge
charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge
cryptography 37.0.2 py39hd97740a_0 conda-forge
cudatoolkit 11.6.0 hecad31d_10 conda-forge
cycler 0.11.0 pyhd3eb1b0_0
dbus 1.13.18 hb2f20db_0
expat 2.4.9 h6a678d5_0
ffmpeg 4.3 hf484d3e_0 pytorch
fftw 3.3.9 h27cfd23_1
fontconfig 2.13.1 h6c09931_0
fonttools 4.25.0 pyhd3eb1b0_0
freetype 2.11.0 h70c0345_0
giflib 5.2.1 h7b6447c_0
glib 2.69.1 h4ff587b_1
gmp 6.2.1 h58526e2_0 conda-forge
gnutls 3.6.13 h85f3911_1 conda-forge
gst-plugins-base 1.14.0 h8213a91_2
gstreamer 1.14.0 h28cd5cc_2
icu 58.2 he6710b0_3
idna 3.4 pyhd8ed1ab_0 conda-forge
intel-openmp 2021.4.0 h06a4308_3561
jinja2 3.0.3 pyhd3eb1b0_0
joblib 1.1.1 py39h06a4308_0
jpeg 9e h7f8727e_0
kiwisolver 1.4.2 py39h295c915_0
krb5 1.19.2 hac12032_0
lame 3.100 h7f98852_1001 conda-forge
lcms2 2.12 h3be6417_0
ld_impl_linux-64 2.38 h1181459_1
lerc 3.0 h295c915_0
libbrotlicommon 1.0.9 h5eee18b_7
libbrotlidec 1.0.9 h5eee18b_7
libbrotlienc 1.0.9 h5eee18b_7
libclang 10.0.1 default_hb85057a_2
libdeflate 1.8 h7f8727e_5
libedit 3.1.20210910 h7f8727e_0
libevent 2.1.12 h8f2d780_0
libffi 3.3 he6710b0_2
libgcc-ng 11.2.0 h1234567_1
libgfortran-ng 11.2.0 h00389a5_1
libgfortran5 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libiconv 1.17 h166bdaf_0 conda-forge
libllvm10 10.0.1 hbcb73fb_5
libpng 1.6.37 hbc83047_0
libpq 12.9 h16c4e8d_3
libstdcxx-ng 11.2.0 h1234567_1
libtiff 4.4.0 hecacb30_0
libuuid 1.0.3 h7f8727e_2
libwebp 1.2.4 h11a3e52_0
libwebp-base 1.2.4 h5eee18b_0
libxcb 1.15 h7f8727e_0
libxkbcommon 1.0.1 hfa300c1_0
libxml2 2.9.14 h74e7548_0
libxslt 1.1.35 h4e12654_0
lz4-c 1.9.3 h295c915_1
markupsafe 2.1.1 py39h7f8727e_0
matplotlib 3.5.2 py39h06a4308_0
matplotlib-base 3.5.2 py39hf590b9c_0
mkl 2021.4.0 h06a4308_640
mkl-service 2.4.0 py39h7f8727e_0
mkl_fft 1.3.1 py39hd3c417c_0
mkl_random 1.2.2 py39h51133e4_0
munkres 1.1.4 py_0
ncurses 6.3 h5eee18b_3
nettle 3.6 he412f7d_0 conda-forge
nspr 4.33 h295c915_0
nss 3.74 h0370c37_0
numexpr 2.8.3 py39h807cd23_0
numpy 1.23.3 py39h14f4228_0
numpy-base 1.23.3 py39h31eccc5_0
openh264 2.1.1 h780b84a_0 conda-forge
openssl 1.1.1q h7f8727e_0
packaging 21.3 pyhd3eb1b0_0
pandas 1.4.4 py39h6a678d5_0
pcre 8.45 h295c915_0
pillow 9.2.0 py39hace64e9_1
pip 22.2.2 py39h06a4308_0
ply 3.11 py39h06a4308_0
pycparser 2.21 pyhd8ed1ab_0 conda-forge
pyg 2.1.0 py39_torch_1.12.0_cu116 pyg
pyopenssl 22.0.0 pyhd8ed1ab_1 conda-forge
pyparsing 3.0.9 py39h06a4308_0
pyqt 5.15.7 py39h6a678d5_1
pyqt5-sip 12.11.0 py39h6a678d5_1
pysocks 1.7.1 pyha2e5f31_6 conda-forge
python 3.9.13 haa1d7c7_2
python-dateutil 2.8.2 pyhd3eb1b0_0
python_abi 3.9 2_cp39 conda-forge
pytorch 1.12.1 py3.9_cuda11.6_cudnn8.3.2_0 pytorch
pytorch-cluster 1.6.0 py39_torch_1.12.0_cu116 pyg
pytorch-mutex 1.0 cuda pytorch
pytorch-scatter 2.0.9 py39_torch_1.12.0_cu116 pyg
pytorch-sparse 0.6.15 py39_torch_1.12.0_cu116 pyg
pytz 2022.1 py39h06a4308_0
qt-main 5.15.2 h327a75a_7
qt-webengine 5.15.9 hd2b0992_4
qtwebkit 5.212 h4eab89a_4
readline 8.2 h5eee18b_0
requests 2.28.1 pyhd8ed1ab_1 conda-forge
scikit-learn 1.1.2 py39h6a678d5_0
scipy 1.9.1 py39h14f4228_0
setuptools 63.4.1 py39h06a4308_0
sip 6.6.2 py39h6a678d5_0
six 1.16.0 pyhd3eb1b0_1
sqlite 3.39.3 h5082296_0
threadpoolctl 2.2.0 pyh0d69192_0
tk 8.6.12 h1ccaba5_0
toml 0.10.2 pyhd3eb1b0_0
torchaudio 0.12.1 py39_cu116 pytorch
torchvision 0.13.1 py39_cu116 pytorch
tornado 6.2 py39h5eee18b_0
tqdm 4.64.1 py39h06a4308_0
typing_extensions 4.4.0 pyha770c72_0 conda-forge
tzdata 2022e h04d1e81_0
urllib3 1.26.11 pyhd8ed1ab_0 conda-forge
wheel 0.37.1 pyhd3eb1b0_0
xz 5.2.6 h5eee18b_0
zlib 1.2.13 h5eee18b_0
zstd 1.5.2 ha4553b6_0
I created a virtual environment using command virtualenv env on my terminal. On using pip freeze > requirements.txt after activating the virtual environment, I was a bunch of packages preinstalled.
Here is requirements.txt:
appdirs==1.4.3
CacheControl==0.12.6
certifi==2019.11.28
chardet==3.0.4
colorama==0.4.3
contextlib2==0.6.0
distlib==0.3.0
distro==1.4.0
html5lib==1.0.1
idna==2.8
ipaddr==2.2.0
lockfile==0.12.2
msgpack==0.6.2
packaging==20.3
pep517==0.8.2
progress==1.5
pyparsing==2.4.6
pytoml==0.1.21
requests==2.22.0
retrying==1.3.3
six==1.14.0
urllib3==1.25.8
webencodings==0.5.1
I haven't installed them and then, why are they there? I don't want any obsolete packages in the project which takes space and time.
Output on virtualenv env command:
created virtual environment CPython3.7.5.final.0-64 in 297ms
creator CPython3Posix(dest=/home/techmirtz/projects/Django/apps/polls/env, clear=False, global=False)
seeder FromAppData(download=False, pkg_resources=latest, requests=latest, setuptools=latest, wheel=latest, CacheControl=latest, chardet=latest, webencodings=latest, certifi=latest, distlib=latest, idna=latest, colorama=latest, distro=latest, progress=latest, msgpack=latest, pep517=latest, appdirs=latest, urllib3=latest, pip=latest, html5lib=latest, pyparsing=latest, contextlib2=latest, six=latest, lockfile=latest, packaging=latest, pytoml=latest, retrying=latest, ipaddr=latest, via=copy, app_data_dir=/home/techmirtz/.local/share/virtualenv/seed-app-data/v1.0.1.debian)
activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator
Also, I activated virtual environment by source env/bin/activate.
Then, I tried conda list:
# packages in environment at /home/techmirtz/anaconda3:
#
# Name Version Build Channel
_anaconda_depends 2019.03 py37_0
_ipyw_jlab_nb_ext_conf 0.1.0 py37_0
_libgcc_mutex 0.1 main
alabaster 0.7.12 py37_0
anaconda custom py37_1
anaconda-client 1.7.2 py37_0
anaconda-navigator 1.9.7 py37_0
anaconda-project 0.8.3 py_0
anyqt 0.0.10 py37_0
asn1crypto 0.24.0 py37_0
astroid 2.2.5 py37_0
astropy 3.2.1 py37h7b6447c_0
atomicwrites 1.3.0 py37_1
attrs 19.1.0 py37_1
babel 2.7.0 py_0
backcall 0.1.0 py37_0
backports 1.0 py_2
backports.functools_lru_cache 1.5 py_2
backports.os 0.1.1 py37_0
backports.shutil_get_terminal_size 1.0.0 py37_2
backports.tempfile 1.0 py_1
backports.weakref 1.0.post1 py_1
beautifulsoup4 4.7.1 py37_1
bitarray 0.9.3 py37h7b6447c_0
bkcharts 0.2 py37_0
blas 1.0 mkl
bleach 3.1.0 py37_0
blosc 1.16.3 hd408876_0
bokeh 1.2.0 py37_0
boto 2.49.0 py37_0
bottleneck 1.2.1 py37h035aef0_1
bzip2 1.0.8 h7b6447c_0
ca-certificates 2020.1.1 0
cairo 1.14.12 h8948797_3
certifi 2020.4.5.1 py37_0
cffi 1.12.3 py37h2e261b9_0
chardet 3.0.4 py37_1
click 7.0 py37_0
cloudpickle 1.2.1 py_0
clyent 1.2.2 py37_1
colorama 0.4.1 py37_0
conda 4.8.3 py37_0
conda-build 3.18.8 py37_0
conda-env 2.6.0 1
conda-package-handling 1.3.11 py37_0
conda-verify 3.4.2 py_1
contextlib2 0.5.5 py37_0
cryptography 2.7 py37h1ba5d50_0
curl 7.65.2 hbc83047_0
cycler 0.10.0 py37_0
cython 0.29.12 py37he6710b0_0
cytoolz 0.10.0 py37h7b6447c_0
dask 2.1.0 py_0
dask-core 2.1.0 py_0
dbus 1.13.6 h746ee38_0
decorator 4.4.0 py37_1
defusedxml 0.6.0 py_0
distributed 2.1.0 py_0
docutils 0.14 py37_0
entrypoints 0.3 py37_0
et_xmlfile 1.0.1 py37_0
expat 2.2.6 he6710b0_0
fastcache 1.1.0 py37h7b6447c_0
filelock 3.0.12 py_0
flask 1.1.1 py_0
fontconfig 2.13.0 h9420a91_0
freetype 2.9.1 h8a8886c_1
fribidi 1.0.5 h7b6447c_0
future 0.17.1 py37_0
get_terminal_size 1.0.0 haa9412d_0
gevent 1.4.0 py37h7b6447c_0
glib 2.56.2 hd408876_0
glob2 0.7 py_0
gmp 6.1.2 h6c8ec71_1
gmpy2 2.0.8 py37h10f8cd9_2
graphite2 1.3.13 h23475e2_0
graphviz 2.40.1 h21bd128_2 anaconda
greenlet 0.4.15 py37h7b6447c_0
gst-plugins-base 1.14.0 hbbd80ab_1
gstreamer 1.14.0 hb453b48_1
h5py 2.9.0 py37h7918eee_0
harfbuzz 1.8.8 hffaf4a1_0
hdf5 1.10.4 hb1b8bf9_0
heapdict 1.0.0 py37_2
html5lib 1.0.1 py37_0
icu 58.2 h9c2bf20_1
idna 2.8 py37_0
imageio 2.5.0 py37_0
imagesize 1.1.0 py37_0
importlib_metadata 0.17 py37_1
intel-openmp 2019.4 243
ipykernel 5.1.1 py37h39e3cac_0
ipython 7.6.1 py37h39e3cac_0
ipython_genutils 0.2.0 py37_0
ipywidgets 7.5.0 py_0
isort 4.3.21 py37_0
itsdangerous 1.1.0 py37_0
jbig 2.1 hdba287a_0
jdcal 1.4.1 py_0
jedi 0.13.3 py37_0
jeepney 0.4 py37_0
jinja2 2.10.1 py37_0
joblib 0.13.2 py37_0
jpeg 9b h024ee3a_2
json5 0.8.4 py_0
jsonschema 3.0.1 py37_0
jupyter 1.0.0 py37_7
jupyter_client 5.3.1 py_0
jupyter_console 6.0.0 py37_0
jupyter_core 4.5.0 py_0
jupyterlab 1.0.2 py37hf63ae98_0
jupyterlab_server 1.0.0 py_0
keyring 18.0.0 py37_0
kiwisolver 1.1.0 py37he6710b0_0
krb5 1.16.1 h173b8e3_7
lazy-object-proxy 1.4.1 py37h7b6447c_0
libarchive 3.3.3 h5d8350f_5
libcurl 7.65.2 h20c2e04_0
libedit 3.1.20181209 hc058e9b_0
libffi 3.2.1 hd88cf55_4
libgcc-ng 9.1.0 hdf63c60_0
libgfortran-ng 7.3.0 hdf63c60_0
liblief 0.9.0 h7725739_2
libpng 1.6.37 hbc83047_0
libsodium 1.0.16 h1bed415_0
libssh2 1.8.2 h1ba5d50_0
libstdcxx-ng 9.1.0 hdf63c60_0
libtiff 4.0.10 h2733197_2
libtool 2.4.6 h7b6447c_5
libuuid 1.0.3 h1bed415_2
libxcb 1.13 h1bed415_1
libxml2 2.9.9 hea5a465_1
libxslt 1.1.33 h7d1a2b0_0
llvmlite 0.29.0 py37hd408876_0
locket 0.2.0 py37_1
lxml 4.3.4 py37hefd8a0e_0
lz4-c 1.8.1.2 h14c3975_0
lzo 2.10 h49e0be7_2
markupsafe 1.1.1 py37h7b6447c_0
matplotlib 3.1.0 py37h5429711_0
mccabe 0.6.1 py37_1
mistune 0.8.4 py37h7b6447c_0
mkl 2019.4 243
mkl-service 2.0.2 py37h7b6447c_0
mkl_fft 1.0.12 py37ha843d7b_0
mkl_random 1.0.2 py37hd81dba3_0
mock 3.0.5 py37_0
more-itertools 7.0.0 py37_0
mpc 1.1.0 h10f8cd9_1
mpfr 4.0.1 hdf1c602_3
mpmath 1.1.0 py37_0
msgpack-python 0.6.1 py37hfd86e86_1
multipledispatch 0.6.0 py37_0
navigator-updater 0.2.1 py37_0
nbconvert 5.5.0 py_0
nbformat 4.4.0 py37_0
ncurses 6.1 he6710b0_1
networkx 2.3 py_0
nltk 3.4.4 py37_0
nose 1.3.7 py37_2
notebook 6.0.0 py37_0
numba 0.44.1 py37h962f231_0
numexpr 2.6.9 py37h9e4a6bb_0
numpy 1.16.4 py37h7e9f1db_0
numpy-base 1.16.4 py37hde5b4d6_0
numpydoc 0.9.1 py_0
olefile 0.46 py37_0
openpyxl 2.6.2 py_0
openssl 1.1.1g h7b6447c_0
packaging 19.0 py37_0
pandas 0.24.2 py37he6710b0_0
pandoc 2.2.3.2 0
pandocfilters 1.4.2 py37_1
pango 1.42.4 h049681c_0
parso 0.5.0 py_0
partd 1.0.0 py_0
patchelf 0.9 he6710b0_3
path.py 12.0.1 py_0
pathlib2 2.3.4 py37_0
patsy 0.5.1 py37_0
pcre 8.43 he6710b0_0
pep8 1.7.1 py37_0
pexpect 4.7.0 py37_0
pickleshare 0.7.5 py37_0
pillow 6.1.0 py37h34e0f95_0
pip 19.1.1 py37_0
pixman 0.38.0 h7b6447c_0
pkginfo 1.5.0.1 py37_0
pluggy 0.12.0 py_0
ply 3.11 py37_0
prometheus_client 0.7.1 py_0
prompt_toolkit 2.0.9 py37_0
psutil 5.6.3 py37h7b6447c_0
ptyprocess 0.6.0 py37_0
py 1.8.0 py37_0
py-lief 0.9.0 py37h7725739_2
pycodestyle 2.5.0 py37_0
pycosat 0.6.3 py37h14c3975_0
pycparser 2.19 py37_0
pycrypto 2.6.1 py37h14c3975_9
pycurl 7.43.0.3 py37h1ba5d50_0
pyflakes 2.1.1 py37_0
pygments 2.4.2 py_0
pylint 2.3.1 py37_0
pyodbc 4.0.26 py37he6710b0_0
pyopenssl 19.0.0 py37_0
pyparsing 2.4.0 py_0
pyqt 5.9.2 py37h05f1152_2
pyqtgraph 0.10.0 py37h28b3542_3
pyrsistent 0.14.11 py37h7b6447c_0
pysocks 1.7.0 py37_0
pytables 3.5.2 py37h71ec239_1
pytest 5.0.1 py37_0
pytest-arraydiff 0.3 py37h39e3cac_0
pytest-astropy 0.5.0 py37_0
pytest-doctestplus 0.3.0 py37_0
pytest-openfiles 0.3.2 py37_0
pytest-remotedata 0.3.1 py37_0
python 3.7.3 h0371630_0
python-dateutil 2.8.0 py37_0
python-graphviz 0.10.1 py_0
python-libarchive-c 2.8 py37_11
pytz 2019.1 py_0
pywavelets 1.0.3 py37hdd07704_1
pyyaml 5.1.1 py37h7b6447c_0
pyzmq 18.0.0 py37he6710b0_0
qt 5.9.7 h5867ecd_1
qtawesome 0.5.7 py37_1
qtconsole 4.5.1 py_0
qtpy 1.8.0 py_0
readline 7.0 h7b6447c_5
requests 2.22.0 py37_0
rope 0.14.0 py_0
ruamel_yaml 0.15.46 py37h14c3975_0
scikit-image 0.15.0 py37he6710b0_0
scikit-learn 0.21.2 py37hd81dba3_0
scipy 1.3.0 py37h7c811a0_0
seaborn 0.9.0 py37_0
secretstorage 3.1.1 py37_0
send2trash 1.5.0 py37_0
setuptools 41.0.1 py37_0
simplegeneric 0.8.1 py37_2
singledispatch 3.4.0.3 py37_0
sip 4.19.8 py37hf484d3e_0
six 1.12.0 py37_0
snappy 1.1.7 hbae5bb6_3
snowballstemmer 1.9.0 py_0
sortedcollections 1.1.2 py37_0
sortedcontainers 2.1.0 py37_0
soupsieve 1.8 py37_0
sphinx 2.1.2 py_0
sphinxcontrib 1.0 py37_1
sphinxcontrib-applehelp 1.0.1 py_0
sphinxcontrib-devhelp 1.0.1 py_0
sphinxcontrib-htmlhelp 1.0.2 py_0
sphinxcontrib-jsmath 1.0.1 py_0
sphinxcontrib-qthelp 1.0.2 py_0
sphinxcontrib-serializinghtml 1.1.3 py_0
sphinxcontrib-websupport 1.1.2 py_0
spyder 3.3.6 py37_0
spyder-kernels 0.5.1 py37_0
sqlalchemy 1.3.5 py37h7b6447c_0
sqlite 3.29.0 h7b6447c_0
statsmodels 0.10.0 py37hdd07704_0
sympy 1.4 py37_0
tbb 2019.4 hfd86e86_0
tblib 1.4.0 py_0
terminado 0.8.2 py37_0
testpath 0.4.2 py37_0
tk 8.6.8 hbc83047_0
toolz 0.10.0 py_0
tornado 6.0.3 py37h7b6447c_0
tqdm 4.32.1 py_0
traitlets 4.3.2 py37_0
unicodecsv 0.14.1 py37_0
unixodbc 2.3.7 h14c3975_0
urllib3 1.24.2 py37_0
wcwidth 0.1.7 py37_0
webencodings 0.5.1 py37_1
werkzeug 0.15.4 py_0
wheel 0.33.4 py37_0
widgetsnbextension 3.5.0 py37_0
wrapt 1.11.2 py37h7b6447c_0
wurlitzer 1.0.2 py37_0
xlrd 1.2.0 py37_0
xlsxwriter 1.1.8 py_0
xlwt 1.3.0 py37_0
xz 5.2.4 h14c3975_4
yaml 0.1.7 had09818_2
zeromq 4.3.1 he6710b0_3
zict 1.0.0 py_0
zipp 0.5.1 py_0
zlib 1.2.11 h7b6447c_3
zstd 1.3.7 h0b5b093_0
I was struggling with the same problem. New virtual environments had many unwanted packages installed, even though some of these are things that I do not even have installed with my system python or any virtual environment. At first I assumed that this must be some local configuration bug, but the list of packages installed is complete identical to the ones that you listed, so it seems more likely that this is a bug in the virtualenv package itself.
When I create a new virtualenv it contains the following libraries no matter what:
appdirs==1.4.3
CacheControl==0.12.6
certifi==2019.11.28
chardet==3.0.4
colorama==0.4.3
contextlib2==0.6.0
distlib==0.3.0
distro==1.4.0
html5lib==1.0.1
idna==2.8
ipaddr==2.2.0
lockfile==0.12.2
msgpack==0.6.2
packaging==20.3
pep517==0.8.2
progress==1.5
pyparsing==2.4.6
pytoml==0.1.21
requests==2.22.0
retrying==1.3.3
six==1.14.0
urllib3==1.25.8
webencodings==0.5.1
I wanted to know why these packages were being installed so that I could disable them, and while looking I found that these packages are all in the folder
~/.local/share/virtualenv/seed-app-data/v1.0.1.debian/3.8/wheels
Unfortunately, just removing this folder doesn't work. It's regenerated with the same content, so something else upstream is responsible for the bug. This seems likely to be a packaging error by Ubuntu or something like that.
I am on Ubuntu 20.04 with this version of virtualenv:
python3-virtualenv/focal,focal,now 20.0.17-1 all - I never had the issue while on previous versions of Ubuntu. if you have a similar platform that would help confirm the hypothesis.
If you need a workaround, I found that the following method for creating virtual environments still works without including all the unwanted packages:
python3 -m venv path/to/venv
(You'll need to run sudo apt-get install python3-venv first for this to work)
In my case, I had the same problem, created a virtual environment, and exactly appeared the same pre-installed packages within it.
Data of my system:
Python 3.8.5
Linux Mint 20.1
Note: I do not have pip installed globally on my system, only within virtual environments.
The solution that worked for me:
Unistall python3-virtualenv, including your dependencies
$ sudo apt-get remove --auto-remove python3-virtualenv
Check that there is no virtualenv installed
$ virtualenv
Should see something similar to this
Command 'virtualenv' not found, but it can be installed with:
sudo apt install python3-virtualenv
First, update. Then I install virtualenv but not with python3-virtualenv. Instead, I use
$ sudo apt-get update
$ sudo apt-get install virtualenv
The virtualenv will be installed, and the necessary dependencies of Python3 and its appropriate versions.
Now, when I create a virtual environment this is totally empty.
^ u^)b
I did conda list but I can't see what I am looking for. Are conda packages installed with conda developed . not shown?
# packages in environment at /Users/pinocchio/anaconda3/envs/myenv:
#
# Name Version Build Channel
absl-py 0.9.0 py37_0
appnope 0.1.0 py37hc8dfbb8_1001 conda-forge
asn1crypto 1.3.0 py37_0
astroid 2.3.3 py37_0
attrs 19.3.0 py_0 conda-forge
backcall 0.1.0 py_0 conda-forge
beautifulsoup4 4.8.2 py37_0
blas 1.0 mkl
bleach 3.1.4 pyh9f0ad1d_0 conda-forge
bzip2 1.0.8 h1de35cc_0
c-ares 1.15.0 h1de35cc_1001
ca-certificates 2020.1.1 0
cairo 1.14.12 hc4e6be7_4
certifi 2020.4.5.1 py37_0
cffi 1.14.0 py37hb5b8e2f_0
chardet 3.0.4 py37_1003
conda 4.8.3 py37_0
conda-build 3.18.11 py37_0
conda-package-handling 1.6.0 py37h1de35cc_0
cryptography 2.8 py37ha12b0ac_0
cycler 0.10.0 py37_0
decorator 4.4.2 py_0 conda-forge
defusedxml 0.6.0 py_0 conda-forge
entrypoints 0.3 py37hc8dfbb8_1001 conda-forge
expat 2.2.6 h0a44026_0
filelock 3.0.12 py_0
fontconfig 2.13.0 h5d5b041_1
freetype 2.9.1 hb4e5f40_0
fribidi 1.0.5 h1de35cc_0
gettext 0.19.8.1 h15daf44_3
glib 2.63.1 hd977a24_0
glob2 0.7 py_0
graphite2 1.3.13 h2098e52_0
graphviz 2.40.1 hefbbd9a_2
grpcio 1.16.1 py37h044775b_1
harfbuzz 1.8.8 hb8d4a28_0
icu 58.2 h4b95b61_1
idna 2.9 py_1
importlib-metadata 1.6.0 py37hc8dfbb8_0 conda-forge
importlib_metadata 1.6.0 0 conda-forge
intel-openmp 2019.4 233
ipykernel 5.2.0 py37h43977f1_1 conda-forge
ipython 7.13.0 py37hc8dfbb8_2 conda-forge
ipython_genutils 0.2.0 py_1 conda-forge
isort 4.3.21 py37_0
jedi 0.16.0 py37hc8dfbb8_1 conda-forge
jinja2 2.11.1 py_0
jpeg 9b he5867d9_2
json5 0.9.0 py_0 conda-forge
jsonschema 3.2.0 py37hc8dfbb8_1 conda-forge
jupyter_client 6.1.2 py_0 conda-forge
jupyter_core 4.6.3 py37hc8dfbb8_1 conda-forge
jupyterlab 2.0.1 py_0 conda-forge
jupyterlab_server 1.0.7 py_0 conda-forge
kiwisolver 1.1.0 py37h0a44026_0
lazy-object-proxy 1.4.3 py37h1de35cc_0
libarchive 3.3.3 h786848e_5
libcxx 4.0.1 hcfea43d_1
libcxxabi 4.0.1 hcfea43d_1
libedit 3.1.20181209 hb402a30_0
libffi 3.2.1 h475c297_4
libgfortran 3.0.1 h93005f0_2
libiconv 1.15 hdd342a3_7
liblief 0.9.0 h2a1bed3_2
libpng 1.6.37 ha441bb4_0
libprotobuf 3.11.4 hd9629dc_0
libsodium 1.0.17 h01d97ff_0 conda-forge
libtiff 4.1.0 hcb84e12_0
libxml2 2.9.9 hf6e021a_1
lz4-c 1.8.1.2 h1de35cc_0
lzo 2.10 h362108e_2
markdown 3.1.1 py37_0
markupsafe 1.1.1 py37h1de35cc_0
matplotlib 3.1.3 py37_0
matplotlib-base 3.1.3 py37h9aa3819_0
mccabe 0.6.1 py37_1
mistune 0.8.4 py37h0b31af3_1000 conda-forge
mkl 2019.4 233
mkl-service 2.3.0 py37hfbe908c_0
mkl_fft 1.0.15 py37h5e564d8_0
mkl_random 1.1.0 py37ha771720_0
nbconvert 5.6.1 py37_0 conda-forge
nbformat 5.0.4 py_0 conda-forge
ncurses 6.2 h0a44026_0
ninja 1.9.0 py37h04f5b5a_0
notebook 6.0.3 py37_0 conda-forge
numpy 1.18.1 py37h7241aed_0
numpy-base 1.18.1 py37h6575580_1
olefile 0.46 py37_0
openssl 1.1.1g h1de35cc_0
pandoc 2.9.2 0 conda-forge
pandocfilters 1.4.2 py_1 conda-forge
pango 1.42.4 h060686c_0
parso 0.6.2 py_0 conda-forge
pcre 8.43 h0a44026_0
pexpect 4.8.0 py37hc8dfbb8_1 conda-forge
pickleshare 0.7.5 py37hc8dfbb8_1001 conda-forge
pillow 6.2.1 py37hb68e598_0
pip 20.0.2 py37_1
pixman 0.38.0 h1de35cc_0
pkginfo 1.5.0.1 py37_0
prometheus_client 0.7.1 py_0 conda-forge
prompt-toolkit 3.0.5 py_0 conda-forge
protobuf 3.11.4 py37h0a44026_0
psutil 5.7.0 py37h1de35cc_0
ptyprocess 0.6.0 py_1001 conda-forge
py-lief 0.9.0 py37h1413db1_2
pycosat 0.6.3 py37h1de35cc_0
pycparser 2.20 py_0
pygments 2.6.1 py_0 conda-forge
pylint 2.4.4 py37_0
pyopenssl 19.1.0 py37_0
pyparsing 2.4.6 py_0
pyrsistent 0.16.0 py37h9bfed18_0 conda-forge
pysocks 1.7.1 py37_0
python 3.7.7 hc70fcce_0_cpython
python-dateutil 2.8.1 py_0 conda-forge
python-graphviz 0.13.2 pypi_0 pypi
python-libarchive-c 2.8 py37_13
python_abi 3.7 1_cp37m conda-forge
pytorch 1.4.0 py3.7_0 pytorch
pytz 2019.3 py_0
pyyaml 5.3.1 py37h1de35cc_0
pyzmq 18.1.1 py37h0a44026_0
readline 8.0 h1de35cc_0
requests 2.23.0 py37_0
ripgrep 11.0.2 he32d670_0
ruamel_yaml 0.15.87 py37h1de35cc_0
send2trash 1.5.0 py_0 conda-forge
setuptools 46.1.1 py37_0
six 1.14.0 py37_0
soupsieve 2.0 py_0
sqlite 3.31.1 ha441bb4_0
tensorboard 2.0.0 pyhb38c66f_1
terminado 0.8.3 py37hc8dfbb8_1 conda-forge
testpath 0.4.4 py_0 conda-forge
tk 8.6.8 ha441bb4_0
torchvision 0.2.1 py_2 soumith
tornado 6.0.4 py37h9bfed18_1 conda-forge
tqdm 4.43.0 py_0
traitlets 4.3.3 py37hc8dfbb8_1 conda-forge
urllib3 1.25.8 py37_0
wcwidth 0.1.9 pyh9f0ad1d_0 conda-forge
webencodings 0.5.1 py_1 conda-forge
werkzeug 1.0.0 py_0
wheel 0.34.2 py37_0
wrapt 1.12.1 py37h1de35cc_1
xz 5.2.4 h1de35cc_4
yaml 0.1.7 hc338f04_2
zeromq 4.3.2 h6de7cb9_2 conda-forge
zipp 3.1.0 py_0 conda-forge
zlib 1.2.11 h1de35cc_3
zstd 1.3.7 h5bba6e5_0
utils or something like that should be there but its not.
Update:
I've tried what this suggests and it does not work. I conda develop . my package and then when I run the python interpreter and try to import it the import fails. Why?
>>> import my_pkg
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'my_pkg'
I also tried to install it with pip pip install -e and it doesn't find my package either after I go to the interpreter and try to import it. Why is that?
If you look carefully after running conda develop . (where the setup.py file is) you will notice that the command outputs the following:
(automl) brandBrandoParetoopareto~/ultimate-utils/uutils $ conda develop .
added /Users/brandBrandoParetoopareto/ultimate-utils/uutils
completed operation for: /Users/brandBrandoParetoopareto/ultimate-utils/uutils
if you then check the sys.path python has then you can that new path has been added:
(automl) brandBrandoParetoopareto~/ultimate-utils/uutils $ python
Python 3.7.7 (default, Mar 26 2020, 10:32:53)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> for p in sys.path:
... print(p)
...
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python37.zip
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python3.7
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python3.7/lib-dynload
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python3.7/site-packages
/Users/brandBrandoParetoopareto/automl-meta-learning/automl
/Users/brandBrandoParetoopareto/higher
/Users/brandBrandoParetoopareto/ultimate-utils/uutils
you can confirm this by removing it and printing the contents of sys.path:
(automl) brandBrandoParetoopareto~/ultimate-utils/uutils $ conda develop -u .
uninstalled: /Users/brandBrandoParetoopareto/ultimate-utils/uutils
check sys path again:
(automl) brandBrandoParetoopareto~/ultimate-utils/uutils $ python
Python 3.7.7 (default, Mar 26 2020, 10:32:53)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> for p in sys.path:
... print(p)
...
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python37.zip
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python3.7
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python3.7/lib-dynload
/Users/brandBrandoParetoopareto/anaconda3/envs/automl/lib/python3.7/site-packages
/Users/brandBrandoParetoopareto/automl-meta-learning/automl
/Users/brandBrandoParetoopareto/higher
now it's gone!
Also, note that conda or python (not sure which) also adds the current path always. This is important to note because when I did import tests outside of the repo I was working it wasn't working but it was inside the repo which seemed very mysterious which I can only attribute to that.
Addendum
to check python sys.path from terminal run that command as a string with python cmd:
python -c "import sys; print(sys.path)"
even better:
python -c "import sys; [print(p) for p in sys.path]"
Original answer: https://stackoverflow.com/a/59903590/1601580
I am trying to make a WFS request and create a GeoDataFrame (from the geopandas library) with this data. However, when I run my code, an assert raises an error:
assert len(bbox) == 4
I do not know what is causing this error, as when I print bb I get a string of four coordinates separated by a comma:
print(bb)
173600,443600,174600,444600
type(bb)
str
This is my code:
import geopandas as gpd
from requests import Request
# extract only buildings on and around WUR campus
url = 'https://geodata.nationaalgeoregister.nl/bag/wfs'
layer = 'bag:pand' # see wfs.contents
bb = ','.join(map(str, bbox)) # string of bbox needed for the request url
# Specify the parameters for fetching the data
params = dict(service='WFS', version="2.0.0", request='GetFeature',
typeName=layer, outputFormat='text/xml; subtype=gml/3.2',
srsname='urn:ogc:def:crs:EPSG::28992', bbox=bb)
# Parse the URL with parameters
q = Request('GET', url, params=params).prepare().url
# Read data from URL
BuildingsGDF = gpd.read_file(q)
The last line (BuildingsGDF = gdp.read_file(q)) throws the error from the assertion, i.e. when I try to read the result of a WFS request into a GeoDataFrame object (from the geopandas library).
I am working in a Conda environment, which has the following packages:
# packages in environment at /home/sytze/miniconda3/envs/geoscripting:
#
# Name Version Build Channel
_libgcc_mutex 0.1 main conda-forge
affine 2.3.0 pypi_0 pypi
alabaster 0.7.12 py37_0
altair 3.2.0 py37_0 conda-forge
asn1crypto 1.2.0 py37_0 conda-forge
astroid 2.3.2 py37_0 conda-forge
attrs 19.3.0 py_0 conda-forge
babel 2.7.0 py_0 conda-forge
backcall 0.1.0 py37_0
blas 1.0 mkl conda-forge
bleach 3.1.0 py37_0
branca 0.3.1 py_0 conda-forge
bzip2 1.0.8 h7b6447c_0
ca-certificates 2019.11.27 0
cairo 1.14.12 h8948797_3
certifi 2019.11.28 py37_0
cffi 1.13.1 py37h2e261b9_0
chardet 3.0.4 py37_1003 conda-forge
click 7.0 py37_0
click-plugins 1.1.1 py_0 conda-forge
cligj 0.5.0 py37_0
cloudpickle 1.2.2 py_0 conda-forge
cryptography 2.8 py37h1ba5d50_0
curl 7.65.3 hbc83047_0
cycler 0.10.0 py37_0
dbus 1.13.12 h746ee38_0
decorator 4.4.1 py_0 conda-forge
defusedxml 0.6.0 py_0 conda-forge
descartes 1.1.0 py_3 conda-forge
docutils 0.15.2 py37_0 conda-forge
entrypoints 0.3 py37_0
expat 2.2.6 he6710b0_0
fiona 1.8.8 pypi_0 pypi
folium 0.10.0 py_0 conda-forge
fontconfig 2.13.0 h9420a91_0
freetype 2.9.1 h8a8886c_1
freexl 1.0.5 h14c3975_0
gdal 2.3.3 py37hbb2a789_0
geographiclib 1.50 py_0 conda-forge
geopandas 0.6.2 py_0 conda-forge
geopy 1.20.0 py_0 conda-forge
geos 3.7.1 he6710b0_0
giflib 5.1.4 h14c3975_1
glib 2.56.2 hd408876_0
gmp 6.1.2 h6c8ec71_1
gst-plugins-base 1.14.0 hbbd80ab_1
gstreamer 1.14.0 hb453b48_1
hdf4 4.2.13 h3ca952b_2
hdf5 1.10.4 hb1b8bf9_0
icu 58.2 h9c2bf20_1
idna 2.8 py37_0
imagesize 1.1.0 py37_0
importlib_metadata 0.23 py37_0 conda-forge
intel-openmp 2019.4 243
ipykernel 5.1.3 py37h39e3cac_0
ipython 7.9.0 py37h39e3cac_0
ipython_genutils 0.2.0 py37_0
ipywidgets 7.5.1 py_0 conda-forge
isort 4.3.21 py37_0 conda-forge
jedi 0.15.1 py37_0 conda-forge
jeepney 0.4.1 py_0 conda-forge
jinja2 2.10.3 py_0 conda-forge
jpeg 9b h024ee3a_2
json-c 0.13.1 h1bed415_0
jsonschema 3.1.1 py37_0 conda-forge
jupyter 1.0.0 py37_7
jupyter_client 5.3.4 py37_0 conda-forge
jupyter_console 6.0.0 py37_0
jupyter_core 4.6.0 py37_0
kealib 1.4.7 hd0c454d_6
keyring 18.0.0 py37_0 conda-forge
kiwisolver 1.1.0 py37he6710b0_0
krb5 1.16.1 h173b8e3_7
lazy-object-proxy 1.4.2 py37h7b6447c_0
libboost 1.67.0 h46d08c1_4
libcurl 7.65.3 h20c2e04_0
libdap4 3.19.1 h6ec2957_0
libedit 3.1.20181209 hc058e9b_0
libffi 3.2.1 hd88cf55_4
libgcc-ng 9.1.0 hdf63c60_0
libgdal 2.3.3 h2e7e64b_0
libgfortran-ng 7.3.0 hdf63c60_0
libkml 1.3.0 h590aaf7_4
libnetcdf 4.6.1 h11d0813_2
libpng 1.6.37 hbc83047_0
libpq 11.2 h20c2e04_0
libsodium 1.0.16 h1bed415_0
libspatialindex 1.8.5 h20b78c2_2
libspatialite 4.3.0a hb08deb6_19
libssh2 1.8.2 h1ba5d50_0
libstdcxx-ng 9.1.0 hdf63c60_0
libtiff 4.0.10 h2733197_2
libuuid 1.0.3 h1bed415_2
libxcb 1.13 h1bed415_1
libxml2 2.9.9 hea5a465_1
libxslt 1.1.33 h7d1a2b0_0
lxml 4.4.1 py37hefd8a0e_0
mapclassify 2.0.1 py_0 conda-forge
markupsafe 1.1.1 py37h7b6447c_0
matplotlib 3.1.1 py37h5429711_0
mccabe 0.6.1 py37_1
mistune 0.8.4 py37h7b6447c_0
mkl 2019.4 243
mkl-service 2.3.0 py37he904b0f_0
mkl_fft 1.0.14 py37ha843d7b_0
mkl_random 1.1.0 py37hd6b4f25_0
more-itertools 7.2.0 py37_0
munch 2.3.2 py37_0
nbconvert 5.6.0 py37_1 conda-forge
nbformat 4.4.0 py37_0
ncurses 6.1 he6710b0_1
networkx 2.4 py_0 conda-forge
notebook 6.0.1 py37_0 conda-forge
numpy 1.17.2 py37haad9e8e_0
numpy-base 1.17.2 py37hde5b4d6_0
numpydoc 0.9.1 py_0 conda-forge
openjpeg 2.3.0 h05c96fa_1
openssl 1.1.1d h7b6447c_3
osmnx 0.10 py_1 conda-forge
owslib 0.18.0 py_0 conda-forge
packaging 19.2 py_0 conda-forge
pandas 0.25.2 py37he6710b0_0
pandoc 2.2.3.2 0
pandocfilters 1.4.2 py37_1
parso 0.5.1 py_0 conda-forge
patsy 0.5.1 py37_0
pcre 8.43 he6710b0_0
pexpect 4.7.0 py37_0 conda-forge
pickleshare 0.7.5 py37_0
pip 19.3.1 py37_0 conda-forge
pixman 0.38.0 h7b6447c_0
pluggy 0.13.1 py37_0
poppler 0.65.0 h581218d_1
poppler-data 0.4.9 0 conda-forge
progressbar2 3.37.1 py37_0
proj4 5.2.0 he6710b0_1
prometheus_client 0.7.1 py_0 conda-forge
prompt_toolkit 2.0.10 py_0 conda-forge
psutil 5.6.3 py37h7b6447c_0
psycopg2 2.8.3 py37h1ba5d50_0
ptyprocess 0.6.0 py37_0 conda-forge
py 1.8.1 py_0
pycodestyle 2.5.0 py37_0
pycparser 2.19 py37_0
pyflakes 2.1.1 py37_0
pygments 2.4.2 py_0 conda-forge
pylint 2.4.3 py37_0 conda-forge
pyopenssl 19.0.0 py37_0 conda-forge
pyparsing 2.4.2 py_0 conda-forge
pyproj 1.9.6 py37h14380d9_0
pyqt 5.9.2 py37h05f1152_2
pyrsistent 0.15.4 py37h7b6447c_0
pysocks 1.7.1 py37_0 conda-forge
pytest 5.3.2 py37_0
pytest-runner 5.2 py_0
python 3.7.5 h0371630_0
python-dateutil 2.8.0 py37_0
python-utils 2.3.0 py37_0
pytz 2019.3 py_0 conda-forge
pyzmq 18.1.0 py37he6710b0_0
qt 5.9.7 h5867ecd_1
qtawesome 0.6.0 py_0 conda-forge
qtconsole 4.5.5 py_0 conda-forge
qtpy 1.9.0 py_0 conda-forge
rasterio 1.1.1 pypi_0 pypi
rasterstats 0.13.1 pypi_0 pypi
readline 7.0 h7b6447c_5
requests 2.22.0 py37_0 conda-forge
rope 0.14.0 py_0 conda-forge
rtree 0.8.3 py37_0
scipy 1.3.1 py37h7c811a0_0
seaborn 0.9.0 py37_0
secretstorage 3.1.1 py37_0 conda-forge
send2trash 1.5.0 py37_0
setuptools 41.6.0 py37_0 conda-forge
shapely 1.6.4 py37h86c5351_0
simplejson 3.17.0 pypi_0 pypi
sip 4.19.8 py37hf484d3e_0
six 1.12.0 py37_0
snowballstemmer 2.0.0 py_0 conda-forge
snuggs 1.4.7 pypi_0 pypi
sphinx 2.2.1 py_0 conda-forge
sphinxcontrib-applehelp 1.0.1 py_0 conda-forge
sphinxcontrib-devhelp 1.0.1 py_0 conda-forge
sphinxcontrib-htmlhelp 1.0.2 py_0 conda-forge
sphinxcontrib-jsmath 1.0.1 py_0 conda-forge
sphinxcontrib-qthelp 1.0.2 py_0 conda-forge
sphinxcontrib-serializinghtml 1.1.3 py_0 conda-forge
spyder 3.3.6 py37_0 conda-forge
spyder-kernels 0.5.2 py37_0 conda-forge
sqlalchemy 1.3.10 py37h7b6447c_0
sqlite 3.30.1 h7b6447c_0
statsmodels 0.10.1 py37hdd07704_0
terminado 0.8.2 py37_0 conda-forge
testpath 0.4.2 py37_0
tk 8.6.8 hbc83047_0
toolz 0.10.0 py_0 conda-forge
tornado 6.0.3 py37h7b6447c_0
traitlets 4.3.3 py37_0 conda-forge
urllib3 1.24.2 py37_0 conda-forge
vincent 0.4.4 py_1 conda-forge
wcwidth 0.1.7 py37_0
webencodings 0.5.1 py37_1
wheel 0.33.6 py37_0 conda-forge
widgetsnbextension 3.5.1 py37_0 conda-forge
wrapt 1.11.2 py37h7b6447c_0
wurlitzer 1.0.3 py37_0 conda-forge
xerces-c 3.2.2 h780794e_0
xz 5.2.4 h14c3975_4
zeromq 4.3.1 he6710b0_3
zipp 0.6.0 py_0 conda-forge
zlib 1.2.11 h7b6447c_3
zstd 1.3.7 h0b5b093_0
You don't have a list with four elements, you have a string.
To solve this, split your string to create a list before the assert, like bb = bb.split(',').
I'd like to create a python3.6 env with default anaconda packages. The manual and many online resources say the command is conda create -n py36 python=3.6 anaconda. On other computers that works, but on one particular computer it only installs very few packages. I can't figure out why. I've checked $HOME/anaconda2/env and there's nothing in there.
(ubuntu 16.04, installed from anaconda, not miniconda)
$ conda update anaconda
Solving environment: done
# All requested packages already installed.
$ conda update conda
Solving environment: done
# All requested packages already installed.
$conda create -n py36 python=3.6 anaconda
Solving environment: done
## Package Plan ##
environment location: /home/memo/anaconda2/envs/py36
added / updated specs:
- anaconda
- python=3.6
The following NEW packages will be INSTALLED:
anaconda: custom-py36hbbc8b67_0
ca-certificates: 2018.10.15-ha4d7672_0 conda-forge
certifi: 2018.10.15-py36_1000 conda-forge
libffi: 3.2.1-hfc679d8_5 conda-forge
libgcc-ng: 7.2.0-hdf63c60_3 conda-forge
libstdcxx-ng: 7.2.0-hdf63c60_3 conda-forge
ncurses: 6.1-hfc679d8_1 conda-forge
openssl: 1.0.2p-h470a237_1 conda-forge
pip: 18.1-py36_1000 conda-forge
python: 3.6.6-h5001a0f_3 conda-forge
readline: 7.0-haf1bffa_1 conda-forge
setuptools: 40.5.0-py36_0 conda-forge
sqlite: 3.25.3-hb1c47c0_0 conda-forge
tk: 8.6.8-ha92aebf_0 conda-forge
wheel: 0.32.2-py36_0 conda-forge
xz: 5.2.4-h470a237_1 conda-forge
zlib: 1.2.11-h470a237_3 conda-forge
Proceed ([y]/n)? n
$ conda list
# packages in environment at /home/memo/anaconda2:
#
# Name Version Build Channel
_ipyw_jlab_nb_ext_conf 0.1.0 py27h08a7f0c_0
absl-py 0.6.1 <pip>
absl-py 0.5.0 <pip>
alabaster 0.7.10 py27he5a193a_0
anaconda custom py27h4a00acb_0
anaconda-client 1.6.9 py27_0
anaconda-navigator 1.8.4 py27_0
anaconda-project 0.8.2 py27h236b58a_0
asn1crypto 0.24.0 py27_0
astor 0.7.1 <pip>
astroid 1.6.1 py27_0
astropy 2.0.3 py27h14c3975_0
attrs 17.4.0 py27_0
audioread 2.1.4 py27_1 conda-forge
babel 2.5.3 py27_0
backports 1.0 py27h63c9359_1
backports.functools_lru_cache 1.4 py27he8db605_1
backports.shutil_get_terminal_size 1.0.0 py27h5bc021e_2
backports.weakref 1.0.post1 <pip>
backports_abc 0.5 py27h7b3c97b_0
beautifulsoup4 4.6.0 py27h3f86ba9_1
bibtexparser 1.0.1 <pip>
bitarray 0.8.1 py27h14c3975_1
bkcharts 0.2 py27h241ae91_0
blas 1.0 mkl
blaze 0.11.3 py27h5f341da_0
bleach 1.5.0 <pip>
bleach 2.1.2 py27_0
blosc 1.14.4 hfc679d8_0 conda-forge
bokeh 0.12.13 py27h5233db4_0
boost 1.59.0 py27_0 menpo
boto 2.48.0 py27h9556ac2_1
bottleneck 1.2.1 py27h21b16a3_0
bzip2 1.0.6 h9a117a8_4
ca-certificates 2018.10.15 ha4d7672_0 conda-forge
cairo 1.14.6 4 conda-forge
cdecimal 2.3 py27h14c3975_3
certifi 2018.10.15 py27_1000 conda-forge
cffi 1.11.4 py27h9745a5d_0
cgal-bindings 1.2 <pip>
chardet 3.0.4 py27hfa10054_1
click 6.7 py27h4225b90_0
cloudpickle 0.5.2 py27_1
clyent 1.2.2 py27h7276e6c_1
colorama 0.3.9 py27h5cde069_0
conda 4.5.11 py27_1000 conda-forge
conda-build 3.4.1 py27_0
conda-env 2.6.0 h36134e3_1
conda-verify 2.0.0 py27hf052a9d_0
configparser 3.5.0 py27h5117587_0
contextlib2 0.5.5 py27hbf4c468_0
cryptography 2.3.1 py27hdffb7b8_0 conda-forge
cryptography-vectors 2.3.1 py27_1000 conda-forge
curl 7.61.0 h93b3f91_2 conda-forge
cycler 0.10.0 py27hc7354d3_0
cython 0.27.3 py27hc56b35e_0
cytoolz 0.9.0 py27h14c3975_0
dask 0.16.1 py27_0
dask-core 0.16.1 py27_0
datashape 0.5.4 py27hf507385_0
dbus 1.13.0 h3a4f0e9_0 conda-forge
decorator 4.3.0 <pip>
decorator 4.2.1 py27_0
distributed 1.20.2 py27_0
dlib 19.16.0 <pip>
dlib 19.4 py27_0 menpo
docopt 0.6.2 <pip>
docutils 0.14 py27hae222c1_0
dominate 2.3.4 <pip>
dxfwrite 1.2.1 <pip>
entrypoints 0.2.3 py27h502b47d_2
enum34 1.1.6 py27h99a27e9_1
enum34 1.1.6 <pip>
et_xmlfile 1.0.1 py27h75840f5_0
expat 2.2.5 he0dffb1_0
fastcache 1.0.2 py27h14c3975_2
ffmpeg 3.1.3 0 menpo
filelock 2.0.13 py27h61a9c69_0
flask 0.12.2 py27h6d5c1cd_0
flask-cors 3.0.3 py27h1a8a27f_0
flickr-api 0.6.1 <pip>
fontconfig 2.12.1 4 conda-forge
freetype 2.7 1 conda-forge
funcsigs 1.0.2 <pip>
funcsigs 1.0.2 py27h83f16ab_0
functools32 3.2.3.2 py27h4ead58f_1
future 0.17.1 py27_0 anaconda
futures 3.2.0 py27h7b459c0_0
futures 3.2.0 <pip>
gast 0.2.0 <pip>
geomstats 1.5 <pip>
get_terminal_size 1.0.0 haa9412d_0
gettext 0.19.8.1 h5e8e0c9_1 conda-forge
gevent 1.2.2 py27h475ea6a_0
glib 2.51.4 0 conda-forge
glob2 0.6 py27hcea9cbd_0
gmp 6.1.2 h6c8ec71_1
gmpy2 2.0.8 py27h4cf3fa8_2
graphite2 1.3.10 hf63cedd_1
greenlet 0.4.12 py27hac09c53_0
grin 1.2.1 py27_4
grpcio 1.15.0 <pip>
grpcio 1.16.0 <pip>
gst-plugins-base 1.8.0 0 conda-forge
gstreamer 1.8.0 1 conda-forge
h5py 2.8.0 <pip>
h5py 2.8.0 py27hb794570_1 conda-forge
harfbuzz 1.4.3 0 conda-forge
hdf5 1.10.2 hc401514_1 conda-forge
heapdict 1.0.0 py27_2
html5lib 0.9999999 <pip>
html5lib 1.0.1 py27h5233db4_0
httplib2 0.11.3 <pip>
icu 58.2 hfc679d8_0 conda-forge
idna 2.6 py27h5722d68_1
idna 2.7 <pip>
imageio 2.4.1 py_0 conda-forge
imagesize 0.7.1 py27hd17bf80_0
imutils 0.5.1 <pip>
intel-openmp 2018.0.0 hc7b2577_8
ipaddress 1.0.19 py27_0
ipykernel 4.8.0 py27_0
ipython 5.4.1 py27_2
ipython_genutils 0.2.0 py27h89fb69b_0
ipywidgets 7.1.1 py27_0
isort 4.2.15 py27hcfa4749_0
itsdangerous 0.24 py27hb8295c1_1
jbig 2.1 hdba287a_0
jdcal 1.3 py27h2cc5433_0
jedi 0.11.1 py27_0
jinja2 2.10 py27h4114e70_0
joblib 0.12.5 py_0 conda-forge
jpeg 9c h470a237_1 conda-forge
jsonschema 2.6.0 py27h7ed5aa4_0
jupyter 1.0.0 py27_4
jupyter_client 5.2.2 py27_0
jupyter_console 5.2.0 py27hc6bee7e_1
jupyter_core 4.4.0 py27h345911c_0
jupyterlab 0.31.5 py27_0
jupyterlab_launcher 0.10.2 py27_0
Keras 2.2.2 <pip>
Keras-Applications 1.0.6 <pip>
Keras-Preprocessing 1.0.5 <pip>
kiwisolver 1.0.1 py27_1 conda-forge
krb5 1.14.6 0 conda-forge
lazy-object-proxy 1.3.1 py27h682c727_0
libcurl 7.61.1 heec0ca6_0
libedit 3.1.20170329 haf1bffa_1 conda-forge
libffi 3.2.1 hd88cf55_4
libgcc 7.2.0 h69d50b8_2 conda-forge
libgcc-ng 8.2.0 hdf63c60_1 anaconda
libgfortran 3.0.0 1
libgfortran-ng 7.2.0 h9f7466a_2
libiconv 1.15 h470a237_3 conda-forge
libopenblas 0.2.20 h9ac9557_7
libopus 1.2.1 hb9ed12e_0
libpng 1.6.34 hb9fc6fc_0
librosa 0.6.2 py_0 conda-forge
libsodium 1.0.15 hf101ebd_0
libssh2 1.8.0 h5b517e9_2 conda-forge
libstdcxx-ng 8.2.0 hdf63c60_1 anaconda
libtiff 4.0.7 1 conda-forge
libtool 2.4.6 h544aabb_3
libuuid 2.32.1 h470a237_2 conda-forge
libvpx 1.6.1 h888fd40_0
libxcb 1.12 hcd93eb1_4
libxml2 2.9.8 h422b904_5 conda-forge
libxslt 1.1.32 h88dbc4e_2 conda-forge
linecache2 1.0.0 py27_0 conda-forge
llvmlite 0.23.0 py27_1 conda-forge
locket 0.2.0 py27h73929a2_1
lws 1.2 <pip>
lxml 4.1.1 py27hdd00cef_0
lzo 2.10 h49e0be7_2
Markdown 3.0.1 <pip>
markupsafe 1.0 py27h97b2822_1
matplotlib 2.1.0 py27_0 conda-forge
mccabe 0.6.1 py27h0e7c7be_1
mido 1.2.9 <pip>
mistune 0.8.3 py27_0
mkl 2018.0.3 1
mkl-service 1.1.2 py27hb2d42c5_4
mkl_fft 1.0.5 py27_0 conda-forge
mkl_random 1.0.1 py27_0 conda-forge
mock 2.0.0 <pip>
moviepy 0.2.3.5 <pip>
mpc 1.0.3 hec55b23_5
mpfr 3.1.5 h11a74b3_2
mpmath 1.0.0 py27h9669132_2
msgpack-python 0.5.1 py27h6bb024c_0
multipledispatch 0.4.9 py27h9b5f95a_0
navigator-updater 0.2.0 py27_0
nbconvert 5.3.1 py27he041f76_0
nbformat 4.4.0 py27hed7f2b2_0
ncurses 6.1 hfc679d8_1 conda-forge
networkx 2.1 py27_0
ninja 1.8.2 h2d50403_1 conda-forge
nltk 3.2.5 py27hec5f4de_0
nose 1.3.7 py27heec2199_2
notebook 5.4.0 py27_0
numba 0.38.1 py27_0 conda-forge
numexpr 2.6.6 py27_0 conda-forge
numpy 1.15.4 <pip>
numpy 1.15.3 py27h1d66e8a_0
numpy 1.14.5 <pip>
numpy-base 1.15.3 py27h81de0dd_0
numpy-stl 2.7.0 <pip>
numpydoc 0.7.0 py27h9647a75_0
oauth2 1.9.0.post1 <pip>
odo 0.5.1 py27h9170de3_0
olefile 0.45.1 py27_0
openblas 0.2.20 8 conda-forge
opencv-contrib-python 3.4.3.18 <pip>
opencv-python 3.4.3.18 <pip>
openpyxl 2.4.10 py27_0
openssl 1.0.2p h470a237_1 conda-forge
packaging 16.8 py27h5e07c7c_1
pandas 0.23.0 py27h637b7d7_0
pandoc 1.19.2.1 hea2e7c5_1
pandocfilters 1.4.2 py27h428e1e5_1
pango 1.40.4 0 conda-forge
parso 0.1.1 py27h718acc2_0
partd 0.3.8 py27h4e55004_0
patchelf 0.9 hf79760b_2
path.py 10.5 py27hefe4bee_0
pathlib2 2.3.0 py27h6e9d198_0
patsy 0.5.0 py27_0
pbr 5.1.0 <pip>
pbr 4.2.0 <pip>
pcre 8.39 1
pep8 1.7.1 py27_0
pexpect 4.3.1 py27_0
pickleshare 0.7.4 py27h09770e1_0
Pillow 5.3.0 <pip>
Pillow 5.2.0 <pip>
pillow 4.3.0 py27_1 conda-forge
pip 9.0.1 py27ha730c48_4
pixman 0.34.0 h470a237_3 conda-forge
pkginfo 1.4.1 py27hee1a9ad_1
pluggy 0.6.0 py27h1f4f128_0
ply 3.10 py27hd6d9ae5_0
plyfile 0.6 <pip>
prompt_toolkit 1.0.15 py27h1b593e1_0
protobuf 3.6.1 <pip>
psutil 5.4.3 py27h14c3975_0
ptyprocess 0.5.2 py27h4ccb14c_0
py 1.5.2 py27h203d672_0
PyAudio 0.2.11 <pip>
pycairo 1.10.0 py27_0
pycodestyle 2.3.1 py27h904819d_0
pycosat 0.6.3 py27ha4109ae_0
pycparser 2.18 py27hefa08c5_1
pycrypto 2.6.1 py27h14c3975_7
pycurl 7.19.0 py27_0 anaconda
pyflakes 1.6.0 py27h904a57d_0
pygame 1.9.4 <pip>
pyglet 1.3.2 <pip>
pygments 2.2.0 py27h4a8b6f5_0
pylint 1.8.2 py27_0
pymesh2 0.2.0 <pip>
pyodbc 4.0.22 py27hf484d3e_0
PyOpenGL 3.1.0 <pip>
pyopenssl 17.5.0 py27hcee3be0_0
pyOSC 0.3.5b5294 <pip>
pyparsing 2.2.0 py27hf1513f8_1
pyqt 5.6.0 py27h8210e8a_7 conda-forge
pyqtgraph 0.10.0 py27h28b3542_3 anaconda
pysocks 1.6.7 py27he2db6d2_1
pytables 3.4.4 py27h4f72b40_1 conda-forge
pytest 3.3.2 py27_0
python 2.7.11 0
python-dateutil 2.6.1 py27h4ca5741_1
python-rtmidi 1.1.2 <pip>
python-utils 2.3.0 <pip>
python-xlib 0.23 <pip>
pytorch 0.4.1 py27__9.0.176_7.1.2_2 pytorch
pytz 2017.3 py27h001bace_0
pywavelets 0.5.2 py27hecda097_0
pyxhook 1.0.0 <pip>
PyYAML 3.13 <pip>
pyyaml 3.12 py27h2d70dd7_1
pyzmq 17.1.0 <pip>
pyzmq 16.0.3 py27hc579512_0
qt 5.6.2 3 conda-forge
qtawesome 0.4.4 py27hd7914c3_0
qtconsole 4.3.1 py27hc444b0d_0
qtpy 1.3.1 py27h63d3751_0
readline 6.2 2
requests 2.19.1 <pip>
requests 2.18.4 py27hc5b0589_1
resampy 0.2.0 py27_1 conda-forge
rope 0.10.7 py27hfe459b0_0
ruamel_yaml 0.15.35 py27h14c3975_1
scandir 1.6 py27hf7388dc_0
scikit-image 0.14.0 py27hf484d3e_1 anaconda
scikit-learn 0.20.0 py27h4989274_1
scipy 1.1.0 <pip>
scipy 1.1.0 py27hfa4b5c9_1
seaborn 0.8.1 py27h633ea1e_0
send2trash 1.4.2 py27_0
setuptools 39.1.0 <pip>
setuptools 38.4.0 py27_0
simplegeneric 0.8.1 py27_2
singledispatch 3.4.0.3 py27h9bcb476_0
sip 4.18 py27_0
six 1.11.0 py27h5f960f1_1
six 1.11.0 <pip>
sk-video 1.1.10 <pip>
smop 0.41 <pip>
snowballstemmer 1.2.1 py27h44e2768_0
sortedcollections 0.5.3 py27h135218e_0
sortedcontainers 1.5.9 py27_0
sphinx 1.6.6 py27_0
sphinxcontrib 1.0 py27h1512b58_1
sphinxcontrib-websupport 1.0.1 py27hf906f22_1
spyder 3.2.6 py27_0
sqlalchemy 1.2.1 py27h14c3975_0
sqlite 3.13.0 1 conda-forge
ssl_match_hostname 3.5.0.1 py27h4ec10b9_2
statsmodels 0.8.0 py27hc87d62d_0
subprocess32 3.2.7 py27h373dbce_0
sympy 1.1.1 py27hc28188a_0
tblib 1.3.2 py27h51fe5ba_0
tensorboard 1.11.0 <pip>
tensorflow-gpu 1.11.0 <pip>
tensorflow-hub 0.1.1 <pip>
tensorflowjs 0.6.1 <pip>
termcolor 1.1.0 <pip>
terminado 0.8.1 py27_1
testpath 0.3.1 py27hc38d2c4_0
tk 8.5.19 2 conda-forge
toolz 0.9.0 py27_0
torchfile 0.1.0 py_0 conda-forge
torchfile 0.1.0 <pip>
torchvision 0.2.1 py27_1 pytorch
tornado 5.1 <pip>
tornado 4.5.3 py27_0
tqdm 4.28.1 py27h28b3542_0 anaconda
traceback2 1.4.0 py27_0 conda-forge
traitlets 4.3.2 py27hd6ce930_0
typing 3.6.2 py27h66f49e2_0
unicodecsv 0.14.1 py27h5062da9_0
unittest2 1.1.0 py_0 conda-forge
unixodbc 2.3.4 hc36303a_1
urllib3 1.22 py27ha55213b_0
urllib3 1.23 <pip>
visdom 0.1.8.4 <pip>
vispy 0.5.3 py27_0 conda-forge
wcwidth 0.1.7 py27h9e3e1ab_0
webencodings 0.5.1 py27hff10b21_1
websocket-client 0.48.0 <pip>
websocket-client 0.48.0 py_0 conda-forge
Werkzeug 0.14.1 <pip>
werkzeug 0.14.1 py27_0
wheel 0.32.2 <pip>
wheel 0.30.0 py27h2bc6bb2_1
wheel 0.32.0 <pip>
widgetsnbextension 3.1.0 py27_0
wrapt 1.10.11 py27h04f6869_0
x264 20131218 0 conda-forge
xlrd 1.1.0 py27ha77178f_1
xlsxwriter 1.0.2 py27h12cbc6b_0
xlwt 1.3.0 py27h3d85d97_0
xorg-kbproto 1.0.7 h470a237_2 conda-forge
xorg-libice 1.0.9 h470a237_4 conda-forge
xorg-libsm 1.2.2 h8c8a85c_6 conda-forge
xorg-libx11 1.6.6 h470a237_0 conda-forge
xorg-libxext 1.3.3 h470a237_4 conda-forge
xorg-libxrender 0.9.10 h470a237_2 conda-forge
xorg-renderproto 0.11.1 h470a237_2 conda-forge
xorg-xextproto 7.3.0 h470a237_2 conda-forge
xorg-xproto 7.0.31 h470a237_7 conda-forge
xz 5.2.4 h470a237_1 conda-forge
yaml 0.1.7 had09818_2
yarg 0.1.9 <pip>
zeromq 4.2.2 hbedb6e5_2
zict 0.1.3 py27h12c336c_0
zlib 1.2.11 ha838bed_2
$ conda config --show
add_anaconda_token: True
add_pip_as_python_dependency: True
aggressive_update_packages:
- ca-certificates
- certifi
- openssl
allow_non_channel_urls: False
allow_softlinks: False
always_copy: False
always_softlink: False
always_yes: None
anaconda_upload: None
auto_update_conda: True
changeps1: True
channel_alias: https://conda.anaconda.org
channel_priority: True
channels:
- conda-forge
- defaults
client_ssl_cert: None
client_ssl_cert_key: None
clobber: False
create_default_packages: []
custom_channels:
pkgs/r: https://repo.anaconda.com
home/memo/anaconda2/conda-bld: file://
pkgs/main: https://repo.anaconda.com
pkgs/pro: https://repo.anaconda.com
pkgs/free: https://repo.anaconda.com
custom_multichannels:
local: ["file:///home/memo/anaconda2/conda-bld"]
defaults: ["https://repo.anaconda.com/pkgs/main", "https://repo.anaconda.com/pkgs/free", "https://repo.anaconda.com/pkgs/r", "https://repo.anaconda.com/pkgs/pro"]
default_channels:
- https://repo.anaconda.com/pkgs/main
- https://repo.anaconda.com/pkgs/free
- https://repo.anaconda.com/pkgs/r
- https://repo.anaconda.com/pkgs/pro
disallowed_packages: []
download_only: False
envs_dirs:
- /home/memo/anaconda2/envs
- /home/memo/.conda/envs
force: False
json: False
local_repodata_ttl: 1
max_shlvl: 2
migrated_channel_aliases: []
no_dependencies: False
non_admin_enabled: True
notify_outdated_conda: True
offline: False
override_channels_enabled: True
path_conflict: clobber
pinned_packages: []
pkgs_dirs:
- /home/memo/anaconda2/pkgs
- /home/memo/.conda/pkgs
proxy_servers: {}
quiet: False
remote_connect_timeout_secs: 9.15
remote_max_retries: 3
remote_read_timeout_secs: 60.0
report_errors: None
rollback_enabled: True
safety_checks: warn
shortcuts: True
show_channel_urls: None
ssl_verify: True
track_features: []
use_index_cache: False
use_pip: True
verbosity: 0
whitelist_channels: []
It seems that the problem is that conda-forge appears first in the channel list. You can remove this channel with
conda config --remove channels conda-forge
While removing Conda Forge from the global config will get around the particular issue, it could impact future solves on existing envs that had previously installed from Conda Forge. Instead, one can enforce the anaconda channel just for this particular env creation:
conda create -n py36 -c anaconda --override-channels python=3.6 anaconda