I have python GUI application which can kick off any number of computation-intensive long-running tasks that naturally belong in multiprocessing.Pool workers.
However, I'd like to be able to cancel these tasks, because later GUI input (such as changing a configuration variable) might render these tasks irrelevant.
Is there a popular pattern in Python for keeping track of which workers are working on what task, and interrupting them as needed?
The solutions I can think of are:
When a worker starts on a task it "announces" through some shared state that it is working on that particular task; if we need to cancel that task we look up which process is working on it and .terminate() it. There are many complexities here though.
Use raw multiprocessing.Processes and write a Pool-like manager that does exactly what we want.
Use some alternative library such as Celery. A huge list is here.
Related
I have a python application running inside of a pod in kubernetes which subscribes to a Google Pub/Sub topic and on each message downloads a file from a google bucket.
The issue I have is that I can't process the workload quickly enough using a single threaded Python application. I would normally run a number of pods to handle the workload but the problem is that all the files have to end up on the same filesystem to be processed by another application.
I have tried spawning a new thread for each request but the volume is too great.
What I would like to do is:
1) Have a number of processes that can process new messages
2) Keep the processes alive and use them to respond to new requests coming in.
All the examples for multiprocessing in python are single workload examples, for example providing 10 numbers to a square function, which isn't what I'm trying to achieve.
I've used gunicorn in the past which spawns a number of worker threads for a flask application, what I want is to do something similar without flask.
In the first, try to separate IO-bound (e.g. request, read/write and etc.) task from CPU-bound (parse JSON/XML, calculating and etc.) task.
For IO-bound case use Threading or ThreadPoolExecutor primitives for auto reuse working thread. Keep attention, writing on disk is blocking function!
If you want to use parallelism for CPU-bound user Processing or ProcessPoolExecutor. For sync them you can use shared object (proxy object) or file or pipe or redis and etc.
Shared objects like Managers (Namespaces, dicts and etc.) is preferred if you want to use pure python.
For work with files to avoid blocking, use individual thread or use async.
For asyncio use aiofile library.
I want to use ThreadPoolExecutor on a webapp (django),
All examples that I saw are using the thread pool like that:
with ThreadPoolExecutor(max_workers=1) as executor:
code
I tried to store the thread pool as a class member of a class and to use map fucntion
but I got memory leak, the only way I could use it is by the with notation
so I have 2 questions:
Each time I run with ThreadPoolExecutor does it creates threads again and then release them, in other word is this operation is expensive?
If I avoid using with how can I release the memory of the threads
thanks
Normally, web applications are stateless. That means every object you create should live in a request and die at the end of the request. That includes your ThreadPoolExecutor. Having an executor at the application level may work, but it will be embedded into your web application instead of running as a separate group of processes.
So if you want to take the workers down or restart them, your web app will have to restart as well.
And there will be stability concerns, since there is no main process watching over child processes detecting which one has gotten stale, so requires a lot of code to get multiprocessing right.
Alternatively, If you want a persistent group of processes to listen to a job queue and run your tasks, there are several projects that do that for you. All you need to do is to set up a server that takes care of queueing and locking such as redis or rabbitmq, then point your project at that server and start the workers. Some projects even let you use the database as a job queue backend.
Is it OK to run certain pieces of code asynchronously in a Django web app. If so how?
For example:
I have a search algorithm that returns hundreds or thousands of results. I want to enter into the database that these items were the result of the search, so I can see what users are searching most. I don't want the client to have to wait an extra hundred or thousand more database inserts. Is there a way I can do this asynchronously? Is there any danger in doing so? Is there a better way to achieve this?
As far as Django is concerned yes.
The bigger concern is your web server and if it plays nice with threading. For instance, the sync workers of gunicorn are single threads, but there are other engines, such as greenlet. I'm not sure how well they play with threads.
Combining threading and multiprocessing can be an issue if you're forking from threads:
Status of mixing multiprocessing and threading in Python
http://bugs.python.org/issue6721
That being said, I know of popular performance analytics utilities that have been using threads to report on metrics, so seems to be an accepted practice.
In sum, seems safest to use the threading.Thread object from the standard library, so long as whatever you do in it doesn't fork (python's multiprocessing library)
https://docs.python.org/2/library/threading.html
Offloading requests from the main thread is a common practice; as the end goal is to return a result to the client (browser) as quickly as possible.
As I am sure you are aware, HTTP is blocking - so until you return a response, the client cannot do anything (it is blocked, in a waiting state).
The de-facto way of offloading requests is through celery which is a task queuing system.
I highly recommend you read the introduction to celery topic, but in summary here is what happens:
You mark certain pieces of codes as "tasks". These are usually functions that you want to run asynchronously.
Celery manages workers - you can think of them as threads - that will run these tasks.
To communicate with the worker a message queue is required. RabbitMQ is the one often recommended.
Once you have all the components running (it takes but a few minutes); your workflow goes like this:
In your view, when you want to offload some work; you will call the function that does that work with the .delay() option. This will trigger the worker to start executing the method in the background.
Your view then returns a response immediately.
You can then check for the result of the task, and take appropriate actions based on what needs to be done. There are ways to track progress as well.
It is also good practice to include caching - so that you are not executing expensive tasks unnecessarily. For example, you might choose to offload a request to do some analytics on search keywords that will be placed in a report.
Once the report is generated, I would cache the results (if applicable) so that the same report can be displayed if requested later - rather than be generated again.
I have about 1000-10000 jobs which I need to run on a constant basis each minute or so. Sometimes new job comes in or other needs to be cancelled but it's rare event. Jobs are tagged and must be disturbed among workers each of them processes only jobs of specific kind.
For now I want to use cron and load whole database of jobs in some broker -- RabbitMQ or beanstalkd (haven't decided which one to use though).
But this approach seems ugly to me (using timer to simulate infinity, loading the whole database, etc) and has the disadvantage: for example if some kind of jobs are processed slower than added into the queue it may be overwhelmed and message broker will eat all ram, swap and then just halt.
Is there any other possibilities? Am I not using right patterns for a job? (May be I don't need queue or something..?)
p.s. I'm using python if this is important.
You create your initial batch of jobs and add them to the queue.
You have n-consumers of the queue each running the jobs. Adding consumers to the queue simply round-robins the distribution of jobs to each listening consumer, giving you arbitrary horizontal scalability.
Each job can, upon completion, be responsible for resubmitting itself back to the queue. This means that your job queue won't grow beyond the length that it was when you initialised it.
The master job can, if need be, spawn sub-jobs and add them to the queue.
For different types of jobs it is probably a good idea to use different queues. That way you can balance the load more effectively by having different quantities/horsepower of workers running the jobs from the different queues.
The fact that you are running Python isn't important here, it's the pattern, not the language that you need to nail first.
You can use asynchronous framework, e.g. Twisted
I don't think either it's a good idea to run script by cron daemon each minute (and you mentioned reasons), so I offer you Twisted. It doesn't give you benefit with scheduling, but you get flexibility in process management and memory sharing
I'm using Celery to queue jobs from a CGI application I made. The way I've set it up, Celery makes each job run one- or two-at-a-time by setting CELERYD_CONCURRENCY = 1 or = 2 (so they don't crowd the processor or thrash from memory consumption). The queue works great, thanks to advice I got on StackOverflow.
Each of these jobs takes a fair amount of time (~30 minutes serial), but has an embarrassing parallelizability. For this reason, I was using Pool.map to split it and do the work in parallel. It worked great from the command line, and I got runtimes around 5 minutes using a new many-cored chip.
Unfortunately, there is some limitation that does not allow daemonic process to have subprocesses, and when I run the fancy parallelized code within the CGI queue, I get this error:
AssertionError: daemonic processes are not allowed to have children
I noticed other people have had similar questions, but I can't find an answer that wouldn't require abandoning Pool.map altogether, and making more complicated thread code.
What is the appropriate design choice here? I can easily run my serial jobs using my Celery queue. I can also run my much faster parallelized jobs without a queue. How should I approach this, and is it possible to get what I want (both the queue and the per-job parallelization)?
A couple of ideas I've had (some are quite hacky):
The job sent to the Celery queue simply calls the command line program. That program can use Pool as it pleases, and then saves the result figures & data to a file (just as it does now). Downside: I won't be able to check on the status of the job or see if it terminated successfully. Also, system calls from CGI may cause security issues.
Obviously, if the queue is very full of jobs, I can make use of the CPU resources (by setting CELERYD_CONCURRENCY = 6 or so); this will allow many people to be "at the front of the queue" at once.Downside: Each job will spend a lot of time at the front of the queue; if the queue isn't full, there will be no speedup. Also, many partially finished jobs will be stored in memory at the same time, using much more RAM.
Use Celery's #task to parallelize within sub-jobs. Then, instead of setting CELERYD_CONCURRENCY = 1, I would set it to 6 (or however many sub jobs I'd like to allow in memory at a time). Downside: First of all, I'm not sure whether this will successfully avoid the "task-within-task" problem. But also, the notion of queue position may be lost, and many partially finished jobs may end up in memory at once.
Perhaps there is a way to call Pool.map and specify that the threads are non-daemonic? Or perhaps there is something more lightweight I can use instead of Pool.map? This is similar to an approach taken on another open StackOverflow question. Also, I should note that the parallelization I exploit via Pool.map is similar to linear algebra, and there is no inter-process communication (each just runs independently and returns its result without talking to the others).
Throw away Celery and use multiprocessing.Queue. Then maybe there'd be some way to use the same "thread depth" for every thread I use (i.e. maybe all of the threads could use the same Pool, avoiding nesting)?
Thanks a lot in advance.
What you need is a workflow management system (WFMS) that manages
task concurrency
task dependency
task nesting
among other things.
From a very high level view, a WFMS sits on top of a task pool like celery, and submits the tasks which are ready to execute to the pool. It is also responsible for opening up a nest and submitting the tasks in the nest accordingly.
I've developed a system to do just that. It's called pomsets. Try it out, and feel free to send me any questions.
I using a multiprocessed deamons based on Twisted with forking and Gearman jobs query normally.
Try to look at Gearman.