Vector arithmetic by conditional selection from multiple columns in a dataframe - python

I'm trying to do arithmetic among different cells in my dataframe and can't figure out how to operate on each of my groups. I'm trying to find the difference in energy_use between a baseline building (in this example upgrade_name == b is the baseline case) and each upgrade, for each building. I have an arbitrary number of building_id's and arbitrary number of upgrade_names.
I can do this successfully for a single building_id. Now I need to expand this out to a full dataset and am stuck. I will have 10's of thousands of buildings and dozens of upgrades for each building.
The answer to this question Iterating within groups in Pandas may be related, but I'm not sure how to apply it to my problem.
I have a dataframe like this:
df = pd.DataFrame({'building_id': [1,2,1,2,1], 'upgrade_name': ['a', 'a', 'b', 'b', 'c'], 'energy_use': [100.4, 150.8, 145.1, 136.7, 120.3]})
In [4]: df
Out[4]:
building_id upgrade_name energy_use
0 1 a 100.4
1 2 a 150.8
2 1 b 145.1
3 2 b 136.7
4 1 c 120.3
For a single building_id I have the following code:
upgrades = df.loc[df.building_id == 1, ['upgrade_name', 'energy_use']]
starting_point = upgrades.loc[upgrades.upgrade_name == 'b', 'energy_use']
upgrades['diff'] = upgrades.energy_use - starting_point.values[0]
In [8]: upgrades
Out[8]:
upgrade_name energy_use diff
0 a 100.4 -44.7
2 b 145.1 0.0
4 c 120.3 -24.8
How do I write this for arbitrary numbers of building_id's, instead of my hard-coded building_id == 1?
The ideal solution looks like this (doesn't matter if the baseline differences are 0 or NaN):
In [17]: df
Out[17]:
building_id upgrade_name energy_use ideal
0 1 a 100.4 -44.7
1 2 a 150.8 14.1
2 1 b 145.1 0.0
3 2 b 136.7 0.0
4 1 c 120.3 -24.8

Define the function counting the difference in energy usage (for
a group of rows for the current building) as follows:
def euDiff(grp):
euBase = grp[grp.upgrade_name == 'b'].energy_use.values[0]
return grp.energy_use - euBase
Then compute the difference (for all buildings), applying it to each group:
df['ideal'] = df.groupby('building_id').apply(euDiff)\
.reset_index(level=0, drop=True)
The result is just as you expected.

thanks for sharing that example data! Made things a lot easier.
I suggest solving this in two parts:
1. Make a dictionary from your dataframe that contains that baseline energy use for each building
2. Apply a lambda function to your dataframe to subtract each energy use value from the baseline value associated with that building.
# set index to building_id, turn into dictionary, filter out energy use
building_baseline = df[df['upgrade_name'] == 'b'].set_index('building_id').to_dict()['energy_use']
# apply lambda to dataframe, use axis=1 to access rows
df['diff'] = df.apply(lambda row: row['energy_use'] - building_baseline[row['building_id']])
You could also write a function to do this. You also don't necessarily need the dictionary, it just makes things easier. If you're curious about these alternative solutions let me know and I can add them for you.

Related

Sum of a groupby dataframe not equal to the sum of a dataframe [duplicate]

I have a DataFrame with many missing values in columns which I wish to groupby:
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
In [4]: df.groupby('b').groups
Out[4]: {'4': [0], '6': [2]}
see that Pandas has dropped the rows with NaN target values. (I want to include these rows!)
Since I need many such operations (many cols have missing values), and use more complicated functions than just medians (typically random forests), I want to avoid writing too complicated pieces of code.
Any suggestions? Should I write a function for this or is there a simple solution?
pandas >= 1.1
From pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False:
pd.__version__
# '1.1.0.dev0+2004.g8d10bfb6f'
# Example from the docs
df
a b c
0 1 2.0 3
1 1 NaN 4
2 2 1.0 3
3 1 2.0 2
# without NA (the default)
df.groupby('b').sum()
a c
b
1.0 2 3
2.0 2 5
# with NA
df.groupby('b', dropna=False).sum()
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
This is mentioned in the Missing Data section of the docs:
NA groups in GroupBy are automatically excluded. This behavior is consistent with R
One workaround is to use a placeholder before doing the groupby (e.g. -1):
In [11]: df.fillna(-1)
Out[11]:
a b
0 1 4
1 2 -1
2 3 6
In [12]: df.fillna(-1).groupby('b').sum()
Out[12]:
a
b
-1 2
4 1
6 3
That said, this feels pretty awful hack... perhaps there should be an option to include NaN in groupby (see this github issue - which uses the same placeholder hack).
However, as described in another answer, "from pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False"
Ancient topic, if someone still stumbles over this--another workaround is to convert via .astype(str) to string before grouping. That will conserve the NaN's.
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
df['b'] = df['b'].astype(str)
df.groupby(['b']).sum()
a
b
4 1
6 3
nan 2
I am not able to add a comment to M. Kiewisch since I do not have enough reputation points (only have 41 but need more than 50 to comment).
Anyway, just want to point out that M. Kiewisch solution does not work as is and may need more tweaking. Consider for example
>>> df = pd.DataFrame({'a': [1, 2, 3, 5], 'b': [4, np.NaN, 6, 4]})
>>> df
a b
0 1 4.0
1 2 NaN
2 3 6.0
3 5 4.0
>>> df.groupby(['b']).sum()
a
b
4.0 6
6.0 3
>>> df.astype(str).groupby(['b']).sum()
a
b
4.0 15
6.0 3
nan 2
which shows that for group b=4.0, the corresponding value is 15 instead of 6. Here it is just concatenating 1 and 5 as strings instead of adding it as numbers.
All answers provided thus far result in potentially dangerous behavior as it is quite possible you select a dummy value that is actually part of the dataset. This is increasingly likely as you create groups with many attributes. Simply put, the approach doesn't always generalize well.
A less hacky solve is to use pd.drop_duplicates() to create a unique index of value combinations each with their own ID, and then group on that id. It is more verbose but does get the job done:
def safe_groupby(df, group_cols, agg_dict):
# set name of group col to unique value
group_id = 'group_id'
while group_id in df.columns:
group_id += 'x'
# get final order of columns
agg_col_order = (group_cols + list(agg_dict.keys()))
# create unique index of grouped values
group_idx = df[group_cols].drop_duplicates()
group_idx[group_id] = np.arange(group_idx.shape[0])
# merge unique index on dataframe
df = df.merge(group_idx, on=group_cols)
# group dataframe on group id and aggregate values
df_agg = df.groupby(group_id, as_index=True)\
.agg(agg_dict)
# merge grouped value index to results of aggregation
df_agg = group_idx.set_index(group_id).join(df_agg)
# rename index
df_agg.index.name = None
# return reordered columns
return df_agg[agg_col_order]
Note that you can now simply do the following:
data_block = [np.tile([None, 'A'], 3),
np.repeat(['B', 'C'], 3),
[1] * (2 * 3)]
col_names = ['col_a', 'col_b', 'value']
test_df = pd.DataFrame(data_block, index=col_names).T
grouped_df = safe_groupby(test_df, ['col_a', 'col_b'],
OrderedDict([('value', 'sum')]))
This will return the successful result without having to worry about overwriting real data that is mistaken as a dummy value.
One small point to Andy Hayden's solution – it doesn't work (anymore?) because np.nan == np.nan yields False, so the replace function doesn't actually do anything.
What worked for me was this:
df['b'] = df['b'].apply(lambda x: x if not np.isnan(x) else -1)
(At least that's the behavior for Pandas 0.19.2. Sorry to add it as a different answer, I do not have enough reputation to comment.)
I answered this already, but some reason the answer was converted to a comment. Nevertheless, this is the most efficient solution:
Not being able to include (and propagate) NaNs in groups is quite aggravating. Citing R is not convincing, as this behavior is not consistent with a lot of other things. Anyway, the dummy hack is also pretty bad. However, the size (includes NaNs) and the count (ignores NaNs) of a group will differ if there are NaNs.
dfgrouped = df.groupby(['b']).a.agg(['sum','size','count'])
dfgrouped['sum'][dfgrouped['size']!=dfgrouped['count']] = None
When these differ, you can set the value back to None for the result of the aggregation function for that group.

Python PANDAS: Groupby Transform Sum Unique

I have a situation where I am creating a pivot table in PANDAS where it makes more sense to calculate the fields separately and just use .pivot_table() for the pivot step. However, I am running into some difficultly trying to calculate the denominator for my percentages. Essentially, due to the data format I appear to need to do something like "groupby transform unique sum" on the second line below (which is where I am stuck):
df['numerator'] = df.groupby(['category1','category2'])['customer_id'].transform('nunique')
df['denominator'] = df.groupby(['category2'])['numerator'].nunique().transform('sum')
df['percentage'] = (df['numerator'] / df['denominator'])
df_pivot = df.pivot_table(index='category1',
columns=['category2'],
values=['numerator','percentage']) \
swaplevel(0,1,axis=1)
df_pivot.loc['total', :] = df_pivot.sum().values
My apologies for not being able to provide any dummy data, but I would appreciate any tips if I have hopefully provided enough detail to reason about.
I believe need lambda function with unique and sum:
df = pd.DataFrame({'numerator':[3,1,1,9,2,2],
'category2':list('aaabbb')})
#print (df)
df['denominator']=df.groupby(['category2'])['numerator'].transform(lambda x: x.unique().sum())
Alternative solution with sets and sums:
df['denominator']=df.groupby(['category2'])['numerator'].transform(lambda x: sum(set(x)))
print (df)
category2 numerator denominator
0 a 3 4
1 a 1 4
2 a 1 4
3 b 9 11
4 b 2 11
5 b 2 11

Pandas groupby aggregate not giving the expected number of rows [duplicate]

I have a DataFrame with many missing values in columns which I wish to groupby:
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
In [4]: df.groupby('b').groups
Out[4]: {'4': [0], '6': [2]}
see that Pandas has dropped the rows with NaN target values. (I want to include these rows!)
Since I need many such operations (many cols have missing values), and use more complicated functions than just medians (typically random forests), I want to avoid writing too complicated pieces of code.
Any suggestions? Should I write a function for this or is there a simple solution?
pandas >= 1.1
From pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False:
pd.__version__
# '1.1.0.dev0+2004.g8d10bfb6f'
# Example from the docs
df
a b c
0 1 2.0 3
1 1 NaN 4
2 2 1.0 3
3 1 2.0 2
# without NA (the default)
df.groupby('b').sum()
a c
b
1.0 2 3
2.0 2 5
# with NA
df.groupby('b', dropna=False).sum()
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
This is mentioned in the Missing Data section of the docs:
NA groups in GroupBy are automatically excluded. This behavior is consistent with R
One workaround is to use a placeholder before doing the groupby (e.g. -1):
In [11]: df.fillna(-1)
Out[11]:
a b
0 1 4
1 2 -1
2 3 6
In [12]: df.fillna(-1).groupby('b').sum()
Out[12]:
a
b
-1 2
4 1
6 3
That said, this feels pretty awful hack... perhaps there should be an option to include NaN in groupby (see this github issue - which uses the same placeholder hack).
However, as described in another answer, "from pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False"
Ancient topic, if someone still stumbles over this--another workaround is to convert via .astype(str) to string before grouping. That will conserve the NaN's.
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
df['b'] = df['b'].astype(str)
df.groupby(['b']).sum()
a
b
4 1
6 3
nan 2
I am not able to add a comment to M. Kiewisch since I do not have enough reputation points (only have 41 but need more than 50 to comment).
Anyway, just want to point out that M. Kiewisch solution does not work as is and may need more tweaking. Consider for example
>>> df = pd.DataFrame({'a': [1, 2, 3, 5], 'b': [4, np.NaN, 6, 4]})
>>> df
a b
0 1 4.0
1 2 NaN
2 3 6.0
3 5 4.0
>>> df.groupby(['b']).sum()
a
b
4.0 6
6.0 3
>>> df.astype(str).groupby(['b']).sum()
a
b
4.0 15
6.0 3
nan 2
which shows that for group b=4.0, the corresponding value is 15 instead of 6. Here it is just concatenating 1 and 5 as strings instead of adding it as numbers.
All answers provided thus far result in potentially dangerous behavior as it is quite possible you select a dummy value that is actually part of the dataset. This is increasingly likely as you create groups with many attributes. Simply put, the approach doesn't always generalize well.
A less hacky solve is to use pd.drop_duplicates() to create a unique index of value combinations each with their own ID, and then group on that id. It is more verbose but does get the job done:
def safe_groupby(df, group_cols, agg_dict):
# set name of group col to unique value
group_id = 'group_id'
while group_id in df.columns:
group_id += 'x'
# get final order of columns
agg_col_order = (group_cols + list(agg_dict.keys()))
# create unique index of grouped values
group_idx = df[group_cols].drop_duplicates()
group_idx[group_id] = np.arange(group_idx.shape[0])
# merge unique index on dataframe
df = df.merge(group_idx, on=group_cols)
# group dataframe on group id and aggregate values
df_agg = df.groupby(group_id, as_index=True)\
.agg(agg_dict)
# merge grouped value index to results of aggregation
df_agg = group_idx.set_index(group_id).join(df_agg)
# rename index
df_agg.index.name = None
# return reordered columns
return df_agg[agg_col_order]
Note that you can now simply do the following:
data_block = [np.tile([None, 'A'], 3),
np.repeat(['B', 'C'], 3),
[1] * (2 * 3)]
col_names = ['col_a', 'col_b', 'value']
test_df = pd.DataFrame(data_block, index=col_names).T
grouped_df = safe_groupby(test_df, ['col_a', 'col_b'],
OrderedDict([('value', 'sum')]))
This will return the successful result without having to worry about overwriting real data that is mistaken as a dummy value.
One small point to Andy Hayden's solution – it doesn't work (anymore?) because np.nan == np.nan yields False, so the replace function doesn't actually do anything.
What worked for me was this:
df['b'] = df['b'].apply(lambda x: x if not np.isnan(x) else -1)
(At least that's the behavior for Pandas 0.19.2. Sorry to add it as a different answer, I do not have enough reputation to comment.)
I answered this already, but some reason the answer was converted to a comment. Nevertheless, this is the most efficient solution:
Not being able to include (and propagate) NaNs in groups is quite aggravating. Citing R is not convincing, as this behavior is not consistent with a lot of other things. Anyway, the dummy hack is also pretty bad. However, the size (includes NaNs) and the count (ignores NaNs) of a group will differ if there are NaNs.
dfgrouped = df.groupby(['b']).a.agg(['sum','size','count'])
dfgrouped['sum'][dfgrouped['size']!=dfgrouped['count']] = None
When these differ, you can set the value back to None for the result of the aggregation function for that group.

Pandas DataFrame Groupby Operations with np.nan in a by= series [duplicate]

I have a DataFrame with many missing values in columns which I wish to groupby:
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
In [4]: df.groupby('b').groups
Out[4]: {'4': [0], '6': [2]}
see that Pandas has dropped the rows with NaN target values. (I want to include these rows!)
Since I need many such operations (many cols have missing values), and use more complicated functions than just medians (typically random forests), I want to avoid writing too complicated pieces of code.
Any suggestions? Should I write a function for this or is there a simple solution?
pandas >= 1.1
From pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False:
pd.__version__
# '1.1.0.dev0+2004.g8d10bfb6f'
# Example from the docs
df
a b c
0 1 2.0 3
1 1 NaN 4
2 2 1.0 3
3 1 2.0 2
# without NA (the default)
df.groupby('b').sum()
a c
b
1.0 2 3
2.0 2 5
# with NA
df.groupby('b', dropna=False).sum()
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
This is mentioned in the Missing Data section of the docs:
NA groups in GroupBy are automatically excluded. This behavior is consistent with R
One workaround is to use a placeholder before doing the groupby (e.g. -1):
In [11]: df.fillna(-1)
Out[11]:
a b
0 1 4
1 2 -1
2 3 6
In [12]: df.fillna(-1).groupby('b').sum()
Out[12]:
a
b
-1 2
4 1
6 3
That said, this feels pretty awful hack... perhaps there should be an option to include NaN in groupby (see this github issue - which uses the same placeholder hack).
However, as described in another answer, "from pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False"
Ancient topic, if someone still stumbles over this--another workaround is to convert via .astype(str) to string before grouping. That will conserve the NaN's.
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
df['b'] = df['b'].astype(str)
df.groupby(['b']).sum()
a
b
4 1
6 3
nan 2
I am not able to add a comment to M. Kiewisch since I do not have enough reputation points (only have 41 but need more than 50 to comment).
Anyway, just want to point out that M. Kiewisch solution does not work as is and may need more tweaking. Consider for example
>>> df = pd.DataFrame({'a': [1, 2, 3, 5], 'b': [4, np.NaN, 6, 4]})
>>> df
a b
0 1 4.0
1 2 NaN
2 3 6.0
3 5 4.0
>>> df.groupby(['b']).sum()
a
b
4.0 6
6.0 3
>>> df.astype(str).groupby(['b']).sum()
a
b
4.0 15
6.0 3
nan 2
which shows that for group b=4.0, the corresponding value is 15 instead of 6. Here it is just concatenating 1 and 5 as strings instead of adding it as numbers.
All answers provided thus far result in potentially dangerous behavior as it is quite possible you select a dummy value that is actually part of the dataset. This is increasingly likely as you create groups with many attributes. Simply put, the approach doesn't always generalize well.
A less hacky solve is to use pd.drop_duplicates() to create a unique index of value combinations each with their own ID, and then group on that id. It is more verbose but does get the job done:
def safe_groupby(df, group_cols, agg_dict):
# set name of group col to unique value
group_id = 'group_id'
while group_id in df.columns:
group_id += 'x'
# get final order of columns
agg_col_order = (group_cols + list(agg_dict.keys()))
# create unique index of grouped values
group_idx = df[group_cols].drop_duplicates()
group_idx[group_id] = np.arange(group_idx.shape[0])
# merge unique index on dataframe
df = df.merge(group_idx, on=group_cols)
# group dataframe on group id and aggregate values
df_agg = df.groupby(group_id, as_index=True)\
.agg(agg_dict)
# merge grouped value index to results of aggregation
df_agg = group_idx.set_index(group_id).join(df_agg)
# rename index
df_agg.index.name = None
# return reordered columns
return df_agg[agg_col_order]
Note that you can now simply do the following:
data_block = [np.tile([None, 'A'], 3),
np.repeat(['B', 'C'], 3),
[1] * (2 * 3)]
col_names = ['col_a', 'col_b', 'value']
test_df = pd.DataFrame(data_block, index=col_names).T
grouped_df = safe_groupby(test_df, ['col_a', 'col_b'],
OrderedDict([('value', 'sum')]))
This will return the successful result without having to worry about overwriting real data that is mistaken as a dummy value.
One small point to Andy Hayden's solution – it doesn't work (anymore?) because np.nan == np.nan yields False, so the replace function doesn't actually do anything.
What worked for me was this:
df['b'] = df['b'].apply(lambda x: x if not np.isnan(x) else -1)
(At least that's the behavior for Pandas 0.19.2. Sorry to add it as a different answer, I do not have enough reputation to comment.)
I answered this already, but some reason the answer was converted to a comment. Nevertheless, this is the most efficient solution:
Not being able to include (and propagate) NaNs in groups is quite aggravating. Citing R is not convincing, as this behavior is not consistent with a lot of other things. Anyway, the dummy hack is also pretty bad. However, the size (includes NaNs) and the count (ignores NaNs) of a group will differ if there are NaNs.
dfgrouped = df.groupby(['b']).a.agg(['sum','size','count'])
dfgrouped['sum'][dfgrouped['size']!=dfgrouped['count']] = None
When these differ, you can set the value back to None for the result of the aggregation function for that group.

pandas GroupBy columns with NaN (missing) values

I have a DataFrame with many missing values in columns which I wish to groupby:
import pandas as pd
import numpy as np
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
In [4]: df.groupby('b').groups
Out[4]: {'4': [0], '6': [2]}
see that Pandas has dropped the rows with NaN target values. (I want to include these rows!)
Since I need many such operations (many cols have missing values), and use more complicated functions than just medians (typically random forests), I want to avoid writing too complicated pieces of code.
Any suggestions? Should I write a function for this or is there a simple solution?
pandas >= 1.1
From pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False:
pd.__version__
# '1.1.0.dev0+2004.g8d10bfb6f'
# Example from the docs
df
a b c
0 1 2.0 3
1 1 NaN 4
2 2 1.0 3
3 1 2.0 2
# without NA (the default)
df.groupby('b').sum()
a c
b
1.0 2 3
2.0 2 5
# with NA
df.groupby('b', dropna=False).sum()
a c
b
1.0 2 3
2.0 2 5
NaN 1 4
This is mentioned in the Missing Data section of the docs:
NA groups in GroupBy are automatically excluded. This behavior is consistent with R
One workaround is to use a placeholder before doing the groupby (e.g. -1):
In [11]: df.fillna(-1)
Out[11]:
a b
0 1 4
1 2 -1
2 3 6
In [12]: df.fillna(-1).groupby('b').sum()
Out[12]:
a
b
-1 2
4 1
6 3
That said, this feels pretty awful hack... perhaps there should be an option to include NaN in groupby (see this github issue - which uses the same placeholder hack).
However, as described in another answer, "from pandas 1.1 you have better control over this behavior, NA values are now allowed in the grouper using dropna=False"
Ancient topic, if someone still stumbles over this--another workaround is to convert via .astype(str) to string before grouping. That will conserve the NaN's.
df = pd.DataFrame({'a': ['1', '2', '3'], 'b': ['4', np.NaN, '6']})
df['b'] = df['b'].astype(str)
df.groupby(['b']).sum()
a
b
4 1
6 3
nan 2
I am not able to add a comment to M. Kiewisch since I do not have enough reputation points (only have 41 but need more than 50 to comment).
Anyway, just want to point out that M. Kiewisch solution does not work as is and may need more tweaking. Consider for example
>>> df = pd.DataFrame({'a': [1, 2, 3, 5], 'b': [4, np.NaN, 6, 4]})
>>> df
a b
0 1 4.0
1 2 NaN
2 3 6.0
3 5 4.0
>>> df.groupby(['b']).sum()
a
b
4.0 6
6.0 3
>>> df.astype(str).groupby(['b']).sum()
a
b
4.0 15
6.0 3
nan 2
which shows that for group b=4.0, the corresponding value is 15 instead of 6. Here it is just concatenating 1 and 5 as strings instead of adding it as numbers.
All answers provided thus far result in potentially dangerous behavior as it is quite possible you select a dummy value that is actually part of the dataset. This is increasingly likely as you create groups with many attributes. Simply put, the approach doesn't always generalize well.
A less hacky solve is to use pd.drop_duplicates() to create a unique index of value combinations each with their own ID, and then group on that id. It is more verbose but does get the job done:
def safe_groupby(df, group_cols, agg_dict):
# set name of group col to unique value
group_id = 'group_id'
while group_id in df.columns:
group_id += 'x'
# get final order of columns
agg_col_order = (group_cols + list(agg_dict.keys()))
# create unique index of grouped values
group_idx = df[group_cols].drop_duplicates()
group_idx[group_id] = np.arange(group_idx.shape[0])
# merge unique index on dataframe
df = df.merge(group_idx, on=group_cols)
# group dataframe on group id and aggregate values
df_agg = df.groupby(group_id, as_index=True)\
.agg(agg_dict)
# merge grouped value index to results of aggregation
df_agg = group_idx.set_index(group_id).join(df_agg)
# rename index
df_agg.index.name = None
# return reordered columns
return df_agg[agg_col_order]
Note that you can now simply do the following:
data_block = [np.tile([None, 'A'], 3),
np.repeat(['B', 'C'], 3),
[1] * (2 * 3)]
col_names = ['col_a', 'col_b', 'value']
test_df = pd.DataFrame(data_block, index=col_names).T
grouped_df = safe_groupby(test_df, ['col_a', 'col_b'],
OrderedDict([('value', 'sum')]))
This will return the successful result without having to worry about overwriting real data that is mistaken as a dummy value.
One small point to Andy Hayden's solution – it doesn't work (anymore?) because np.nan == np.nan yields False, so the replace function doesn't actually do anything.
What worked for me was this:
df['b'] = df['b'].apply(lambda x: x if not np.isnan(x) else -1)
(At least that's the behavior for Pandas 0.19.2. Sorry to add it as a different answer, I do not have enough reputation to comment.)
I answered this already, but some reason the answer was converted to a comment. Nevertheless, this is the most efficient solution:
Not being able to include (and propagate) NaNs in groups is quite aggravating. Citing R is not convincing, as this behavior is not consistent with a lot of other things. Anyway, the dummy hack is also pretty bad. However, the size (includes NaNs) and the count (ignores NaNs) of a group will differ if there are NaNs.
dfgrouped = df.groupby(['b']).a.agg(['sum','size','count'])
dfgrouped['sum'][dfgrouped['size']!=dfgrouped['count']] = None
When these differ, you can set the value back to None for the result of the aggregation function for that group.

Categories