I'm trying to find dates when wipro close price was max per year. (What date and what price?) Here's an example of some code I've tried:
import pandas as pd
import numpy as np
from nsepy import get_history
import datetime as dt
start = dt.datetime(2015, 1, 1)
end = dt.datetime.today()
wipro=get_history(symbol='WIPRO', start = start, end = end)
wipro.index = pd.to_datetime(wipro.index)
# This should get me my grouped results
wipro_agg = wipro.groupby(wipro.index.year).Close.idxmax()
Solving this problem requires 2 steps. First, get the max price each year. Then, find the exact date of that instance.
# Find max price each year:
# note: specific format to keep as a dataframe
wipro_max_yr = wipro.groupby(wipro.index.dt.year)[['Close']].max()
# Now, do an inner join to find exact dates
wipro_max_dates = wipro_max_yr.merge(wipro, how='inner')
You can simply call "max" the same way you called "idxmax"
In [25]: df_ids = pd.DataFrame(wipro.groupby(wipro.index.year).Close.idxmax())
In [26]: df_ids['price'] = wipro.groupby(wipro.index.year).Close.max()
In [27]: df_ids.rename({'Close': 'date'}, axis= 1).set_index('date')
Out[27]:
price
date
2015-03-03 672.45
2016-04-20 601.25
2017-06-06 560.55
2018-12-19 340.70
2019-02-26 387.65
Related
I have a dataframe that contain arrival dates for vessels and I'd want to make python recognize the current year and month that we are at the moment and remove all entries that are prior to the current month and year.
I have a column with the date itself in the format '%d/%b/%Y' and columns for month and year separatly if needed.
For instance, if today is 01/01/2022. I'd like to remove everything that is from dec/2021 and prior.
Using pandas periods and boolean indexing:
# set up example
df = pd.DataFrame({'date': ['01/01/2022', '08/02/2022', '09/03/2022'], 'other_col': list('ABC')})
# find dates equal or greater to this month
keep = (pd.to_datetime(df['date'], dayfirst=False)
.dt.to_period('M')
.ge(pd.Timestamp('today').to_period('M'))
)
# filter
out = df[keep]
Output:
date other_col
1 08/02/2022 B
2 09/03/2022 C
from datetime import datetime
import pandas as pd
df = ...
# assuming your date column is named 'date'
t = datetime.utcnow()
df = df[pd.to_datetime(df.date) >= datetime(t.year, t.month, t.day)]
Let us consider this example dataframe:
import pandas as pd
import datetime
df = pd.DataFrame()
data = [['nao victoria', '21/Feb/2012'], ['argo', '6/Jun/2022'], ['kon tiki', '23/Aug/2022']]
df = pd.DataFrame(data, columns=['Vessel', 'Date'])
You can convert your dates to datetimes, by using pandas' to_datetime method; for instance, you may save the output into a new Series (column):
df['Datetime']=pd.to_datetime(df['Date'], format='%d/%b/%Y')
You end up with the following dataframe:
Vessel Date Datetime
0 nao victoria 21/Feb/2012 2012-02-21
1 argo 6/Jun/2022 2022-06-06
2 kon tiki 23/Aug/2022 2022-08-23
You can then reject rows containing datetime values that are smaller than today's date, defined using datetime's now method:
df = df[df.Datetime > datetime.datetime.now()]
This returns:
Vessel Date Datetime
2 kon tiki 23/Aug/2022 2022-08-23
This is how my dataframe looks like:
datetime open high low close
2006-01-02 4566.95 4601.35 4542.00 4556.25
2006-01-03 4531.45 4605.45 4531.45 4600.25
2006-01-04 4619.55 4707.60 4616.05 4694.14
.
.
.
Need to calculate the Monthly Returns in %
Formula: (Month Closing Price - Month Open Price) / Month Open Price
I can't seem to get the open price and closing price of a month, because in my df most months dont have a log for the 1st of the month. So having trouble calculating it.
Any help would be very much appreciated!
You need to use groupby and agg function in order to get the first and last value of each column in each month:
import pandas as pd
df = pd.read_csv("dt.txt")
df["datetime"] = pd.to_datetime(df["datetime"])
df.set_index("datetime", inplace=True)
resultDf = df.groupby([df.index.year, df.index.month]).agg(["first", "last"])
resultDf["new_column"] = (resultDf[("close", "last")] - resultDf[("open", "first")])/resultDf[("open", "first")]
resultDf.index.rename(["year", "month"], inplace=True)
resultDf.reset_index(inplace=True)
resultDf
The code above will result in a dataframe that has multiindex column. So, if you want to get, for example, rows with year of 2010, you can do something like:
resultDf[resultDf["year"] == 2010]
You can create a custom grouper such as follow :
import pandas as pd
import numpy as np
from io import StringIO
csvfile = StringIO(
"""datetime\topen\thigh\tlow\tclose
2006-01-02\t4566.95\t4601.35\t4542.00\t4556.25
2006-01-03\t4531.45\t4605.45\t4531.45\t4600.25
2006-01-04\t4619.55\t4707.60\t4616.05\t4694.14""")
df = pd.read_csv(csvfile, sep = '\t', engine='python')
df.datetime = pd.to_datetime(df.datetime, format = "%Y-%m-%d")
dg = df.groupby(pd.Grouper(key='datetime', axis=0, freq='M'))
Then each group of dg is separate by month, and since we convert datetime as pandas.datetime we can use classic arithmetic on it :
def monthly_return(datetime, close_value, open_value):
index_start = np.argmin(datetime)
index_end = np.argmax(datetime)
return (close_value[index_end] - open_value[index_start]) / open_value[index_start]
dg.apply(lambda x : monthly_return(x.datetime, x.close, x.open))
Out[97]:
datetime
2006-01-31 0.02785
Freq: M, dtype: float64
Of course a pure functional approach is possible instead of using monthly_return function
I have the following data set:
df
OrderDate Total_Charged
7/9/2017 5
7/9/2017 5
7/20/2017 10
8/20/2017 6
9/20/2019 1
...
I want to make a bar plot with month_year (X-axis) and Total charged per month/year i.e. sum it over month and year. Firstly, I want to groupby month and year and next make the plot.However, I get error on the first step:
df["OrderDate"]=pd.to_datetime(df['OrderDate'])
monthly_orders=df.groupby([(df.index.year),(df.index.month)]).sum()["Total_Charged"]
Got following error:
AttributeError: 'RangeIndex' object has no attribute 'year'
What am I doing wrong (what does the error mean)? How can i fix it?
Not sure why you're grouping by the index there. If you want the group by year and month respectively you could do the following:
df["OrderDate"]=pd.to_datetime(df['OrderDate'])
df.groupby([df.OrderDate.dt.year, df.OrderDate.dt.month]).sum().plot.bar()
pandas.DataFrame.resample
This is a versatile option, that easily implements aggregation over various time ranges (e.g. weekly, daily, quarterly, etc)
Code:
A more expansive dataset:
This code block sets up the sample dataset.
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
# list of dates
first_date = datetime(2017, 1, 1)
last_date = datetime(2019, 9, 20)
x = 4
list_of_dates = [date for date in np.arange(first_date, last_date, timedelta(days=x)).astype(datetime)]
df = pd.DataFrame({'OrderDate': list_of_dates,
'Total_Charged': [np.random.randint(10) for _ in range(len(list_of_dates))]})
Using resample for Monthly Sum:
requires a datetime index
df.OrderDate = pd.to_datetime(df.OrderDate)
df.set_index('OrderDate', inplace=True)
monthly_sums = df.resample('M').sum()
monthly_sums.plot.bar(figsize=(8, 6))
plt.show()
An example with Quarterly Avg:
this shows the versatility of resample compared to groupby
Quarterly would not be easily implemented with groupby
quarterly_avg = df.resample('Q').mean()
quarterly_avg.plot.bar(figsize=(8, 6))
plt.show()
From the daily stock price data, I want to sample and select end of the month price. I am accomplishing using the following code.
import datetime
from pandas_datareader import data as pdr
import pandas as pd
end = datetime.date.today()
begin=end-pd.DateOffset(365*2)
st=begin.strftime('%Y-%m-%d')
ed=end.strftime('%Y-%m-%d')
data = pdr.get_data_yahoo("AAPL",st,ed)
mon_data=pd.DataFrame(data['Adj Close'].resample('M').apply(lambda x: x[-2])).set_index(data.index)
The line above selects end of the month data and here is the output.
If I want to select penultimate value of the month, I can do it using the following code.
mon_data=pd.DataFrame(data['Adj Close'].resample('M').apply(lambda x: x[-2]))
Here is the output.
However the index shows end of the month value. When I choose penultimate value of the month, I want index to be 2015-12-30 instead of 2015-12-31.
Please suggest the way forward. I hope my question is clear.
Thanking you in anticipation.
Regards,
Abhishek
I am not sure if there is a way to do it with resample. But, you can get what you want using groupby and TimeGrouper.
import datetime
from pandas_datareader import data as pdr
import pandas as pd
end = datetime.date.today()
begin = end - pd.DateOffset(365*2)
st = begin.strftime('%Y-%m-%d')
ed = end.strftime('%Y-%m-%d')
data = pdr.get_data_yahoo("AAPL",st,ed)
data['Date'] = data.index
mon_data = (
data[['Date', 'Adj Close']]
.groupby(pd.TimeGrouper(freq='M')).nth(-2)
.set_index('Date')
)
simplest solution is to take the index of your newly created dataframe and subtract the number of days you want to go back:
n = 1
mon_data=pd.DataFrame(data['Adj Close'].resample('M').apply(lambda x: x[-1-n]))
mon_data.index = mon_data.index - datetime.timedelta(days=n)
also, seeing your data, i think that you should resample not to ' month end frequency' but rather to 'business month end frequency':
.resample('BM')
but even that won't cover it all, because for instance December 29, 2017 is a business month end, but this date doesn't appear in your data (which ends in December 08 2017). so you could add a small fix to that (assuming the original data is sorted by the date):
end_of_months = mon_data.index.tolist()
end_of_months[-1] = data.index[-1]
mon_data.index = end_of_months
so, the full code will look like:
n = 1
mon_data=pd.DataFrame(data['Adj Close'].resample('BM').apply(lambda x: x[-1-n]))
end_of_months = mon_data.index.tolist()
end_of_months[-1] = data.index[-1]
mon_data.index = end_of_months
mon_data.index = mon_data.index - datetime.timedelta(days=n)
btw: your .set_index(data.index) throw an error because data and mon_data are in different dimensions (mon_data is monthly grouped_by)
I have a dataframe that contains the columns company_id, seniority, join_date and quit_date. I am trying to extract the number of days between join date and quit date. However, I get NaNs.
If I drop off all the columns in the dataframe except for quit date and join date and run the same code again, I get what I expect. However with all the columns, I get NaNs.
Here's my code:
df['join_date'] = pd.to_datetime(df['join_date'])
df['quit_date'] = pd.to_datetime(df['quit_date'])
df['days'] = df['quit_date'] - df['join_date']
df['days'] = df['days'].astype(str)
df1 = pd.DataFrame(df.days.str.split(' ').tolist(), columns = ['days', 'unwanted', 'stamp'])
df['numberdays'] = df1['days']
This is what I get:
days numberdays
585 days 00:00:00 NaN
340 days 00:00:00 NaN
I want 585 from the 'days' column in the 'numberdays' column. Similarly for every such row.
Can someone help me with this?
Thank you!
Instead of converting to string, extract the number of days from the timedelta value using the dt accessor.
import pandas as pd
df = pd.DataFrame({'join_date': ['2014-03-24', '2013-04-29', '2014-10-13'],
'quit_date':['2015-10-30', '2014-04-04', '']})
df['join_date'] = pd.to_datetime(df['join_date'])
df['quit_date'] = pd.to_datetime(df['quit_date'])
df['days'] = df['quit_date'] - df['join_date']
df['number_of_days'] = df['days'].dt.days
#Mohammad Yusuf Ghazi points out that dt.day is necessary to get the number of days instead of dt.days when working with datetime data rather than timedelta.