Tkinter: Label lines of triangle (create_polygon) - python

I have this python function:
def draw(a, b, c):
A = (0, 0)
B = (c, 0)
hc = (2 * (a**2*b**2 + b**2*c**2 + c**2*a**2) - (a**4 + b**4 + c**4))**0.5 / (2.*c)
dx = (b**2 - hc**2)**0.5
if abs((c - dx)**2 + hc**2 - a**2) > 0.01: dx = -dx
C = (dx, hc)
coords = [float((x + 1) * 75) for x in A+B+C]
canvas.delete("all")
canvas.create_polygon(*coords, outline='black', fill='white')
I can enter a, b and c and a triangle is drawed by Tkinter.
So it looks like this:
The problem
Now I want to label the lines a, b and c. Like this:
And the label should always be in the middle of the lines.
How can I do this?
I looked at a lot of posts, but none is for dynamically generated triangles.

This is a more a math problem than a Tkinter question. You have the vertices coordinates, so you can compute the coordinates of middle of each edge. However, this would put the text on the edge instead of a bit aside. To offset a bit the text, you can do a barycenter between the middle of the edge and the opposite vertex, giving the x coordinates of the 'c' label:
xc = (xA + xB)/2 * (1 - w) + xC
If you take a slightly negative weight w, then the text will be slightly outside the edge, however, the offset from the edge is relative to the distance between the middle of the edge and the vertex. To avoid this, we need to divide the wanted absolute offset by this distance:
def text_coords(x1, y1, x2, y2, offset):
d = sqrt((x1-x2)**2 + (y1-y2)**2)
w = - offset / d
xt = (1 - w) * x1 + w * x2
yt = (1 - w) * y1 + w * y2
return xt, yt
(x1, y1) are the coordinates of the middle of the edge and (x2, y2) the coordinates of the opposite vertex. Then we use this function in draw() to add the edge labels:
def draw(a, b, c):
A = (0, 0)
B = (c, 0)
hc = (2 * (a**2*b**2 + b**2*c**2 + c**2*a**2) - (a**4 + b**4 + c**4))**0.5 / (2.*c)
dx = (b**2 - hc**2)**0.5
if abs((c - dx)**2 + hc**2 - a**2) > 0.01: dx = -dx
C = (dx, hc)
coords = [float((x + 1) * 75) for x in A+B+C]
canvas.delete("all")
canvas.create_polygon(*coords, outline='black', fill='white')
xA, yA = coords[:2]
xB, yB = coords[2:4]
xC, yC = coords[4:]
xAB, yAB = (xA + xB)/2, (yA + yB)/2
xAC, yAC = (xA + xC)/2, (yA + yC)/2
xCB, yCB = (xC + xB)/2, (yC + yB)/2
dc = distance(xAB, yAB, xC, yC)
db = distance(xAC, yAC, xB, yB)
da = distance(xCB, yCB, xA, yA)
xc, yc = text_coords(xAB, yAB, xC, yC, 10)
xb, yb = text_coords(xAC, yAC, xB, yB, 10)
xa, ya = text_coords(xCB, yCB, xA, yA, 10)
canvas.create_text(xc, yc, text='c')
canvas.create_text(xa, ya, text='a')
canvas.create_text(xb, yb, text='b')
For instance, draw(3, 4, 5) gives:

Related

Somthing wrong with my python implementation of phong shading with only numpy and PIL

Recently, I tried to implement Phong shading with only NumPy and PIL using python. But there is some black-and-white noise in the rendered image. Can you point out what I should do to improve my code to fix the issue?
The resulting image is as follows:
The mesh model could be downloaded from https://github.com/google/nerfactor/blob/main/third_party/xiuminglib/data/models/teapot.obj.
You could try the code below by yourself.
import random
import numpy as np
import trimesh
from meshio import load_obj
from PIL import Image
def phong_shading(light_direction, view_direction, normal, material):
# Calculate the ambient color
ambient_color = material.ambient_color
# Calculate the diffuse color
diffuse_coefficient = max(np.dot(normal, light_direction), 0)
diffuse_color = diffuse_coefficient * material.diffuse_color
# Calculate the specular color
halfway_direction = normalize(light_direction + view_direction)
specular_coefficient = max(np.dot(normal, halfway_direction), 0)
specular_coefficient = specular_coefficient ** material.shininess
specular_color = specular_coefficient * material.specular_color
# Combine the ambient, diffuse and specular colors
final_color = specular_color + diffuse_color + ambient_color
return final_color
def normalize(v, axis=-1, epsilon=1e-12):
square_sum = np.sum(np.square(v), axis, keepdims=True)
v_inv_norm = 1. / np.sqrt(np.maximum(square_sum, epsilon))
return v * v_inv_norm
def rasterize_triangle(vertices):
# calculate the bounding box of the triangle
min_x = int(min(vertices[:, 0]))
max_x = int(max(vertices[:, 0])) + 1
min_y = int(min(vertices[:, 1]))
max_y = int(max(vertices[:, 1])) + 1
for x in range(min_x, max_x):
for y in range(min_y, max_y):
if point_in_triangle(vertices, x, y):
yield (x, y)
def is_point_in_triangle(vertices, x, y):
v0, v1, v2 = vertices
A = 1/2 * (-v1[1]*v2[0] + v0[1]*(-v1[0] + v2[0]) +
v0[0]*(v1[1] - v2[1]) + v1[0]*v2[1])
s = v0[1]*v2[0] - v0[0]*v2[1] + (v2[1] - v0[1])*x + (v0[0] - v2[0])*y
t = v0[0]*v1[1] - v0[1]*v1[0] + (v0[1] - v1[1])*x + (v1[0] - v0[0])*y
return 0 <= s and s <= A and 0 <= t and t <= A and (s + t) <= A
def point_in_triangle(vertices, x, y):
# x, y = point
v0, v1, v2 = vertices
x1, y1, x2, y2, x3, y3 = v0[0], v0[1], v1[0], v1[1], v2[0], v2[1]
# Compute barycentric coordinates
denom = (y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3)
l1 = ((y2 - y3) * (x - x3) + (x3 - x2) * (y - y3)) / denom
l2 = ((y3 - y1) * (x - x3) + (x1 - x3) * (y - y3)) / denom
l3 = 1 - l1 - l2
# Check if point is inside the triangle
return 0 <= l1 <= 1 and 0 <= l2 <= 1 and 0 <= l3 <= 1
def world_to_camera_coordinates(vertices, camera_position):
''' convert from world coordinate to camera_coordinate.
this function has the assumption that the camera is looking at the origin.
and the y axis of the camera is pointing down to the ground.
Args:
vertices (np.array): the vertices of the mesh in world coordinate.
Returns:
the vertices in camera coordinate.
'''
camera_z_axis = -normalize(camera_position) # (3,)
world_z_axis = np.array([0, 0, 1])
project_y_on_z = -(-world_z_axis # camera_z_axis.T) * camera_z_axis
camera_y_axis = project_y_on_z - world_z_axis # (3,)
camera_x_axis = np.cross(camera_y_axis, camera_z_axis) # (3,)
camera_matrix = np.stack([camera_x_axis, camera_y_axis, camera_z_axis])
return (camera_matrix # (vertices - camera_position).T).T
def camera_to_screen_coordinates(vertices, width, height, fov, near_clip, far_clip):
aspect_ratio = width / height
# Create the perspective projection matrix
projection_matrix = perspective(fov, aspect_ratio, near_clip, far_clip)
# create a matrix to store the transformed vertices
transformed_vertices = np.ones((len(vertices), 4))
transformed_vertices[:, :3] = vertices
# multiply each vertex by the projection matrix
transformed_vertices = np.matmul(transformed_vertices, projection_matrix.T)
# Convert from homogeneous coordinates to screen coordinates
transformed_vertices[:, 0] = (
transformed_vertices[:, 0] / transformed_vertices[:, 3]) * (width / 2) + (width / 2)
transformed_vertices[:, 1] = (
transformed_vertices[:, 1] / transformed_vertices[:, 3]) * (height / 2) + (height / 2)
return transformed_vertices[:, :2]
def perspective(fov, aspect_ratio, near_clip, far_clip):
fov = np.radians(fov)
t = np.tan(fov / 2) * near_clip
b = -t
r = t * aspect_ratio
l = -r
projection_matrix = np.array(
[
[(2 * near_clip) / (r - l), 0, (r + l) / (r - l), 0],
[0, (2 * near_clip) / (t - b), (t + b) / (t - b), 0],
[0, 0, -(far_clip + near_clip) / (far_clip - near_clip),
-(2 * far_clip * near_clip) / (far_clip - near_clip)],
[0, 0, -1, 0]
]
)
return projection_matrix
def transform_to_screen_space(vertices, camera_position, img_width, img_height):
assert img_width == img_height, 'The image must be square'
# Transform the vertices to camera space
camera_vertices = world_to_camera_coordinates(vertices, camera_position)
# Transform the vertices to perspective space
fov = 45
focal = img_width / (2 * np.tan(np.radians(fov / 2)))
screen_vertices = camera_vertices / camera_vertices[:, 2].reshape(-1, 1)
screen_vertices[:, :2] = screen_vertices[:, :2] * focal + img_height / 2
return screen_vertices, camera_vertices
def area_triangle(v1, v2, v3):
''' compute the area of a triangle.
'''
return 0.5 * np.linalg.norm(np.cross(v2 - v1, v3 - v1))
def compute_vertices_normals(vertices, faces):
''' compute the normal vector for each vertex.
Args:
vertices (np.array): the vertices of the mesh in world coordinate.
faces
'''
# method with trimesh
# '''
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, processed=False)
vertices_normals = normalize(mesh.vertex_normals, epsilon=1e-160)
# '''
# method with numpy
'''
vertices_normals = np.zeros_like(vertices).astype(np.float128)
v1 = vertices[faces][:, 0]
v2 = vertices[faces][:, 1]
v3 = vertices[faces][:, 2]
normal_before_normalization = np.cross(v2 - v1, v3 - v1)
per_face_area = 0.5 * np.linalg.norm(
normal_before_normalization, axis=-1, keepdims=True
)
per_face_area_enlarged = per_face_area * \
per_face_area.shape[0] / per_face_area.sum()
per_face_normal = normalize(normal_before_normalization, epsilon=1e-160)
weighted_normal = per_face_normal * per_face_area_enlarged
weighted_normal_boardcast = np.reshape(
np.repeat(np.expand_dims(weighted_normal, 1), 3, axis=1), (-1, 3)
)
np.add.at(vertices_normals, faces.ravel(), weighted_normal_boardcast)
vertices_normals = normalize(vertices_normals, epsilon=1e-160)
'''
return vertices_normals
def barycentric_coords(triangle_vertices, x, y):
x1, y1, z1 = triangle_vertices[0]
x2, y2, z2 = triangle_vertices[1]
x3, y3, z3 = triangle_vertices[2]
# calculate barycentric coordinates
lambda1 = ((y2 - y3)*(x - x3) + (x3 - x2)*(y - y3)) / \
((y2 - y3)*(x1 - x3) + (x3 - x2)*(y1 - y3))
lambda2 = ((y3 - y1)*(x - x3) + (x1 - x3)*(y - y3)) / \
((y2 - y3)*(x1 - x3) + (x3 - x2)*(y1 - y3))
lambda3 = 1 - lambda1 - lambda2
return np.array([lambda1, lambda2, lambda3]).reshape(-1, 1)
def render_phong(vertices, faces, camera_position, light_position, width, height, material):
# compute the normal vector for each vertex
vertices_normals = compute_vertices_normals(vertices, faces)
# Transform the vertices to screen space
transformed_vertices, camera_vertices = transform_to_screen_space(
vertices, camera_position, width, height)
# Create an empty image
img = Image.new('RGB', (width, height), (0, 0, 0))
pixels = img.load()
pixel_depth = np.ones((width, height)) * np.inf
for face in faces:
v1 = transformed_vertices[face[0]]
v2 = transformed_vertices[face[1]]
v3 = transformed_vertices[face[2]]
if area_triangle(v1, v2, v3) == 0:
continue
# calculate the normal vector for the face
normal = vertices_normals[face]
# calculate the light and view direction vectors for each vertex
light_direction = normalize(light_position - vertices[face])
view_direction = normalize(camera_position - vertices[face])
# Rasterize the triangle
for x, y in rasterize_triangle(transformed_vertices[face]):
for i in range(20):
tubx = random.uniform(0, 1.0) + x
tuby = random.uniform(0, 1.0) + y
# calculate the barycentric coordinates of the pixel
barycentric = barycentric_coords(
transformed_vertices[face], tubx, tuby)
if np.min(barycentric) < 0: # Check if pixel is outside of the triangle
continue
# Interpolate the vertex attributes to get per-pixel attributes
interpolated_normal = (barycentric * normal).sum(axis=0)
interpolated_light_direction = (
barycentric * light_direction
).sum(axis=0)
interpolated_view_direction = (
barycentric * view_direction
).sum(axis=0)
interpolated_camera_vertices = (
barycentric * camera_vertices[face]).sum(axis=0)
# Calculate the color of the pixel
color = phong_shading(interpolated_light_direction,
interpolated_view_direction, interpolated_normal, material)
if x >= 0 and x < width and y >= 0 and y < height:
oldr, oldg, oldb = pixels[x, y]
newr, newg, newb = (np.clip(color, 0, 1)
* 255).astype(np.uint8)
# newr = newr if newr > oldr else oldr
# newg = newg if newg > oldg else oldg
# newb = newb if newb > oldb else oldb
depth = interpolated_camera_vertices[2]
if depth < pixel_depth[x, y]:
# print(depth, pixel_depth[x, y])
pixel_depth[x, y] = depth
pixels[x, y] = (newr, newg, newb)
# if x < 453 and x > 415 and y > 255 and y < 265:
# img.save(f"debug/f_{face}_x_{x}_y_{y}_d_{depth}.jpg")
return img
class PhongShader():
def __init__(self, light_position, camera_position, image_width=512, image_height=512):
# assert the camera position is not along z axis.
self.light_position = light_position
self.camera_position = camera_position
self.image_width = image_width
self.image_height = image_height
def render(self, vertices, faces, material):
return render_phong(vertices, faces, self.camera_position, self.light_position, self.image_width, self.image_height, material)
class Material():
def __init__(self) -> None:
self.ambient_color = np.array([0.1, 0.1, 0.1])
self.diffuse_color = np.array([1., 0.0, 0.5])
self.specular_color = np.array([0.5, 0.5, 0.5])
self.shininess = 50
def main():
# load the mesh
mesh = trimesh.load('teapot.obj')
vertices, faces = mesh.vertices, mesh.faces
# create a shader
shader = PhongShader(light_position=np.array(
[8, 0, 0]), camera_position=np.array([8, 0, 0]))
# render the image
material = Material()
img = shader.render(vertices, faces, material)
img.save("output.jpg")
if __name__ == '__main__':
main()
The possible reason could be discreazation in coding. But I am not sure how to fix it.

Meshgrid/lattice/matrix of an ellipse area

I'm likely using the wrong terms but seeking some help.
I would like to generate an array of x,y values for a grid that sits within the perimeter of an ellipse shape.
There is code here: http://people.sc.fsu.edu/~jburkardt/c_src/ellipse_grid/ellipse_grid.html to accomplish this in Python.
However, for my purpose the ellipses have been rotated to a certain degree. The current equation does not account for this and need some help to account for this transformation, unsure how to change the code to do this?
I've been looking into np.meshrid function as well, so if there are better ways to do this, please say.
Many thanks.
Given an ellipse in the Euclidean plane in its most general form as quadratic curve in the form
f(x,y) = a x^2 + 2b x y + c y^2 + 2d x + 2f y + g,
one can compute the center (x0,y0) by
((cd-bf)/(b^2-ac), (af-bd)/(b^2-ac))
(see equations 19 and 20 at Ellipse on MathWorld). The length of the major axis a_m can be computed by equation 21 on the same page.
Now it suffices to find all grid points (x,y) inside the circle with center (x0,y0) and radius a_m with
sign(f(x,y)) = sign(f(x0,y0)).
To generate lattice points inside ellipse, we have to know where horizontal line intersects that ellipse.
Equation of zero-centered ellipse, rotated by angle Theta:
x = a * Cos(t) * Cos(theta) - b * Sin(t) * Sin(theta)
y = a * Cos(t) * Sin(theta) + b * Sin(t) * Cos(theta)
To simplify calculations, we can introduce pseudoangle Fi and magnitude M (constants for given ellipse)
Fi = atan2(a * Sin(theta), b * Cos(theta))
M = Sqrt((a * Sin(theta))^2 + (b * Cos(theta))^2)
so
y = M * Sin(Fi) * Cos(t) + M * Cos(Fi) * Sin(t)
y/M = Sin(Fi) * Cos(t) + Cos(Fi) * Sin(t)
y/M = Sin(Fi + t)
and solution for given horizontal line at position y are
Fi + t = ArcSin( y / M)
Fi + t = Pi - ArcSin( y / M)
t1 = ArcSin( y / M) - Fi //note two values
t2 = Pi - ArcSin( y / M) - Fi
Substitute both values of t in the first equation and get values of X for given Y, and generate one lattice point sequence
To get top and bottom coordinates, differentiate y
y' = M * Cos(Fi + t) = 0
th = Pi/2 - Fi
tl = -Pi/2 - Fi
find corresponding y's and use them as starting and ending Y-coordinates for lines.
import math
def ellipselattice(cx, cy, a, b, theta):
res = []
at = a * math.sin(theta)
bt = b * math.cos(theta)
Fi = math.atan2(at, bt)
M = math.hypot(at, bt)
ta = math.pi/2 - Fi
tb = -math.pi/2 - Fi
y0 = at * math.cos(ta) + bt *math.sin(ta)
y1 = at * math.cos(tb) + bt *math.sin(tb)
y0, y1 = math.ceil(cy + min(y0, y1)), math.floor(cy + max(y0, y1))
for y in range(y0, y1+1):
t1 = math.asin(y / M) - Fi
t2 = math.pi - math.asin(y / M) - Fi
x1 = a * math.cos(t1) * math.cos(theta) - b* math.sin(t1) * math.sin(theta)
x2 = a * math.cos(t2) * math.cos(theta) - b* math.sin(t2) * math.sin(theta)
x1, x2 = math.ceil(cx + min(x1, x2)), math.floor(cx + max(x1, x2))
line = [(x, y) for x in range(x1, x2 + 1)]
res.append(line)
return res
print(ellipselattice(0, 0, 4, 3, math.pi / 4))

python: interpolation: finding a rectangle that minimally include a point

I am implementing a bilinear interpolation as in How to perform bilinear interpolation in Python
I have a sorted list of points that are the vertexes of my regular grid.
[[x1,y1,z1],[x2,y2,z2],[x3,y3,z3],[x4,y4,z4],[x5,y5,z5],...]
I want to interpolate linearly on the point (x,y). I have written the following code
def f(x, y, points):
for i in range(len(points)-1, -1, -1):
if (x>points[i][0])and(y>points[i][1]):
break
try:
pp = [points[i], points[i+1]]
except IndexError:
pp = [points[i], points[i-1]]
for j in range(len(points)):
if (x<points[j][0])and(y<points[j][1]):
break
pp.append(points[j-1])
pp.append(points[j])
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = pp
return (q11 * (x2 - x) * (y2 - y) +
q21 * (x - x1) * (y2 - y) +
q12 * (x2 - x) * (y - y1) +
q22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))
but this code doesn't work on the boundaries. I would think this is common problem in interpolation, so I was wondering how I should select the smallest rectangle of points around (x,y) from my regular grid.
Your grid is regular, so you don't need to traverse all points to determine cell indexes. Just divide coordinates by cell size and round result to smaller integer. 1D example: if first point has coordinate 1 and cell size is 2, point 6 lies at int (6-1)/2 = 2-nd interval
Restrict result index to ensure that it is in grid limits - so points outside grid will use border cells
i = int((x - points[i][0]) / xsize) #not sure what is the best way in Python
if (i < 0):
i = 0
if (i >= XCount):
i = XCount - 1
// same for j and y-coordinate
Following the suggestions in the comments I have written the following code:
def f(x, y, points):
points = sorted(points)
xunique = np.unique([point[0] for point in points])
yunique = np.unique([point[1] for point in points])
xmax = np.max(xunique)
ymax = np.max(yunique)
deltax = xunique[1] - xunique[0]
deltay = yunique[1] - yunique[0]
x0 = xunique[0]
y0 = yunique[0]
ni = len(xunique)
nj = len(yunique)
i1 = int(np.floor((x-x0)/deltax))
if i1 == ni:
i1 = i1 - 1
i2 = int(np.ceil((x-x0)/deltax))
if i2 == ni:
i2 = i2 - 1
j1 = int(np.floor((y-y0)/deltay))
if j1 == nj:
j1 = j1 - 1
j2 = int(np.ceil((y-y0)/deltay))
if j2 == ni:
j2 = j2 - 1
pp=[]
if (i1==i2):
if i1>0:
i1=i1-1
else:
i2=i2+1
if (j1==j2):
if j1>0:
j1=j1-1
else:
j2=j2+1
pp=[points[i1 * nj + j1], points[i1 * nj + j2],
points[i2 * nj + j1], points[i2 * nj + j2]]
(x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = pp
return (q11 * (x2 - x) * (y2 - y) +
q21 * (x - x1) * (y2 - y) +
q12 * (x2 - x) * (y - y1) +
q22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))

algorithm to create a circle in a 2D array EDIT: diamond would be okay aswel

I have a 2D in python that represents a tile map, each element in the array is either a 1 or 0, 0 representing land and 1 representing water. I need an algorithm that takes 2 random coordinates to be the center of the circle, a variable for the radius (max 5) and replace the necessary elements in the array to form a full circle.
x = random.randint(0,MAPWIDTH)
y = random.randint(0,MAPHEIGHT)
rad = random.randint(0,5)
tileMap[x][y] = 1 #this creates the center of the circle
how would I do this?
As previously said, you can use the definition of a circle, like so:
import math
def dist(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
def make_circle(tiles, cx, cy, r):
for x in range(cx - r, cx + r):
for y in range(cy - r, cy + r):
if dist(cx, cy, x, y) <= r:
tiles[x][y] = 1
width = 50
height = 50
cx = width // 2
cy = height // 2
r = 23
tiles = [[0 for _ in range(height)] for _ in range(width)]
make_circle(tiles, cx, cy, r)
print("\n".join("".join(map(str, i)) for i in tiles))
This outputs
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000001000000000000000000000000
00000000000000000001111111111111000000000000000000
00000000000000001111111111111111111000000000000000
00000000000000111111111111111111111110000000000000
00000000000001111111111111111111111111000000000000
00000000000111111111111111111111111111110000000000
00000000001111111111111111111111111111111000000000
00000000011111111111111111111111111111111100000000
00000000111111111111111111111111111111111110000000
00000001111111111111111111111111111111111111000000
00000001111111111111111111111111111111111111000000
00000011111111111111111111111111111111111111100000
00000111111111111111111111111111111111111111110000
00000111111111111111111111111111111111111111110000
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00111111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00011111111111111111111111111111111111111111111100
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00001111111111111111111111111111111111111111111000
00000111111111111111111111111111111111111111110000
00000111111111111111111111111111111111111111110000
00000011111111111111111111111111111111111111100000
00000001111111111111111111111111111111111111000000
00000001111111111111111111111111111111111111000000
00000000111111111111111111111111111111111110000000
00000000011111111111111111111111111111111100000000
00000000001111111111111111111111111111111000000000
00000000000111111111111111111111111111110000000000
00000000000001111111111111111111111111000000000000
00000000000000111111111111111111111110000000000000
00000000000000001111111111111111111000000000000000
00000000000000000001111111111111000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
Note that I deliberately used a rather large array and radius - this results in being able to actually see the circle a bit better. For some radius around 5, it would probably be pixelated beyond belief.
You would have to set a coordinate to one if
((x – h)(x - h)) + ((y – k)(y - k)) = r * r is true.
h is the centre x coordinate and k is the centre y coordinate.
Inspired by Izaak van Dongen, just re-worked a bit:
from pylab import imshow, show, get_cmap
from numpy import random
import math
def dist(x1, y1, x2, y2):
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
def make_circle(tiles, cx, cy, r):
for x in range(cx - r, cx + r):
for y in range(cy - r, cy + r):
if dist(cx, cy, x, y) < r:
tiles[x][y] = 1
return tiles
def generate_image_mask(iw,ih,cx,cy,cr):
mask = [[0 for _ in range(ih)] for _ in range(iw)]
mask = make_circle(mask, cx, cy, cr)
#print("\n".join("".join(map(str, i)) for i in mask))
imshow(mask, cmap=get_cmap("Spectral"), interpolation='nearest')
show()
if __name__ == '__main__':
image_w = 60
image_h = 60
circle_x = image_w/2
circle_y = image_h/2
circle_r = 15
generate_image_mask(image_w,image_h,circle_x,circle_y,circle_r)

How to rotate an ellipse pixel by pixel?

Right now, I am working on something (in Python) to create an ellipse and display it on the screen (in the console). I have the ellipse creation already, but rotating the ellipse gives me problems.
Ellipse Method:
def ellipse(yc, xc, b, a, rotation=0):
yc_min_b = yc - b
# divide b to account for spacing in console
b = int(round(b / 2 + 0.01)) - 1
yc = yc_min_b + b
points = []
a2 = a*a
b2 = b*b
fa2 = 4 * a2
fb2 = 4 * b2
x = 0
y = b
sigma = 2 * b2 + a2 * (1 - 2 * b)
while b2 * x <= a2 * y:
points.append((xc + x, yc + y))
points.append((xc - x, yc + y))
points.append((xc + x, yc - y))
points.append((xc - x, yc - y))
if sigma >= 0:
sigma += fa2 * (1 - y)
y -= 1
sigma += b2 * ((4 * x) + 6)
x += 1 # INCREMENT
x = a
y = 0
sigma = 2 * a2 + b2 * (1 - 2 * a)
while a2 * y <= b2 * x:
points.append((xc + x, yc + y))
points.append((xc - x, yc + y))
points.append((xc + x, yc - y))
points.append((xc - x, yc - y))
if sigma >= 0:
sigma += fb2 * (1 - x)
x -= 1
sigma += a2 * ((4 * y) + 6)
y += 1 # INCREMENT
# now rotate points
sin = math.sin(rotation)
cos = math.cos(rotation)
rotated = []
for point in points:
x = point[0]
y = point[1]
'''
px -= xc
py -= yc
xnew = px * c - py * s
ynew = px * s + py * c
px = xnew + xc
py = ynew + yc
'''
#XRot := Round(XCenter + (X - XCenter) * CAngle - (Y - YCenter) * SAngle);
#YRot := Round(YCenter + (X - XCenter) * SAngle + (Y - YCenter) * CAngle);
x = round(xc + (x + xc) * cos - (y - yc) * sin)
y = round(yc + (x - xc) * sin + (y - yc) * cos)
rotated.append((int(x), int(y)))
points = rotated
print points
ell_matr = []
# set up empty matrix
maxx = 0
maxy = 0
for point in points:
y = point[1]
x = point[0]
if y > maxy:
maxy = y
if x > maxx:
maxx = x
for i in range(maxy + 1):
ell_matr.append([])
for j in range(maxx + 1):
ell_matr[i].append(' ')
for point in points:
y = point[1]
x = point[0]
ell_matr[y][x] = fill
return ell_matr
I would ignore the matrix part, as it is translating the points into a matrix to display on screen.
Here is the output of an ellipse without rotation.
And when I add a 45 degree rotation (converted to radians)
Is there a better way to rotate the points?

Categories