I'm wanting to add pre-generated heatmaps over photographs. The colours in the images aren't important and to make the heatmap colours stand out I'm making the images greyscale. I've done this using
grey = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
However the greyscale image now has one fewer dimensions compared to the heatmap (which is BRG). How can I overlay the heatmap on top of the grey image?
With the two identical size and mode images in place, execute the following code.
from PIL import Images
im_1 = Image.open("/constr/pics1/100_canary.png")
# mode is RGBA
im_2 = Image.open("/constr/pics1/100_cockcrow.png")
# Check on mode, size and format first for compatibility.
# Make both modes the same
im_4 = Image.blend(im_1, im_2, 0.5)
im_4.show()
Related
The heatmap package isn't supported by Python 3, and cv2 doesn't support the following for PNG images with an alpha channel:
cv2.applyColorMap(img, cv2.COLORMAP_JET)
I want to convert a grayscale PNG image into a heatmap; in other words, colorize the darker pixels as blue and the brighter pixels as red.
Every pixel's transparency should remain unaffected.
Try using matplotlib.pyplot.get_cmap.
colormap = plt.get_cmap('plasma')
heatmap = (colormap(image) * 2**16).astype(np.uint16)[:,:,:3]
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_RGB2BGR)
You can choose the color maps according to your desired output.
I am attempting to separate red, green and blue components of an image and display the resulting images in separate subplots.
To do this, for each colour, I have created an array of zeros the same shape as the original image (using the function np.zeros), and copied one of the image colours across using slicing.
However, the output just appears to be a red square, therefore I don't think the code is working how I would expect it to. Does anyone have any idea where I'm going wrong?
red_image[:,:,0] = red_channel
image = plt.imread('archway.jpg')
plt.imshow(image)
red_channel = image[:,:,0]
red_image = np.zeros(image.shape)
red_image[:,:,0] = red_channel
plt.imshow(red_image)
I have been messing around in python to see if I could "mix" two pictures together. What I mean by that is so that the image is transparent and you can see two pictures together. If that still does not make sense check out this link: (only I would mix a picture and a picture not a gif)
https://cdn.discordapp.com/attachments/652564556211683363/662770085844221963/communism.gif
Here is my code:
from PIL import Image
im1 = Image.open('oip.jpg')
im2 = Image.open('star.jpg')
bg = Image.blend(im1, im2, 0)
bg.save('star_oip_paste.jpg', quality=95)
and I get the error:
line 6, in <module> bg = Image.blend(im1, im2, 0) ValueError: images do not match
I'm not even sure if I'm using the right function for "mixing" two images together — so if I'm not, let me know.
There are several things going on here:
Your input images are both JPEG which doesn't support transparency, so you can only get a fixed blending throughout your image. I mean you can't see one image at one point and the other image at another. You will only see the same proportion of each image at each point. Is that what you want?
For example, if I take Paddington and Buckingham Palace and take 50% of each:
I get this:
If that's what you want, you need to resize the images to a common size and change this line:
bg = Image.blend(im1, im2, 0)
to
bg = Image.blend(im1, im2, 0.5) # blend half and half
If you want to paste something with transparency, so it only shows up in certain places, you need to load the overlay from a GIF or PNG with transparency and use:
background.paste(overlay, box=None, mask=overlay)
Then you can do this - note you can see different amounts of the two images at each point:
So, as a concrete example of overlaying a transparent image onto an opaque background, and starting with Paddington (400x400) and this star (500x500):
#!/usr/bin/env python3
from PIL import Image
# Open background and foreground and ensure they are RGB (not palette)
bg = Image.open('paddington.png').convert('RGB')
fg = Image.open('star.png').convert('RGBA')
# Resize foreground down from 500x500 to 100x100
fg_resized = fg.resize((100,100))
# Overlay foreground onto background at top right corner, using transparency of foreground as mask
bg.paste(fg_resized,box=(300,0),mask=fg_resized)
# Save result
bg.save('result.png')
If you want to grab an image from a website, use this:
from PIL import Image
import requests
from io import BytesIO
# Grab the star image from this answer
response = requests.get('https://i.stack.imgur.com/wKQCT.png')
# Make it into a PIL image
img = Image.open(BytesIO(response.content))
As an alternative, you could try with OpenCV (depending on your desired output)
import cv2
# Read the images
foreground = cv2.imread("puppets.png")
background = cv2.imread("ocean.png")
alpha = cv2.imread("puppets_alpha.png")
# Convert uint8 to float
foreground = foreground.astype(float)
background = background.astype(float)
# Normalize the alpha mask to keep intensity between 0 and 1
alpha = alpha.astype(float)/255
# Multiply the foreground with the alpha matte
foreground = cv2.multiply(alpha, foreground)
# Multiply the background with ( 1 - alpha )
background = cv2.multiply(1.0 - alpha, background)
# Add the masked foreground and background.
outImage = cv2.add(foreground, background)
# Display image
cv2.imshow("outImg", outImage/255)
cv2.waitKey(0)
I am trying to combine three images together. The image I want on the bottom is a 700x900 image with all black pixels. On top of that I want to paste an image that is 400x400 with an offset of 100,200. On top of that I want to paste an image border that is 700x900. The image border has alpha=0 in the inside of it and alpha=0 around it because it doesn't have straight edges. When I run the code I have pasted below I encounter 2 problems:
1) Everywhere on the border image where the alpha channel = 0, the alpha channel has been set to 255 and the color white shows instead of the black background and the image I am putting the border around.
2) The border image's quality has been significantly reduced and looks a lot different than it should.
Also: part of the border image will cover part of the Image I am putting the border around. So I can't just switch the order that I am pasting.
Thanks in advance for any help.
#!/usr/bin/python -tt
from PIL import ImageTk, Image
old_im2 = Image.open('backgroundImage1.jpg') # size = 400x400
old_im = Image.open('topImage.png') # size = 700x900
new_size = (700,900)
new_im = Image.new("RGBA", new_size) # makes the black image
new_im.paste(old_im2, (100, 200))
new_im.paste(old_im,(0,0))
new_im.show()
new_im.save('final.jpg')
I think you have a misconception about images - the border image does have pixels everywhere. It's not possible for it to be "missing" pixels. It is possible to have an image with an alpha channel, which is a channel like the R, G, and B channels, but indicates transparency.
Try this:
1. Make sure that topImage.png has a transparency channel, and that the pixels that you want to be "missing" are transparent (i.e. have a maximum alpha value). You can double check this way:
print old_im.mode # This should print "RGBA" if it has an alpha channel.
2. Create new_im in "RGBA" mode:
new_im = Image.new("RGBA", new_size) # makes the black image
# Note the "A" --------^
3. Try this paste statement instead:
new_im.paste(old_im,(0,0), mask=old_im) # Using old_im as the mask argument should tell the paste function to use old_im's alpha channel to combine the two images.
I'm loading and saving out images with PIL just fine but I can't seem to change the "overall" hue of a given image ~ google and here revealed an answer, sort of, with the numpy module, but thats not an option for me
It should be quite simple, given a gray image with alpha, I'd like to make it's hue red
I think you want a mono-hue image. Is this true?
It's not clear what you want done with the existing bands (alpha and greyscale/level). Do you want alpha to remain alpha and the greyscale to become red saturation? Do you want the alpha to become your red saturation? Do you want greyscale to be the image lightness and the alpha to become the saturation?
Edit:
I've changed the output based on your comment. You wanted the darkest shade of the greyscale band to represent fully saturated red and the lightest grey to represent white (in other words full-saturated with all colors). You also indicated that you wanted alpha to be preserved as alpha in the output. I've made that change too.
This is possible with some band swapping:
import Image
# get an image that is greyscale with alpha
i = Image.open('hsvwheel.png').convert('LA')
# get the two bands
L,A = i.split()
# a fully saturated band
S, = Image.new('L', i.size, 255).split()
# re-combine the bands
# this keeps tha alpha channel in the new image
i2 = Image.merge('RGBA', (S,L,L,A))
# save
i2.save('test.png')