This might be a stupid question but I was just wondering what the difference between ML-KNN implemented in scikit.ml and scikit-learn's KNeighborsClassifier is. According to sklearn's docs KNeighborsClassifier has support for multilabel classification. ML-KNN however is KNN adapted for multilabel classification built on top of sklearn's architecture based on it's docs.
When searching for sample multilabel problems, MLkNN mostly appears but I do not understand if there's any advantage of using it over the base implementation of sklearn if it already supports it. Is it only a late adaptation in sklearn's side or are there more differences in the implementation?
Any input is appreciated. Thanks!
scikit-multilearn's ML-KNN implementations is an improved version of scikit-learn's KNeighborsClassifier. It is actually built on top of it. After the k nearest neighbors in the training data are found, it uses maximum a posteriori principle to label a new instance to achieve a better performance. Also, since it operates on sparse matrices internally using SciPy sparse matrix library, it is highly memory-efficient. More info here and here.
Related
I have n binary classifiers, and I'd like to see what results I get by combining their predictions, just like a VotingClassifier would do, using majority voting or the sum of the individual predict_proba to determine the final prediction.
(Looking on google I already found here some guy's implementation of what I need and the code seems correct, I'm just looking for the "sklearn way" of achieving this)
My problem is that sklearn.ensemble.VotingClassifier is a Soft Voting/Majority Rule classifier for unfitted estimators.
Does sklearn provide something for fitted estimators?
By looking at sklearn.ensemble's documentation it would seem it does not, but isn't weird that such a functionality would be missing from such a complete library? Am I missing something? Can I get that functionality using features from sklearn or do I have to implement it by myself?
I'm using Auto-Sklearn and have a dataset with 42 classes that are heavily imbalanced. What is the best way to handle this imbalance? As far as I know, two approaches to handle imbalanced data within machine learning exist. Either using a resampling mechanism such as over- or under-sampling (or a combination of both) or to solve it on an algorithmic-level by choosing an inductive bias that would require in-depth knowledge about the algorithms used within Auto-Sklearn. I'm not quite sure on how to handle this problem. Is it anyhow possible to solve the imbalance directly within Auto-Sklearn or do I need to use resampling strategies as offered by e.g. imbalanced-learn? Which evaluation metric should be used after the models have been computed? The roc_auc_score for multiple classes is available since sklearn==0.22.1. However, Auto-Sklearn only supports sklearn up to version 0.21.3. Thanks in advance!
The other method is to set weights for classes according to their size. Effort is very little and it seems to work fine. I was looking for setting weights in auto-sklearn and this is what I have found:
https://github.com/automl/auto-sklearn/issues/113
For example in scikit svm you have parameter 'class_weight':
https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html
I hope this helps :)
One way that has worked for me in the past to handle highly imbalanced datasets is Synthetic Minority Oversampling Technique (SMOTE). Here is the paper for better understanding:
SMOTE Paper
This works by synthetically oversampling the minority class or classes for that matter. To quote the paper:
The minority class is over-sampled by taking each minority class
sample and introducing synthetic examples along the line segments
joining any/all of the k minority class nearest neighbors. Depending
upon the amount of over-sampling required, neighbors from the k
nearest neighbors are randomly chosen.
This then will move closer towards balancing out your dataset. There is an implementation of SMOTE in the imblearn package in python.
Here is a good read about different oversampling algorithms. It includes oversampling using ADASYN as well as SMOTE.
I hope this helps.
For those interested and as an addition to the answers given, I can highly recommend the following paper:
Lemnaru, C., & Potolea, R. (2011, June). Imbalanced classification problems: systematic study, issues and best practices. In International Conference on Enterprise Information Systems (pp. 35-50). Springer, Berlin, Heidelberg.
The authors argue that:
In terms of solutions, since the performance is not expected to improve
significantly with a more sophisticated sampling strategy, more focus should be
allocated to algorithm related improvements, rather than to data improvements.
As e.g. the ChaLearn AutoML Challenge 2015 used the balanced accuracy, sklearn argues that it is a fitting metric for imbalanced data and Auto-Sklearn was able to compute well-fitting models, I'm going to have a try. Even without resampling, the results were much "better" (in terms of prediction quality) than just using the accuracy.
I am dealing with a multi-class problem (4 classes) and I am trying to solve it with scikit-learn in Python.
I saw that I have three options:
I simply instantiate a classifier, then I fit with train and evaluate with test;
classifier = sv.LinearSVC(random_state=123)
classifier.fit(Xtrain, ytrain)
classifier.score(Xtest, ytest)
I "encapsulate" the instantiated classifier in a OneVsRest object, generating a new classifier that I use for train and test;
classifier = OneVsRestClassifier(svm.LinearSVC(random_state=123))
classifier.fit(Xtrain, ytrain)
classifier.score(Xtest, ytest)
I "encapsulate" the instantiated classifier in a OneVsOne object, generating a new classifier that I use for train and test.
classifier = OneVsOneClassifier(svm.LinearSVC(random_state=123))
classifier.fit(Xtrain, ytrain)
classifier.score(Xtest, ytest)
I understand the difference between OneVsRest and OneVsOne, but I cannot understand what I am doing in the first scenario where I do not explicitly pick up any of these two options. What does scikit-learn do in that case? Does it implicitly use OneVsRest?
Any clarification on the matter would be highly appreciated.
Best,
MR
Edit:
Just to make things clear, I am not specifically interested in the case of SVMs. For example, what about RandomForest?
Updated answer: As clarified in the comments and edits, the question is more about the general setting of sklearn, and less about the specific case of LinearSVC which is explained below.
The main difference here is that some of the classifiers you can use have "built-in multiclass classification support", i.e. it is possible for that algorithm to discern between more than two classes by default. One example for this would for example be a Random Forest, or a Multi-Layer Perceptron (MLP) with multiple output nodes.
In these cases, having a OneVs object is not required at all, since you are already solving your task. In fact, using such a strategie might even decreaes your performance, since you are "hiding" potential correlations from the algorithm, by letting it only decide between single binary instances.
On the other hand, algorithms like SVC or LinearSVC only support binary classification. So, to extend these classes of (well-performing) algorithms, we instead have to rely on the reduction to a binary classification task, from our initial multiclass classification task.
As far as I am aware of, the most complete overview can be found here:
If you scroll down a little bit, you can see which one of the algorithms is inherently multiclass, or uses either one of the strategies by default.
Note that all of the listed algorithms under OVO actually now employ a OVR strategy by default! This seems to be slightly outdated information in that regard.
Initial answer:
This is a question that can easily be answered by looking at the relevant scikit-learn documentation.
Generally, the expectation on Stackoverflow is that you have at least done some form of research on your own, so please consider looking into existing documentation first.
multi_class : string, ‘ovr’ or ‘crammer_singer’ (default=’ovr’)
Determines the multi-class strategy if y contains more than two classes. "ovr" trains n_classes one-vs-rest classifiers, while
"crammer_singer" optimizes a joint objective over all classes. While
crammer_singer is interesting from a theoretical perspective as it is
consistent, it is seldom used in practice as it rarely leads to better
accuracy and is more expensive to compute. If "crammer_singer" is
chosen, the options loss, penalty and dual will be ignored.
So, clearly, it uses one-vs-rest.
The same holds by the way for the "regular" SVC.
I'm interested in using group lasso for a problem I have. Here is a link to the algorithm. I know R has a slick implementation, but am curious to see if python has something similar.
I think sklearn.linear_model.MultiTaskLasso might be kind of similar, but am not sure. Can anyone shed some light on this?
Whether or not to implement the Group Lasso in sklearn is discussed in this issue in the sklearn repo, where the conclusion so far is that it is too much of a niche model to justify the maintenance it would need if included in master.
Therefore, I have implemented a GroupLasso class which passes sklearn's check_estimator() in my python/cython package celer, which acts as a dropin replacement for sklearn's Lasso, MultitaskLasso, sparse Logistic regression with faster solvers.
The solver uses coordinate descent, working set methods and extrapolation, which should allow it to scale to problems with millions of features.
It supports sparse and dense data, along with centering and normalization (centering sparse data is not trivial as it breaks the sparsity of the design matrix), and comes with a GroupLassoCV class to perform cross-validation.
In celer's documentation, there is an example showing how to use it.
I've also looked into this, as far as I know scikit-learn does not provide this implementation.
The MultiTaskLasso does something else. From the documentation:
"The MultiTaskLasso is a linear model that estimates sparse coefficients for multiple regression problems jointly: y is a 2D array, of shape (n_samples, n_tasks). The constraint is that the selected features are the same for all the regression problems, also called tasks."
In other words, the MultiTaskLasso is an implementation of the Lasso which is able to predict multiple targets at the same time (hence y is a 2D array). Another way this problem is known is 'multi-output regression' or 'multi-target regression'. If the tasks are related, such methods can improve methods which try to model every task or target separately.
I'm trying to use a forest (or tree) augmented Bayes classifier (Original introduction, Learning) in python (preferably python 3, but python 2 would also be acceptable), first learning it (both structure and parameter learning) and then using it for discrete classification and obtaining probabilities for those features with missing data. (This is why just discrete classification and even good naive classifiers are not very useful for me.)
The way my data comes in, I'd love to use incremental learning from incomplete data, but I haven't even found anything doing both of these in the literature, so anything that does structure and parameter learning and inference at all is a good answer.
There seem to be a few very separate and unmaintained python packages that go roughly in this direction, but I haven't seen anything that is moderately recent (for example, I would expect that using pandas for these calculations would be reasonable, but OpenBayes barely uses numpy), and augmented classifiers seem completely absent from anything I have seen.
So, where should I look to save me some work implementing a forest augmented Bayes classifier? Is there a good implementation of Pearl's message passing algorithm in a python class, or would that be inappropriate for an augmented Bayes classifier anyway?
Is there a readable object-oriented implementation for learning and inference of TAN Bayes classifiers in some other language, which could be translated to python?
Existing packages I know of, but found inappropriate are
milk, which does support classification, but not with Bayesian classifiers (and I defitinetly need probabilities for the classification and unspecified features)
pebl, which only does structure learning
scikit-learn, which only learns naive Bayes classifiers
OpenBayes, which has only barely changed since somebody ported it from numarray to numpy and documentation is negligible.
libpgm, which claims to support an even different set of things. According to the main documentation, it does inference, structure and parameter learning. Except there do not seem to be any methods for exact inference.
Reverend claims to be a “Bayesian Classifier”, has negligible documentation, and from looking at the source code I am lead to the conclusion that it is mostly a Spam classifier, according to Robinson's and similar methods, and not a Bayesian classifier.
eBay's bayesian Belief Networks allows to build generic Bayesian networks and implements inference on them (both exact and approximate), which means that it can be used to build a TAN, but there is no learning algorithm in there, and the way BNs are built from functions means implementing parameter learning is more difficult than it might be for a hypothetical different implementation.
I'm afraid there is not an out-of-the-box implementation of Random Naive Bayes classifier (not that I am aware of) because it is still academic matters. The following paper present the method to combine RF and NB classifiers (behind a paywall) : http://link.springer.com/chapter/10.1007%2F978-3-540-74469-6_35
I think you should stick with scikit-learn, which is one of the most popular statistical module for Python (along with NLTK) and which is really well documented.
scikit-learn has a Random Forest module : http://scikit-learn.org/stable/modules/ensemble.html#forests-of-randomized-trees . There is a submodule which may (I insist of the uncertainty) be used to pipeline towards NB classifier :
RandomTreesEmbedding implements an unsupervised transformation of the
data. Using a forest of completely random trees, RandomTreesEmbedding
encodes the data by the indices of the leaves a data point ends up in.
This index is then encoded in a one-of-K manner, leading to a high
dimensional, sparse binary coding. This coding can be computed very
efficiently and can then be used as a basis for other learning tasks.
The size and sparsity of the code can be influenced by choosing the
number of trees and the maximum depth per tree. For each tree in the
ensemble, the coding contains one entry of one. The size of the coding
is at most n_estimators * 2 ** max_depth, the maximum number of leaves
in the forest.
As neighboring data points are more likely to lie within the same leaf
of a tree, the transformation performs an implicit, non-parametric
density estimation.
And of course there is a out-of-core implementation of Naive Bayes classifier, which can be used incrementally : http://scikit-learn.org/stable/modules/naive_bayes.html
Discrete naive Bayes models can be used to tackle large scale text
classification problems for which the full training set might not fit
in memory. To handle this case both MultinomialNB and BernoulliNB
expose a partial_fit method that can be used incrementally as done
with other classifiers as demonstrated in Out-of-core classification
of text documents.
I was similarly confused as to how to do exact inference with libpgm. However, turns out it is possible. For example (from libpgm docs),
import json
from libpgm.graphskeleton import GraphSkeleton
from libpgm.nodedata import NodeData
from libpgm.discretebayesiannetwork import DiscreteBayesianNetwork
from libpgm.tablecpdfactorization import TableCPDFactorization
# load nodedata and graphskeleton
nd = NodeData()
skel = GraphSkeleton()
nd.load("../tests/unittestdict.txt")
skel.load("../tests/unittestdict.txt")
# toporder graph skeleton
skel.toporder()
# load evidence
evidence = dict(Letter='weak')
query = dict(Grade='A')
# load bayesian network
bn = DiscreteBayesianNetwork(skel, nd)
# load factorization
fn = TableCPDFactorization(bn)
# calculate probability distribution
result = fn.condprobve(query, evidence)
# output
print json.dumps(result.vals, indent=2)
print json.dumps(result.scope, indent=2)
print json.dumps(result.card, indent=2)
print json.dumps(result.stride, indent=2)
To get the example to work, here is the datafile (I replaced None with null and saved as a .json).
I know this is quite late to the game, but this was the best post I found when searching for a resource to do Bayesian networks with Python. I thought I'd answer in case anyone else is looking for this. (Sorry, would have commented, but just signed up for SO to answer this and rep isn't high enough.)
R's bnlearn has implementations for both Naive Bayes and Tree-augmented Naive Bayes classifiers. You can use rpy2 to port these to Python.
http://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf
There seems to be no such thing yet.
The closest thing currently seems to be eBay's open source implementation bayesian of Belief Networks. It implements inference (two exact ways, and approximate), which means that it can be used to build a TAN. An example (at the moment still an ugly piece of spaghetti code) for that can be found in my open20q repository.
Advantages:
It works.
That is, I now have an implementation of TAN inference, based on bayesian belief network inference.
With Apache 2.0 and 3-clause BSD style licenses respectively, it is legally possible to combine bayesian code and libpgm code to try to get inference and learning to work.
Disadvantages:
There is no learning whatsoever in bayesian. Trying to combine something like libpgm learning with bayesian classes and inference will be a challenge.
Even more so as bayesian assumes that nodes are given by factors which are fixed python functions. Parameter learning requires some wrapping code to enable tweaking the probabilities.
bayesian is written in pure python, using dicts etc. as basic structures, not making use of any speedup numpy, pandas or similar packages might bring, and is therefore quite slow even for the tiny example I build.
I know it's a bit late in the day, but the Octave forge NaN package might be of interest to you. One of the classifiers in this package is an Augmented Naive Bayesian Classifier. The code is GPL'ed so you could easily port it to Python.