Related
If I have a large array and a small array, for example
A = np.array([1,2,3])
B = np.array([3,4,5,6,7,8,2,1])
I can use np.intersect1d to get the same value,
but if I want to get the index (in large array B)of same value, for this example,it should be [0,6,7],is there any command to get it?
You can use np.in1d() to get a Boolean array that represents the places where items of A appears in B, then using np.where() or np.argwhere() function you can get the indices of the True items:
In [8]: np.where(np.in1d(B, A))[0]
Out[8]: array([0, 6, 7])
Or as mentioned in comments np.in1d(B, A).nonzero()[0]. However the way you wanna choose here depends pretty much on the reset of your program and where/how you wanna use the results. In addition you can run benchmarks on all the methods in both short and large arrays to see which one is more appropriate in which situation.
I want to create a variable D by combining two other variable x and y.
x has the shape [731] and y has the shape [146].
At the end D should be 2D so that D[0] contains all x-values and D[1] all y-values.
I hope I explained it in a way someone can understand what I want to do.
Can someone help me with this?
It is a simple as: D = [x, y]
Hope it helped :)
Nested lists will do that*:
D = [x, y]
print(D[0] == x) # True
print(D[1] == y) # True
print(D[1] == x) # False
Note that the result cannot be interpreted as a 2D array, if that is what you have in mind. A 2D array would require each row (and column) to have the same number of elements. Accessing D[0][700] will work, while D[1][700] will fail.
* The terminology 'nested lists' assumes that x and y are lists. Enclosing them in another list [ ] makes them nested. However, if x and y are not lists but other types the principle is the same.
I believe what you are trying to do is make a 2D-Array. Such that for each place (such as array[0]) in the array there is another array?
myArray=[[1,2],[3,4]]
Or maybe just a regular array..
Is not possible to make arrays with different sizes as I understood you want to, and this is because a 2D-array is basically a table with rows and columns, and each row has the same number of columns, no matter what.
But, you can join the values in each variable and save the resulting strings in the array, and to use them again just split it back and parse the values to the type you need them.
I wanna print the index of the row containing the minimum element of the matrix
my matrix is matrix = [[22,33,44,55],[22,3,4,12],[34,6,4,5,8,2]]
and the code
matrix = [[22,33,44,55],[22,3,4,12],[34,6,4,5,8,2]]
a = np.array(matrix)
buff_min = matrix.argmin(axis = 0)
print(buff_min) #index of the row containing the minimum element
min = np.array(matrix[buff_min])
print(str(min.min(axis=0))) #print the minium of that row
print(min.argmin(axis = 0)) #index of the minimum
print(matrix[buff_min]) # print all row containing the minimum
after running, my result is
1
3
1
[22, 3, 4, 12]
the first number should be 2, because the minimum is 2 in the third list ([34,6,4,5,8,2]), but it returns 1. It returns 3 as minimum of the matrix.
What's the error?
I am not sure which version of Python you are using, i tested it for Python 2.7 and 3.2 as mentioned your syntax for argmin is not correct, its should be in the format
import numpy as np
np.argmin(array_name,axis)
Next, Numpy knows about arrays of arbitrary objects, it's optimized for homogeneous arrays of numbers with fixed dimensions. If you really need arrays of arrays, better use a nested list. But depending on the intended use of your data, different data structures might be even better, e.g. a masked array if you have some invalid data points.
If you really want flexible Numpy arrays, use something like this:
np.array([[22,33,44,55],[22,3,4,12],[34,6,4,5,8,2]], dtype=object)
However this will create a one-dimensional array that stores references to lists, which means that you will lose most of the benefits of Numpy (vector processing, locality, slicing, etc.).
Also, to mention if you can resize your numpy array thing might work, i haven't tested it, but by the concept that should be an easy solution. But i will prefer use a nested list in this case of input matrix
Does this work?
np.where(a == a.min())[0][0]
Note that all rows of the matrix need to contain the same number of elements.
How do I declare an array in Python?
variable = []
Now variable refers to an empty list*.
Of course this is an assignment, not a declaration. There's no way to say in Python "this variable should never refer to anything other than a list", since Python is dynamically typed.
*The default built-in Python type is called a list, not an array. It is an ordered container of arbitrary length that can hold a heterogenous collection of objects (their types do not matter and can be freely mixed). This should not be confused with the array module, which offers a type closer to the C array type; the contents must be homogenous (all of the same type), but the length is still dynamic.
This is surprisingly complex topic in Python.
Practical answer
Arrays are represented by class list (see reference and do not mix them with generators).
Check out usage examples:
# empty array
arr = []
# init with values (can contain mixed types)
arr = [1, "eels"]
# get item by index (can be negative to access end of array)
arr = [1, 2, 3, 4, 5, 6]
arr[0] # 1
arr[-1] # 6
# get length
length = len(arr)
# supports append and insert
arr.append(8)
arr.insert(6, 7)
Theoretical answer
Under the hood Python's list is a wrapper for a real array which contains references to items. Also, underlying array is created with some extra space.
Consequences of this are:
random access is really cheap (arr[6653] is same to arr[0])
append operation is 'for free' while some extra space
insert operation is expensive
Check this awesome table of operations complexity.
Also, please see this picture, where I've tried to show most important differences between array, array of references and linked list:
You don't actually declare things, but this is how you create an array in Python:
from array import array
intarray = array('i')
For more info see the array module: http://docs.python.org/library/array.html
Now possible you don't want an array, but a list, but others have answered that already. :)
I think you (meant)want an list with the first 30 cells already filled.
So
f = []
for i in range(30):
f.append(0)
An example to where this could be used is in Fibonacci sequence.
See problem 2 in Project Euler
This is how:
my_array = [1, 'rebecca', 'allard', 15]
For calculations, use numpy arrays like this:
import numpy as np
a = np.ones((3,2)) # a 2D array with 3 rows, 2 columns, filled with ones
b = np.array([1,2,3]) # a 1D array initialised using a list [1,2,3]
c = np.linspace(2,3,100) # an array with 100 points beteen (and including) 2 and 3
print(a*1.5) # all elements of a times 1.5
print(a.T+b) # b added to the transpose of a
these numpy arrays can be saved and loaded from disk (even compressed) and complex calculations with large amounts of elements are C-like fast.
Much used in scientific environments. See here for more.
JohnMachin's comment should be the real answer.
All the other answers are just workarounds in my opinion!
So:
array=[0]*element_count
A couple of contributions suggested that arrays in python are represented by lists. This is incorrect. Python has an independent implementation of array() in the standard library module array "array.array()" hence it is incorrect to confuse the two. Lists are lists in python so be careful with the nomenclature used.
list_01 = [4, 6.2, 7-2j, 'flo', 'cro']
list_01
Out[85]: [4, 6.2, (7-2j), 'flo', 'cro']
There is one very important difference between list and array.array(). While both of these objects are ordered sequences, array.array() is an ordered homogeneous sequences whereas a list is a non-homogeneous sequence.
You don't declare anything in Python. You just use it. I recommend you start out with something like http://diveintopython.net.
I would normally just do a = [1,2,3] which is actually a list but for arrays look at this formal definition
To add to Lennart's answer, an array may be created like this:
from array import array
float_array = array("f",values)
where values can take the form of a tuple, list, or np.array, but not array:
values = [1,2,3]
values = (1,2,3)
values = np.array([1,2,3],'f')
# 'i' will work here too, but if array is 'i' then values have to be int
wrong_values = array('f',[1,2,3])
# TypeError: 'array.array' object is not callable
and the output will still be the same:
print(float_array)
print(float_array[1])
print(isinstance(float_array[1],float))
# array('f', [1.0, 2.0, 3.0])
# 2.0
# True
Most methods for list work with array as well, common
ones being pop(), extend(), and append().
Judging from the answers and comments, it appears that the array
data structure isn't that popular. I like it though, the same
way as one might prefer a tuple over a list.
The array structure has stricter rules than a list or np.array, and this can
reduce errors and make debugging easier, especially when working with numerical
data.
Attempts to insert/append a float to an int array will throw a TypeError:
values = [1,2,3]
int_array = array("i",values)
int_array.append(float(1))
# or int_array.extend([float(1)])
# TypeError: integer argument expected, got float
Keeping values which are meant to be integers (e.g. list of indices) in the array
form may therefore prevent a "TypeError: list indices must be integers, not float", since arrays can be iterated over, similar to np.array and lists:
int_array = array('i',[1,2,3])
data = [11,22,33,44,55]
sample = []
for i in int_array:
sample.append(data[i])
Annoyingly, appending an int to a float array will cause the int to become a float, without throwing an exception.
np.array retain the same data type for its entries too, but instead of giving an error it will change its data type to fit new entries (usually to double or str):
import numpy as np
numpy_int_array = np.array([1,2,3],'i')
for i in numpy_int_array:
print(type(i))
# <class 'numpy.int32'>
numpy_int_array_2 = np.append(numpy_int_array,int(1))
# still <class 'numpy.int32'>
numpy_float_array = np.append(numpy_int_array,float(1))
# <class 'numpy.float64'> for all values
numpy_str_array = np.append(numpy_int_array,"1")
# <class 'numpy.str_'> for all values
data = [11,22,33,44,55]
sample = []
for i in numpy_int_array_2:
sample.append(data[i])
# no problem here, but TypeError for the other two
This is true during assignment as well. If the data type is specified, np.array will, wherever possible, transform the entries to that data type:
int_numpy_array = np.array([1,2,float(3)],'i')
# 3 becomes an int
int_numpy_array_2 = np.array([1,2,3.9],'i')
# 3.9 gets truncated to 3 (same as int(3.9))
invalid_array = np.array([1,2,"string"],'i')
# ValueError: invalid literal for int() with base 10: 'string'
# Same error as int('string')
str_numpy_array = np.array([1,2,3],'str')
print(str_numpy_array)
print([type(i) for i in str_numpy_array])
# ['1' '2' '3']
# <class 'numpy.str_'>
or, in essence:
data = [1.2,3.4,5.6]
list_1 = np.array(data,'i').tolist()
list_2 = [int(i) for i in data]
print(list_1 == list_2)
# True
while array will simply give:
invalid_array = array([1,2,3.9],'i')
# TypeError: integer argument expected, got float
Because of this, it is not a good idea to use np.array for type-specific commands. The array structure is useful here. list preserves the data type of the values.
And for something I find rather pesky: the data type is specified as the first argument in array(), but (usually) the second in np.array(). :|
The relation to C is referred to here:
Python List vs. Array - when to use?
Have fun exploring!
Note: The typed and rather strict nature of array leans more towards C rather than Python, and by design Python does not have many type-specific constraints in its functions. Its unpopularity also creates a positive feedback in collaborative work, and replacing it mostly involves an additional [int(x) for x in file]. It is therefore entirely viable and reasonable to ignore the existence of array. It shouldn't hinder most of us in any way. :D
How about this...
>>> a = range(12)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
>>> a[7]
6
Following on from Lennart, there's also numpy which implements homogeneous multi-dimensional arrays.
Python calls them lists. You can write a list literal with square brackets and commas:
>>> [6,28,496,8128]
[6, 28, 496, 8128]
I had an array of strings and needed an array of the same length of booleans initiated to True. This is what I did
strs = ["Hi","Bye"]
bools = [ True for s in strs ]
You can create lists and convert them into arrays or you can create array using numpy module. Below are few examples to illustrate the same. Numpy also makes it easier to work with multi-dimensional arrays.
import numpy as np
a = np.array([1, 2, 3, 4])
#For custom inputs
a = np.array([int(x) for x in input().split()])
You can also reshape this array into a 2X2 matrix using reshape function which takes in input as the dimensions of the matrix.
mat = a.reshape(2, 2)
# This creates a list of 5000 zeros
a = [0] * 5000
You can read and write to any element in this list with a[n] notation in the same as you would with an array.
It does seem to have the same random access performance as an array. I cannot say how it allocates memory because it also supports a mix of different types including strings and objects if you need it to.
What's the best way to create 2D arrays in Python?
What I want is want is to store values like this:
X , Y , Z
so that I access data like X[2],Y[2],Z[2] or X[n],Y[n],Z[n] where n is variable.
I don't know in the beginning how big n would be so I would like to append values at the end.
>>> a = []
>>> for i in xrange(3):
... a.append([])
... for j in xrange(3):
... a[i].append(i+j)
...
>>> a
[[0, 1, 2], [1, 2, 3], [2, 3, 4]]
>>>
Depending what you're doing, you may not really have a 2-D array.
80% of the time you have simple list of "row-like objects", which might be proper sequences.
myArray = [ ('pi',3.14159,'r',2), ('e',2.71828,'theta',.5) ]
myArray[0][1] == 3.14159
myArray[1][1] == 2.71828
More often, they're instances of a class or a dictionary or a set or something more interesting that you didn't have in your previous languages.
myArray = [ {'pi':3.1415925,'r':2}, {'e':2.71828,'theta':.5} ]
20% of the time you have a dictionary, keyed by a pair
myArray = { (2009,'aug'):(some,tuple,of,values), (2009,'sep'):(some,other,tuple) }
Rarely, will you actually need a matrix.
You have a large, large number of collection classes in Python. Odds are good that you have something more interesting than a matrix.
In Python one would usually use lists for this purpose. Lists can be nested arbitrarily, thus allowing the creation of a 2D array. Not every sublist needs to be the same size, so that solves your other problem. Have a look at the examples I linked to.
If you want to do some serious work with arrays then you should use the numpy library. This will allow you for example to do vector addition and matrix multiplication, and for large arrays it is much faster than Python lists.
However, numpy requires that the size is predefined. Of course you can also store numpy arrays in a list, like:
import numpy as np
vec_list = [np.zeros((3,)) for _ in range(10)]
vec_list.append(np.array([1,2,3]))
vec_sum = vec_list[0] + vec_list[1] # possible because we use numpy
print vec_list[10][2] # prints 3
But since your numpy arrays are pretty small I guess there is some overhead compared to using a tuple. It all depends on your priorities.
See also this other question, which is pretty similar (apart from the variable size).
I would suggest that you use a dictionary like so:
arr = {}
arr[1] = (1, 2, 4)
arr[18] = (3, 4, 5)
print(arr[1])
>>> (1, 2, 4)
If you're not sure an entry is defined in the dictionary, you'll need a validation mechanism when calling "arr[x]", e.g. try-except.
If you are concerned about memory footprint, the Python standard library contains the array module; these arrays contain elements of the same type.
Please consider the follwing codes:
from numpy import zeros
scores = zeros((len(chain1),len(chain2)), float)
x=list()
def enter(n):
y=list()
for i in range(0,n):
y.append(int(input("Enter ")))
return y
for i in range(0,2):
x.insert(i,enter(2))
print (x)
here i made function to create 1-D array and inserted into another array as a array member. multiple 1-d array inside a an array, as the value of n and i changes u create multi dimensional arrays