I'm using Django multi-table inheritance:
class Parent():
common_property = ...
class Child1(Parent):
child1_specific_property = ...
class Child2(Parent):
child2_specific_property = ...
And want to expose the list of all items on the same endpoint.
If I make a basic serializer and view for the Parent model, I would just get the common properties (the ones living on that model), but in this case I want to get all child-specific properties for every item. Ideally something like this:
items {
type_1: {
common_property
child1_specific_property
}
type_2: {
common_property
child2_specific_property
}
}
Am I missing any trivial way to do this?
I ended up finding a well performing way to manually do this. A simpler option would be to use libraries like django-polymorphic, as #dirkgroten commented.
Models are defined using multi-table inheritance, as stated in my question:
class Parent():
common_property = ...
class Child1(Parent):
child1_specific_property = ...
class Child2(Parent):
child2_specific_property = ...
On the serializer, we overwrite the to_representation method in order to map every instance to the correct child serializer:
from rest_framework import serializers
class Parent(serializers.BaseSerializer):
def to_representation(self, instance):
try:
return Child_1_Serializer(instance=instance.child1).data
except Child1.DoesNotExist:
pass
try:
return Child_2_Serializer(instance=instance.child2).data
except Child2.DoesNotExist:
pass
return super().to_representation(instance)
On the view we use select_related when defining the queryset, to avoid performing one query for every child when getting the list. More info about select_related can be found on the Queryset API reference.
class ParentViewSet(viewsets.ReadOnlyModelViewSet):
queryset = Parent.objects.all().select_related('child1').select_related('child2')
serializer_class = ParentSerializer
Filter and other stuff can be added to the serializer as you would do with simple models.
Is it possible to build a custom model field/widget combination which displays a value but never writes anything back to the database? I would use this widget exclusively in the admin's forms.
I wrote my own field, which overwrites the formfield() method to declare its own widget class. It displays just fine, but as soon as the 'Save' button is clicked in the admin, I'm getting a validation error:
This field is required.
That makes sense, considering that my widget didn't render out a form field. However, what I'd like to do is basically remove this field from the update process: whenever used in the admin, it just shouldn't be mentioned in the SQL UPDATE at all.
Is that possible?
Here's a sketch of the code I have so far:
class MyWidget(Widget):
def render(self, name, value, attrs=None):
if value is None:
value = ""
else:
# pretty print the contents of value here
return '<table>' + ''.join(rows) + '</table>'
class MyField(JSONField):
def __init__(self, *args, **kwargs):
kwargs['null'] = False
kwargs['default'] = list
super(MyField, self).__init__(*args, **kwargs)
def formfield(self, **kwargs):
defaults = {
'form_class': JSONFormField,
'widget': MyWidget,
}
defaults.update(**kwargs)
return super(MyField, self).formfield(**defaults)
UPDATE 1: The use case is that the field represents an audit log. Internally, it will be written to regularly. The admin however never needs to write to it, it only has to render it out in a very readable format.
I'm not using any other ModelForms in the application, so the admin is the only form-user. I don't want to implement the behavior on the admin classes themselves, because this field will be reused across various models and is always supposed to behave the same way.
There are multiple ways to create a read-only field in the admin pages. Your requirements on the database storage are a bit fuzzy so I go through the options.
You have to register an AdminModel first in admin.py:
from django.contrib import admin
from yourapp.models import YourModel
class YourAdmin(admin.ModelAdmin):
pass
admin.site.register(YourModel, YourAdmin)
Now you can add different behavior to it. For example you can add the list of fields shown in the edit/add page:
class YourAdmin(admin.ModelAdmin):
fields = ['field1', 'field2']
This can be names of the model fields, model properties or model methods. Methods are displayed read-only.
If you want to have one field read-only explicitly add this:
class YourAdmin(admin.ModelAdmin):
fields = ['field1', 'field2']
readonly_fields = ['field2']
Then you have the option to overwrite the display of the field completely by adding a method with the same name. You will not even need a model field/method with that name, then:
class YourAdmin(admin.ModelAdmin):
fields = ['field1', 'field2']
readonly_fields = ['field2']
def field2(self, obj):
return '*** CLASSIFIED *** {}'.format(obj.field2)
With django.utils.safestring.mark_safe you can return HTML code as well.
All other options of the Admin are available, except the widget configuration as it applies to the writable fields only.
I might be a little confused as to what you want but you might want to look into model properties. Here is an example for my current project.
Code inside your model:
class Textbook(models.Model):
#other fields
#property
def NumWishes(self):
return self.wishlist_set.count()
Then you can just display it on the admin page.
class Textbook_table(admin.ModelAdmin):
fields = ["""attributes that are saved in the model"""]
list_display = ("""attributes that are saved in the model""", 'NumWishes'')
So now I can display NumWishes in the admin page but it doesn't need to be created with the model.
Hello in the class admin modify the permission method
#admin.register(my_model)
class My_modelAdmin(admin.ModelAdmin):
def has_delete_permission(self, request, obj=None):
return False
def has_change_permission(self, request, obj=None):
return False
Using Django REST Framework, I want to limit which values can be used in a related field in a creation.
For example consider this example (based on the filtering example on https://web.archive.org/web/20140515203013/http://www.django-rest-framework.org/api-guide/filtering.html, but changed to ListCreateAPIView):
class PurchaseList(generics.ListCreateAPIView)
model = Purchase
serializer_class = PurchaseSerializer
def get_queryset(self):
user = self.request.user
return Purchase.objects.filter(purchaser=user)
In this example, how do I ensure that on creation the purchaser may only be equal to self.request.user, and that this is the only value populated in the dropdown in the form in the browsable API renderer?
I ended up doing something similar to what Khamaileon suggested here. Basically I modified my serializer to peek into the request, which kind of smells wrong, but it gets the job done... Here's how it looks (examplified with the purchase-example):
class PurchaseSerializer(serializers.HyperlinkedModelSerializer):
def get_fields(self, *args, **kwargs):
fields = super(PurchaseSerializer, self).get_fields(*args, **kwargs)
fields['purchaser'].queryset = permitted_objects(self.context['view'].request.user, fields['purchaser'].queryset)
return fields
class Meta:
model = Purchase
permitted_objects is a function which takes a user and a query, and returns a filtered query which only contains objects that the user has permission to link to. This seems to work both for validation and for the browsable API dropdown fields.
Here's how I do it:
class PurchaseList(viewsets.ModelViewSet):
...
def get_serializer(self, *args, **kwargs):
serializer_class = self.get_serializer_class()
context = self.get_serializer_context()
return serializer_class(*args, request_user=self.request.user, context=context, **kwargs)
class PurchaseSerializer(serializers.ModelSerializer):
...
def __init__(self, *args, request_user=None, **kwargs):
super(PurchaseSerializer, self).__init__(*args, **kwargs)
self.fields['user'].queryset = User._default_manager.filter(pk=request_user.pk)
The example link does not seem to be available anymore, but by reading other comments, I assume that you are trying to filter the user relationship to purchases.
If i am correct, then i can say that there is now an official way to do this. Tested with django rest framework 3.10.1.
class UserPKField(serializers.PrimaryKeyRelatedField):
def get_queryset(self):
user = self.context['request'].user
queryset = User.objects.filter(...)
return queryset
class PurchaseSeriaizer(serializers.ModelSerializer):
users = UserPKField(many=True)
class Meta:
model = Purchase
fields = ('id', 'users')
This works as well with the browsable API.
Sources:
https://github.com/encode/django-rest-framework/issues/1985#issuecomment-328366412
https://medium.com/django-rest-framework/limit-related-data-choices-with-django-rest-framework-c54e96f5815e
I disliked the style of having to override the init method for every place where I need to have access to user data or the instance at runtime to limit the queryset. So I opted for this solution.
Here is the code inline.
from rest_framework import serializers
class LimitQuerySetSerializerFieldMixin:
"""
Serializer mixin with a special `get_queryset()` method that lets you pass
a callable for the queryset kwarg. This enables you to limit the queryset
based on data or context available on the serializer at runtime.
"""
def get_queryset(self):
"""
Return the queryset for a related field. If the queryset is a callable,
it will be called with one argument which is the field instance, and
should return a queryset or model manager.
"""
# noinspection PyUnresolvedReferences
queryset = self.queryset
if hasattr(queryset, '__call__'):
queryset = queryset(self)
if isinstance(queryset, (QuerySet, Manager)):
# Ensure queryset is re-evaluated whenever used.
# Note that actually a `Manager` class may also be used as the
# queryset argument. This occurs on ModelSerializer fields,
# as it allows us to generate a more expressive 'repr' output
# for the field.
# Eg: 'MyRelationship(queryset=ExampleModel.objects.all())'
queryset = queryset.all()
return queryset
class DynamicQuersetPrimaryKeyRelatedField(LimitQuerySetSerializerFieldMixin, serializers.PrimaryKeyRelatedField):
"""Evaluates callable queryset at runtime."""
pass
class MyModelSerializer(serializers.ModelSerializer):
"""
MyModel serializer with a primary key related field to 'MyRelatedModel'.
"""
def get_my_limited_queryset(self):
root = self.root
if root.instance is None:
return MyRelatedModel.objects.none()
return root.instance.related_set.all()
my_related_model = DynamicQuersetPrimaryKeyRelatedField(queryset=get_my_limited_queryset)
class Meta:
model = MyModel
The only drawback with this is that you would need to explicitly set the related serializer field instead of using the automatic field discovery provided by ModelSerializer. i would however expect something like this to be in rest_framework by default.
In django rest framework 3.0 the get_fields method was removed. But in a similar way you can do this in the init function of the serializer:
class PurchaseSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Purchase
def __init__(self, *args, **kwargs):
super(PurchaseSerializer, self).__init__(*args, **kwargs)
if 'request' in self.context:
self.fields['purchaser'].queryset = permitted_objects(self.context['view'].request.user, fields['purchaser'].queryset)
I added the if check since if you use PurchaseSerializer as field in another serializer on get methods, the request will not be passed to the context.
First to make sure you only allow "self.request.user" when you have an incoming http POST/PUT (this assumes the property on your serializer and model is named "user" literally)
def validate_user(self, attrs, source):
posted_user = attrs.get(source, None)
if posted_user:
raise serializers.ValidationError("invalid post data")
else:
user = self.context['request']._request.user
if not user:
raise serializers.ValidationError("invalid post data")
attrs[source] = user
return attrs
By adding the above to your model serializer you ensure that ONLY the request.user is inserted into your database.
2) -about your filter above (filter purchaser=user) I would actually recommend using a custom global filter (to ensure this is filtered globally). I do something for a software as a service app of my own and it helps to ensure each http request is filtered down (including an http 404 when someone tries to lookup a "object" they don't have access to see in the first place)
I recently patched this in the master branch so both list and singular views will filter this
https://github.com/tomchristie/django-rest-framework/commit/1a8f07def8094a1e34a656d83fc7bdba0efff184
3) - about the api renderer - are you having your customers use this directly? if not I would say avoid it. If you need this it might be possible to add a custom serlializer that would help to limit the input on the front-end
Upon request # gabn88, as you may know by now, with DRF 3.0 and above, there is no easy solution.
Even IF you do manage to figure out a solution, it won't be pretty and will most likely fail on subsequent versions of DRF as it will override a bunch of DRF source which will have changed by then.
I forget the exact implementation I used, but the idea is to create 2 fields on the serializer, one your normal serializer field (lets say PrimaryKeyRelatedField etc...), and another field a serializer method field, which the results will be swapped under certain cases (such as based on the request, the request user, or whatever). This would be done on the serializers constructor (ie: init)
Your serializer method field will return a custom query that you want.
You will pop and/or swap these fields results, so that the results of your serializer method field will be assigned to the normal/default serializer field (PrimaryKeyRelatedField etc...) accordingly. That way you always deal with that one key (your default field) while the other key remains transparent within your application.
Along with this info, all you really need is to modify this: http://www.django-rest-framework.org/api-guide/serializers/#dynamically-modifying-fields
I wrote a custom CustomQueryHyperlinkedRelatedField class to generalize this behavior:
class CustomQueryHyperlinkedRelatedField(serializers.HyperlinkedRelatedField):
def __init__(self, view_name=None, **kwargs):
self.custom_query = kwargs.pop('custom_query', None)
super(CustomQueryHyperlinkedRelatedField, self).__init__(view_name, **kwargs)
def get_queryset(self):
if self.custom_query and callable(self.custom_query):
qry = self.custom_query()(self)
else:
qry = super(CustomQueryHyperlinkedRelatedField, self).get_queryset()
return qry
#property
def choices(self):
qry = self.get_queryset()
return OrderedDict([
(
six.text_type(self.to_representation(item)),
six.text_type(item)
)
for item in qry
])
Usage:
class MySerializer(serializers.HyperlinkedModelSerializer):
....
somefield = CustomQueryHyperlinkedRelatedField(view_name='someview-detail',
queryset=SomeModel.objects.none(),
custom_query=lambda: MySerializer.some_custom_query)
#staticmethod
def some_custom_query(field):
return SomeModel.objects.filter(somefield=field.context['request'].user.email)
...
I did the following:
class MyModelSerializer(serializers.ModelSerializer):
myForeignKeyFieldName = MyForeignModel.objects.all()
def get_fields(self, *args, **kwargs):
fields = super(MyModelSerializer, self).get_fields()
qs = MyModel.objects.filter(room=self.instance.id)
fields['myForeignKeyFieldName'].queryset = qs
return fields
I looked for a solution where I can set the queryset upon creation of the field and don't have to add a separate field class. This is what I came up with:
class PurchaseSerializer(serializers.HyperlinkedModelSerializer):
class Meta:
model = Purchase
fields = ["purchaser"]
def get_purchaser_queryset(self):
user = self.context["request"].user
return Purchase.objects.filter(purchaser=user)
def get_extra_kwargs(self):
kwargs = super().get_extra_kwargs()
kwargs["purchaser"] = {"queryset": self.get_purchaser_queryset()}
return kwargs
The main issue for tracking suggestions regarding this seems to be drf#1985.
Here's a re-usable generic serializer field that can be used instead of defining a custom field for every use case.
class DynamicPrimaryKeyRelatedField(serializers.PrimaryKeyRelatedField):
"""A PrimaryKeyRelatedField with ability to set queryset at runtime.
Pass a function in the `queryset_fn` kwarg. It will be passed the serializer `context`.
The function should return a queryset.
"""
def __init__(self, queryset_fn=None, **kwargs):
assert queryset_fn is not None, "The `queryset_fn` argument is required."
self.queryset_fn = queryset_fn
super().__init__(**kwargs)
def get_queryset(self):
return self.queryset_fn(context=self.context)
Usage:
class MySerializer(serializers.ModelSerializer):
my_models = DynamicPrimaryKeyRelatedField(
queryset_fn=lambda context: MyModel.objects.visible_to_user(context["request"].user)
)
# ...
Same works for serializers.SlugRelatedField.
I got a model Layout in my Django app with the following fields:
meta_layout - ForeignKey on model MetaLayout
name - CharField
edited - DateTimeField
is_active - BooleanField
And I have two views using this model - one called NewLayout and other EditLayout each subclassing standard CreateView and UpdateView accordingly. In EditLayout view I want to use some special form that looks the same as form used in NewLayout (which is simply plain ModelForm for this model) but has meta_layout select field displayed with attribute disabled="disabled" (e.d. user can choose meta_layout for each Layout only once - while creating it). Ok, I can create custom ModelForm where widget for meta_layout field has the desired attribute, but the problem is actually that when such attribute set on form field it will not send any values with request - so my validation fails trying to check value for this field and select element does not support "readonly" attribute which will would be just fine here.
I found some really ugly hack to workaround this:
#Here is my Form:
class LayoutEditForm(forms.ModelForm):
meta_layout = forms.ModelChoiceField(
queryset=MetaLayout.objects.all(),
widget=forms.Select(attrs=dict(disabled='disabled')),
empty_label=None,
required=False) # if required=True validation will fail
# because value is not supplied in POST
class Meta:
fields = ('meta_layout', 'name', 'is_active')
model = Layout
class EditLayout(UpdateView):
...
# And one modified method from my View-class
def get_form_kwargs(self):
kwargs = super(EditLayout, self).get_form_kwargs()
# actually POST parameters
if kwargs.has_key('data'):
# can't change QueryDict itself - it's immutable
data = dict(self.request.POST.items())
# emulate POST params from ModelChoiceField
data['meta_layout'] = u'%d' % self.object.meta_layout.id
kwargs['data'] = data
return kwargs
But I believe that it's non-Django, non-Pythonic and not a good-programming-style-at-all of doing such simple thing. Can you suggest any better solution?
Edit:
Oh, I found much less ugly solution: added this in my form class:
def clean_meta_layout(self):
return self.instance.meta_layout
But I still open for suggestions) - may I missed something?
I want create a ModelForm class where model is a parameter passed from the view.(i want a dynamic form, so i can create all forms using the same class ObjectForm by just changing model value in Meta) :
class ObjectForm(ModelForm):
model_name = None
def __init__(self, *args, **kwargs):
model_name = kwargs.pop('model_name ')
super(ModelForm, self).__init__(*args, **kwargs)
class Meta:
model = models.get_model('core', model_name )
exclude = ("societe")
An error is occured and say that model_name is not a global field.
Please help me on this problem.
your problem is that the class (and the Meta class) are processed at compile time, not when you instantiate your ObjectForm. at compile time, the model name is unknown. creating classes dynamically is possible, but a bit more complicated. as luck has it, the django devs have done the hard work for you:
>>> from django.forms.models import modelform_factory
>>> modelform_factory(MyModel)
<class 'django.forms.models.MyModelForm'>
update
So you want something like
def my_view(request):
# ...
MyForm = modelform_factory(MyModel)
form = MyForm(request.POST) # or however you would use a 'regular' form
Well, your basic error is that you are accessing model_name as a local variable, rather than as a model instance. That's fairly basic Python.
But even once you've fixed this, it still wouldn't work. The Meta class is evaluated at define time, by the form metaclass, rather than at runtime. You need to call forms.models.modelform_factory - you can pass in your modelform subclass to the factory, if you want to define some standard validation and/or fields.
form_class = modelform_factory(MyModel, form=MyModelForm)