Tasks linger in celery amqp when publisher is terminated - python

I am using Celery with a RabbitMQ server. I have a publisher, which could potentially be terminated by a SIGKILL and since this signal cannot be watched, I cannot revoke the tasks. What would be a common approach to revoke the tasks where the publisher is not alive anymore?
I experimented with an interval on the worker side, but the publisher is obviously not registered as a worker, so I don't know how I can detect a timeout

There's nothing built-in to celery to monitor the producer / publisher status -- only the worker / consumer status. There are other alternatives that you can consider, for example by using a redis expiring key that has to be updated periodically by the publisher that can serve as a proxy for whether a publisher is alive. And then in the task checking to see if the flag for a publisher still exists within redis, and if it doesn't the task returns doing nothing.

I am pretty sure what you want is not possible with Celery, so I suggest you to shift your logic around and redesign everything to be part of a Celery workflow (or several Celery canvases depends on the actual use-case). My experience with Celery is that you can build literally any workflow you can imagine with those Celery primitives and/or custom Celery signatures.

Another solution, which works in my case, is to add the next task only if the current processed ones are finished. In this case the queue doesn't fill up.

Related

What are the consequences of disabling gossip, mingle and heartbeat for celery workers?

What are the implications of disabling gossip, mingle, and heartbeat on my celery workers?
In order to reduce the number of messages sent to CloudAMQP to stay within the free plan, I decided to follow these recommendations. I therefore used the options --without-gossip --without-mingle --without-heartbeat. Since then, I have been using these options by default for all my celery projects but I am not sure if there are any side-effects I am not aware of.
Please note:
we now moved to a Redis broker and do not have that much limitations on the number of messages sent to the broker
we have several instances running multiple celery workers with multiple queues
This is the base documentation which doesn't give us much info
heartbeat
Is related to communication between the worker and the broker (in your case the broker is CloudAMQP).
See explanation
With the --without-heartbeat the worker won't send heartbeat events
mingle
It only asks for "logical clocks" and "revoked tasks" from other workers on startup.
Taken from whatsnew-3.1
The worker will now attempt to synchronize with other workers in the same cluster.
Synchronized data currently includes revoked tasks and logical clock.
This only happens at startup and causes a one second startup delay to collect broadcast responses from other workers.
You can disable this bootstep using the --without-mingle argument.
Also see docs
gossip
Workers send events to all other workers and this is currently used for "clock synchronization", but it's also possible to write your own handlers on events, such as on_node_join, See docs
Taken from whatsnew-3.1
Workers are now passively subscribing to worker related events like heartbeats.
This means that a worker knows what other workers are doing and can detect if they go offline. Currently this is only used for clock synchronization, but there are many possibilities for future additions and you can write extensions that take advantage of this already.
Some ideas include consensus protocols, reroute task to best worker (based on resource usage or data locality) or restarting workers when they crash.
We believe that although this is a small addition, it opens amazing possibilities.
You can disable this bootstep using the --without-gossip argument.
Celery workers started up with the --without-mingle option, as #ofirule mentioned above, will not receive synchronization data from other workers, particularly revoked tasks. So if you revoke a task, all workers currently running will receive that broadcast and store it in memory so that when one of them eventually picks up the task from the queue, it will not execute it:
https://docs.celeryproject.org/en/stable/userguide/workers.html#persistent-revokes
But if a new worker starts up before that task has been dequeued by a worker that received the broadcast, it doesn't know to revoke the task. If it eventually picks up the task, then the task is executed. You will see this behavior if you're running in an environment where you are dynamically scaling in and out celery workers constantly.
I wanted to know if the --without-heartbeat flag would impact the worker's ability to detect broker disconnect and attempts to reconnect. The documentation referenced above only opaquely refers to these heartbeats acting at the application layer rather than TCP/IP layer. Ok--what I really want to know is does eliminating these messages affect my worker's ability to function--specifically to detect broker disconnect and then to try to reconnect appropriately?
I ran a few quick tests myself and found that with the --without-heartbeat flag passed, workers still detect broker disconnect very quickly (initiated by me shutting down the RabbitMQ instance), and they attempt to reconnect to the broker and do so successfully when I restart the RabbitMQ instance. So my basic testing suggests the heartbeats are not necessary for basic health checks and functionality. What's the point of them anyways? It's unclear to me, but they don't appear to have impact on worker functionality.

What is the relationship between Celery and RabbitMQ?

Is Celery mostly just a high level interface for message queues like RabbitMQ? I am trying to set up a system with multiple scheduled workers doing concurrent http requests, but I am not sure if I would need either of them. Another question I am wondering is where do you write the actual task in code for the workers to complete, if I am using Celery or RabbitMQ?
RabbitMQ is indeed a message queue, and Celery uses it to send messages to and from workers. Celery is more than just an interface for RabbitMQ. Celery is what you use to create workers, kick off tasks, and define your tasks. It sounds like your use case makes sense for Celery/RabbitMQ. You create a task using the #app.task decorator. Check the docs for more info. In previous projects, I've set up a module for celery, where I define any tasks I need. Then you can pull in functions from other modules to use in your tasks.
Celery is the task management framework--the API you use to schedule jobs, the code that gets those jobs started, the management tools (e.g. Flower) you use to monitor what's going on.
RabbitMQ is one of several "backends" for Celery. It's an oversimplification to say that Celery is a high-level interface to RabbitMQ. RabbitMQ is not actually required for Celery to run and do its job properly. But, in practice, they are often paired together, and Celery is a higher-level way of accomplishing some things that you could do at a lower level with just RabbitMQ (or another queue or message delivery backend).

Persistent Long Running Tasks in Celery

I'm working on a Python based system, to enqueue long running tasks to workers.
The tasks originate from an outside service that generate a "token", but once they're created based on that token, they should run continuously, and stopped only when explicitly removed by code.
The task starts a WebSocket and loops on it. If the socket is closed, it reopens it. Basically, the task shouldn't reach conclusion.
My goals in architecting this solutions are:
When gracefully restarting a worker (for example to load new code), the task should be re-added to the queue, and picked up by some worker.
Same thing should happen when ungraceful shutdown happens.
2 workers shouldn't work on the same token.
Other processes may create more tasks that should be directed to the same worker that's handling a specific token. This will be resolved by sending those tasks to a queue named after the token, which the worker should start listening to after starting the token's task. I am listing this requirement as an explanation to why a task engine is even required here.
Independent servers, fast code reload, etc. - Minimal downtime per task.
All our server side is Python, and looks like Celery is the best platform for it.
Are we using the right technology here? Any other architectural choices we should consider?
Thanks for your help!
According to the docs
When shutdown is initiated the worker will finish all currently executing tasks before it actually terminates, so if these tasks are important you should wait for it to finish before doing anything drastic (like sending the KILL signal).
If the worker won’t shutdown after considerate time, for example because of tasks stuck in an infinite-loop, you can use the KILL signal to force terminate the worker, but be aware that currently executing tasks will be lost (unless the tasks have the acks_late option set).
You may get something like what you want by using retry or acks_late
Overall I reckon you'll need to implement some extra application-side job control, plus, maybe, a lock service.
But, yes, overall you can do this with celery. Whether there are better technologies... that's out of the scope of this site.

How to ensure task execution order per user using Celery, RabbitMQ and Django?

I'm running Django, Celery and RabbitMQ. What I'm trying to achieve is to ensure, that tasks related to one user are executed in order (specifically, one at the time, I don't want task concurrency per user)
whenever new task is added for user, it should depend on the most recently added task. Additional functionality might include not adding task to queue, if task of this type is queued for this user and has not yet started.
I've done some research and:
I couldn't find a way to link newly created task with already queued one in Celery itself, chains seem to be only able to link new tasks.
I think that both functionalities are possible to implement with custom RabbitMQ message handler, though it might be hard to code after all.
I've also read about celery-tasktree and this might be an easiest way to ensure execution order, but how do I link new task with already "applied_async" task_tree or queue? Is there any way that I could implement that additional no-duplicate functionality using this package?
Edit: There is this also this "lock" example in celery cookbook and as the concept is fine, I can't see a possible way to make it work as intended in my case - simply if I can't acquire lock for user, task would have to be retried, but this means pushing it to the end of queue.
What would be the best course of action here?
If you configure the celery workers so that they can only execute one task at a time (see worker_concurrency setting), then you could enforce the concurrency that you need on a per user basis. Using a method like
NUMBER_OF_CELERY_WORKERS = 10
def get_task_queue_for_user(user):
return "user_queue_{}".format(user.id % NUMBER_OF_CELERY_WORKERS)
to get the task queue based on the user id, every task will be assigned to the same queue for each user. The workers would need to be configured to only consume tasks from a single task queue.
It would play out like this:
User 49 triggers a task
The task is sent to user_queue_9
When the one and only celery worker that is listening to user_queue_9 is ready to consume a new task, the task is executed
This is a hacky answer though, because
requiring just a single celery worker for each queue is a brittle system -- if the celery worker stops, the whole queue stops
the workers are running inefficiently

Embed a celery worker in my own code

I have a service that needs a sort of coordinator component. The coordinator will manage entities that need to be assigned to users, taken away from users if the users do not respond on a timely manner, and also handle user responses if they do response. The coordinator will also need to contact messaging services to notify the users they have something to handle.
I want the coordinator to be a single-threaded process, as the load is not expected to be too much for the first few years of usage, and I'd much rather postpone all the concurrency issues to when I really need to handle them (if at all).
The coordinator will receive new entities and user responses from a Django webserver. I thought the easiest way to handle this is with Celery tasks - the webserver just starts a task that the coordinator consumes on its own time.
For this to happen, I need the coordinator to contain a celery worker, and replace the current worker mainloop with my own version (one that checks the broker for a new message and handles the scheduling).
How feasible is it? The alternative is to avoid Celery and use RabbitMQ directly. I'd rather not do that.
Replace this names: coordinator with rabbitmq (or some other broker kombu supports) and users with celery workers.
I am pretty sure you can do all you need (and much more) just by configuring celery / kombu and rabbitmq and without writing too many (if any) lines of code.
small note: Celery features scheduled tasks.

Categories