how to extract the max numeric substring from a string? - python

when given a string. how to extract the biggest numeric substring without regex?
if for example given a string: 24some555rrr444
555 will be the biggest substring
def maximum(s1)
sub=[]
max=0
for x in s1
if x.isnummeric() and x>max
sub.append(x)
max=x
return max
what to do in order this code to work?
Thank you in advance!

Replace all non digits to a space, split the resulting word based on spaces, convert each number to a int and then find the max of them
>>> s = '24some555rrr444'
>>> max(map(int, ''.join(c if c.isdigit() else ' ' for c in s).split()))
555

You could use itertools.groupby to pull out the digits in groups and find the max:
from itertools import groupby
s = "24some555rrr444"
max(int(''.join(g)) for k, g in groupby(s, key=str.isdigit) if k)
# 555

Not using regex is wierd, but ok
s = "24some555rrr444"
n = len(s)
m = 0
for i in range(n):
for len in range(i + 1, n + 1):
try:
v = int(s[i:len])
m = v if v > m else m
except:
pass
print(m)
Or if want really want to compress it to basically one line (except the convert function), you can use
s = "24some555rrr444"
n = len(s)
def convert(s):
try:
return int(s)
except:
return -1
m = max(convert(s[i:l]) for i in range(n) for l in range(i + 1, n + 1))
print(m)

In order to stay in your mindset, i propose this, it is quite close from the initial demand:
#Picked a random number+string stringchain
OriginalStringChain="123245hjkh2313k313j23b"
#Creation of the list which will contain the numbers extracted from the formerly chosen stringchain
resultstable=[]
#The b variable will contain the extracted numbers as a string chain
b=""
for i,j in zip(OriginalStringChain, range(len(OriginalStringChain))):
c= j+1
#the is.digit() fonction is your sql isnumeric equivalent in python
#this bloc of if will extract numbers one by one and concatenate them, if they are several in a row, in a string chain of numbers before adding them in the resultstable
if i.isdigit() == True:
b+=i
if j < len(OriginalStringChain)-1 and OriginalStringChain[c].isdigit() == False:
resutstable.append(int(b))
elif j== len(OriginalStringChain)-1 and OriginalStringChain[j].isdigit() == True:
resultstable.append(int(b))
else:
b=""
print(resultstable)
#At the end, you just obtain a list where every values are the numbers we extracted previously and u just use the max function
print(max(resultstable))
I hope i was clear.
Cheers

Related

Extracting number from alphanumeric string and adding them

Given string str containing alphanumeric characters. The task is to calculate the sum of all the numbers present in the string.
Example 1:
Input:
str = 1abc23
Output: 24
Explanation: 1 and 23 are numbers in the
a string which is added to get the sum as
24.
Example 2:
Input:
str = geeks4geeks
Output: 4
Explanation: 4 is the only number, so the
the sum is 4.
I broke down the problem into smaller parts, for first I just want to extract the numbers.
s = "a12bc3d"
number = ""
for i in range(0, len(s)):
if s[i].isdigit():
n=0
number = number + s[i]
while s[i].isdigit():
n = n+1
if s[i + n].isdigit():
number = number + s[i+n] + " "
else:
break
i = i + n + 1
else:
continue
print(number)
my output from the above code is 12 23 but it should be 12 3, as the for loop is starting from the initial point making 2 coming twice, I have tried to move the for loop forward by updating i = i + n + 1 but it's not working out like that.
It will be great if someone gives me a direction, any help is really appreciated.
A slightly simpler approach with regex:
import re
numbers_sum = sum(int(match) for match in re.findall(r'(\d+)', s))
Use itertools.groupby to break the string into groups of digits and not-digits; then convert the digit groups to int and sum them:
>>> from itertools import groupby
>>> def sum_numbers(s: str) -> int:
... return sum(int(''.join(g)) for d, g in groupby(s, str.isdigit) if d)
...
>>> sum_numbers("1abc23")
24
>>> sum_numbers("geeks4geeks")
4
you can use regex.
import re
s='a12bc3d'
sections = re.split('(\d+)',s)
numeric_sections = [int(x) for x in sections if x.isdigit()]
sum_ = sum(numeric_sections)
print(sum_)
I appreciate the solutions with regex and group-by. And I got the solution using logic as well.
`s = "4a7312cfh86"
slist = [i for i in s]
nlist = []
for i in range(len(slist)):
if slist[i].isdigit() and (i != (len(slist) - 1)):
if not slist[i + 1].isdigit():
nlist.append(slist[i])
else:
slist[i + 1] = slist[i] + slist[i + 1]
elif slist[i].isdigit() and (i == (len(slist) - 1)):
nlist.append(slist[i])
def addingElement(arr):
if len(arr) == 0:
return 0
return addingElement(arr[1:]) + int(arr[0])
print(addingElement(nlist))
Output - 7402

Find the length of the palindrome that can be made from a string in Python

I try to make program to find the length of the palindrome that can be made from a string in Python, but I got wrong result.
This is my program but I still get wrong results, maybe anyone can help me to fixed this.
from typing import Counter
def checkpalindrom(s):
mid = len(s)/2
end = len(s)-1
i = 0
while i<= mid:
if s[i]!= s[end-i]:
return False
return True
def deletepalindrom(s):
if deletepalindrom(s)==True:
return 0
min = 100
x = 0
while x < len(s):
temp = s
temp.remove(1)
Counter = deletepalindrom(temp)+1
if Counter<=min:
min = Counter
n = int(input())
for y in range(n):
s = input()
print(len(s)- deletpalindrom(s))
I got a redline in line print(len(s)- deletpalindrom(s)) to show the length and also in line temp.remove(1) got 'str' object has no attribute 'remove'.
You can do the following to achieve what you want:
from itertools import permutations
def get_len_palindrome(string):
all_permutations = [''.join(p) for p in permutations(string)]
lst_palindrome_lengths = []
for permutation in all_permutations:
for i in range(len(permutation)+1):
if permutation[:i] == permutation[:i][::-1]:
lst_palindrome_lengths.append(i)
lst_palindrome_lengths.sort(reverse=True)
return lst_palindrome_lengths[0]
n = int(input())
for y in range(n):
s = input()
print(get_len_palindrome(s))
The function get_len_palindrome(string) first utilises the permutations method of the itertools module to obtain all permutations of a given string, then, drawing from a pythonic way to check for palindromes suggested here, uses the permutations obtained this way to determine the lengths of palindromes constructed from this string and returns the maximum length.
It is helpful to make the following observations:
In a palindrome p, at most one letter appears an odd number of times.
The maximum length of a palindrome formed using letters in a string w is fully determined by the letter "frequencies" of the string w. For example, the answer for aab is the same as the answer for bba.
With the observations in mind, here is one solution using collections.Counter.
from collections import Counter
xs = ['wewewe', 'pelatnas', 'kedua', 'di', 'jogja']
ys = [5, 3, 1, 1, 3]
def pal_len(s):
result = 0
# letter frequencies
ctr = Counter(s)
# False only if each letter appears an even number of times
have_spare = False
for k, v in ctr.items():
# letter k appears v times
# if v is even, we can add v characters to the palindrome
# if v is odd, we can add v - v%2 characters to the palindrome
remainder = v % 2
result += v - remainder
if remainder:
have_spare = True
# at this point, have_spare == True whenever
# there is a character that appears an odd number of times in s
# we can insert such a character in the middle of the palindrome
return result + have_spare
assert all(pal_len(x) == y for x, y in zip(xs, ys))

Find the first two nonzero digits of float number in Python?

I want to get the first two nonzero digits of a float number using math library.
for example for
x = 1.27
the answer would be
12
and for
x = 0.025
the answer would be
25
I could find the first and second nonzero number:
a = str(x)
o1 = int(a.replace('0', '')[1])
o2 = int(a.replace('0', '')[2])
and then I can concat them but I get
string index out of range
error for big numbers.
Here's one approach:
from itertools import islice
def first_n_nonzero_digits(l, n):
return ''.join(islice((i for i in str(l) if i not in {'0', '.'}), n))
first_n_nonzero_digits(1.27, 2)
# '12'
first_n_nonzero_digits(0.025, 2)
# '25'
Here's one without any imports and using sorted:
def first_n_nonzero_digits_v2(l, n):
return ''.join(sorted(str(x), key=lambda x: x in {'0', '.'}))[:2]
first_n_nonzero_digits_v2(1.27, 2)
# '12'
first_n_nonzero_digits_v2(0.025, 2)
# '25'
Here is a simple solution:
str(x).replace(".","").replace("0", "")[:2]
Try this:
def nonzeroDigits(f,n=2):
counter = 1
s = str(f).replace(".","")
for ndx,i in enumerate(s):
if i == "0":
counter = 1
continue
if counter >= n:
return s[ndx - n + 1: ndx + 1]
counter += 1
raise ValueError("Doesn't have non-zero consecutive Digits")
I have tired to make it as simple as possible without using any third-party library.
print(nonzeroDigits(1.27))
# print(nonzeroDigits(1.02)) # Raise ValueError Exception
print(nonzeroDigits(0.025))
Returns:
12
25

Finding all possible permutations of a given string in python

I have a string. I want to generate all permutations from that string, by changing the order of characters in it. For example, say:
x='stack'
what I want is a list like this,
l=['stack','satck','sackt'.......]
Currently I am iterating on the list cast of the string, picking 2 letters randomly and transposing them to form a new string, and adding it to set cast of l. Based on the length of the string, I am calculating the number of permutations possible and continuing iterations till set size reaches the limit.
There must be a better way to do this.
The itertools module has a useful method called permutations(). The documentation says:
itertools.permutations(iterable[, r])
Return successive r length permutations of elements in the iterable.
If r is not specified or is None, then r defaults to the length of the
iterable and all possible full-length permutations are generated.
Permutations are emitted in lexicographic sort order. So, if the input
iterable is sorted, the permutation tuples will be produced in sorted
order.
You'll have to join your permuted letters as strings though.
>>> from itertools import permutations
>>> perms = [''.join(p) for p in permutations('stack')]
>>> perms
['stack', 'stakc', 'stcak', 'stcka', 'stkac', 'stkca', 'satck',
'satkc', 'sactk', 'sackt', 'saktc', 'sakct', 'sctak', 'sctka',
'scatk', 'scakt', 'sckta', 'sckat', 'sktac', 'sktca', 'skatc',
'skact', 'skcta', 'skcat', 'tsack', 'tsakc', 'tscak', 'tscka',
'tskac', 'tskca', 'tasck', 'taskc', 'tacsk', 'tacks', 'taksc',
'takcs', 'tcsak', 'tcska', 'tcask', 'tcaks', 'tcksa', 'tckas',
'tksac', 'tksca', 'tkasc', 'tkacs', 'tkcsa', 'tkcas', 'astck',
'astkc', 'asctk', 'asckt', 'asktc', 'askct', 'atsck', 'atskc',
'atcsk', 'atcks', 'atksc', 'atkcs', 'acstk', 'acskt', 'actsk',
'actks', 'ackst', 'ackts', 'akstc', 'aksct', 'aktsc', 'aktcs',
'akcst', 'akcts', 'cstak', 'cstka', 'csatk', 'csakt', 'cskta',
'cskat', 'ctsak', 'ctska', 'ctask', 'ctaks', 'ctksa', 'ctkas',
'castk', 'caskt', 'catsk', 'catks', 'cakst', 'cakts', 'cksta',
'cksat', 'cktsa', 'cktas', 'ckast', 'ckats', 'kstac', 'kstca',
'ksatc', 'ksact', 'kscta', 'kscat', 'ktsac', 'ktsca', 'ktasc',
'ktacs', 'ktcsa', 'ktcas', 'kastc', 'kasct', 'katsc', 'katcs',
'kacst', 'kacts', 'kcsta', 'kcsat', 'kctsa', 'kctas', 'kcast',
'kcats']
If you find yourself troubled by duplicates, try fitting your data into a structure with no duplicates like a set:
>>> perms = [''.join(p) for p in permutations('stacks')]
>>> len(perms)
720
>>> len(set(perms))
360
Thanks to #pst for pointing out that this is not what we'd traditionally think of as a type cast, but more of a call to the set() constructor.
You can get all N! permutations without much code
def permutations(string, step = 0):
# if we've gotten to the end, print the permutation
if step == len(string):
print "".join(string)
# everything to the right of step has not been swapped yet
for i in range(step, len(string)):
# copy the string (store as array)
string_copy = [character for character in string]
# swap the current index with the step
string_copy[step], string_copy[i] = string_copy[i], string_copy[step]
# recurse on the portion of the string that has not been swapped yet (now it's index will begin with step + 1)
permutations(string_copy, step + 1)
Here is another way of doing the permutation of string with minimal code based on bactracking.
We basically create a loop and then we keep swapping two characters at a time,
Inside the loop we'll have the recursion. Notice,we only print when indexers reaches the length of our string.
Example:
ABC
i for our starting point and our recursion param
j for our loop
here is a visual help how it works from left to right top to bottom (is the order of permutation)
the code :
def permute(data, i, length):
if i==length:
print(''.join(data) )
else:
for j in range(i,length):
#swap
data[i], data[j] = data[j], data[i]
permute(data, i+1, length)
data[i], data[j] = data[j], data[i]
string = "ABC"
n = len(string)
data = list(string)
permute(data, 0, n)
Stack Overflow users have already posted some strong solutions but I wanted to show yet another solution. This one I find to be more intuitive
The idea is that for a given string: we can recurse by the algorithm (pseudo-code):
permutations = char + permutations(string - char) for char in string
I hope it helps someone!
def permutations(string):
"""
Create all permutations of a string with non-repeating characters
"""
permutation_list = []
if len(string) == 1:
return [string]
else:
for char in string:
[permutation_list.append(char + a) for a in permutations(string.replace(char, "", 1))]
return permutation_list
Here's a simple function to return unique permutations:
def permutations(string):
if len(string) == 1:
return string
recursive_perms = []
for c in string:
for perm in permutations(string.replace(c,'',1)):
recursive_perms.append(c+perm)
return set(recursive_perms)
itertools.permutations is good, but it doesn't deal nicely with sequences that contain repeated elements. That's because internally it permutes the sequence indices and is oblivious to the sequence item values.
Sure, it's possible to filter the output of itertools.permutations through a set to eliminate the duplicates, but it still wastes time generating those duplicates, and if there are several repeated elements in the base sequence there will be lots of duplicates. Also, using a collection to hold the results wastes RAM, negating the benefit of using an iterator in the first place.
Fortunately, there are more efficient approaches. The code below uses the algorithm of the 14th century Indian mathematician Narayana Pandita, which can be found in the Wikipedia article on Permutation. This ancient algorithm is still one of the fastest known ways to generate permutations in order, and it is quite robust, in that it properly handles permutations that contain repeated elements.
def lexico_permute_string(s):
''' Generate all permutations in lexicographic order of string `s`
This algorithm, due to Narayana Pandita, is from
https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order
To produce the next permutation in lexicographic order of sequence `a`
1. Find the largest index j such that a[j] < a[j + 1]. If no such index exists,
the permutation is the last permutation.
2. Find the largest index k greater than j such that a[j] < a[k].
3. Swap the value of a[j] with that of a[k].
4. Reverse the sequence from a[j + 1] up to and including the final element a[n].
'''
a = sorted(s)
n = len(a) - 1
while True:
yield ''.join(a)
#1. Find the largest index j such that a[j] < a[j + 1]
for j in range(n-1, -1, -1):
if a[j] < a[j + 1]:
break
else:
return
#2. Find the largest index k greater than j such that a[j] < a[k]
v = a[j]
for k in range(n, j, -1):
if v < a[k]:
break
#3. Swap the value of a[j] with that of a[k].
a[j], a[k] = a[k], a[j]
#4. Reverse the tail of the sequence
a[j+1:] = a[j+1:][::-1]
for s in lexico_permute_string('data'):
print(s)
output
aadt
aatd
adat
adta
atad
atda
daat
data
dtaa
taad
tada
tdaa
Of course, if you want to collect the yielded strings into a list you can do
list(lexico_permute_string('data'))
or in recent Python versions:
[*lexico_permute_string('data')]
Here is another approach different from what #Adriano and #illerucis posted. This has a better runtime, you can check that yourself by measuring the time:
def removeCharFromStr(str, index):
endIndex = index if index == len(str) else index + 1
return str[:index] + str[endIndex:]
# 'ab' -> a + 'b', b + 'a'
# 'abc' -> a + bc, b + ac, c + ab
# a + cb, b + ca, c + ba
def perm(str):
if len(str) <= 1:
return {str}
permSet = set()
for i, c in enumerate(str):
newStr = removeCharFromStr(str, i)
retSet = perm(newStr)
for elem in retSet:
permSet.add(c + elem)
return permSet
For an arbitrary string "dadffddxcf" it took 1.1336 sec for the permutation library, 9.125 sec for this implementation and 16.357 secs for #Adriano's and #illerucis' version. Of course you can still optimize it.
Here's a slightly improved version of illerucis's code for returning a list of all permutations of a string s with distinct characters (not necessarily in lexicographic sort order), without using itertools:
def get_perms(s, i=0):
"""
Returns a list of all (len(s) - i)! permutations t of s where t[:i] = s[:i].
"""
# To avoid memory allocations for intermediate strings, use a list of chars.
if isinstance(s, str):
s = list(s)
# Base Case: 0! = 1! = 1.
# Store the only permutation as an immutable string, not a mutable list.
if i >= len(s) - 1:
return ["".join(s)]
# Inductive Step: (len(s) - i)! = (len(s) - i) * (len(s) - i - 1)!
# Swap in each suffix character to be at the beginning of the suffix.
perms = get_perms(s, i + 1)
for j in range(i + 1, len(s)):
s[i], s[j] = s[j], s[i]
perms.extend(get_perms(s, i + 1))
s[i], s[j] = s[j], s[i]
return perms
See itertools.combinations or itertools.permutations.
why do you not simple do:
from itertools import permutations
perms = [''.join(p) for p in permutations(['s','t','a','c','k'])]
print perms
print len(perms)
print len(set(perms))
you get no duplicate as you can see :
['stack', 'stakc', 'stcak', 'stcka', 'stkac', 'stkca', 'satck', 'satkc',
'sactk', 'sackt', 'saktc', 'sakct', 'sctak', 'sctka', 'scatk', 'scakt', 'sckta',
'sckat', 'sktac', 'sktca', 'skatc', 'skact', 'skcta', 'skcat', 'tsack',
'tsakc', 'tscak', 'tscka', 'tskac', 'tskca', 'tasck', 'taskc', 'tacsk', 'tacks',
'taksc', 'takcs', 'tcsak', 'tcska', 'tcask', 'tcaks', 'tcksa', 'tckas', 'tksac',
'tksca', 'tkasc', 'tkacs', 'tkcsa', 'tkcas', 'astck', 'astkc', 'asctk', 'asckt',
'asktc', 'askct', 'atsck', 'atskc', 'atcsk', 'atcks', 'atksc', 'atkcs', 'acstk',
'acskt', 'actsk', 'actks', 'ackst', 'ackts', 'akstc', 'aksct', 'aktsc', 'aktcs',
'akcst', 'akcts', 'cstak', 'cstka', 'csatk', 'csakt', 'cskta', 'cskat', 'ctsak',
'ctska', 'ctask', 'ctaks', 'ctksa', 'ctkas', 'castk', 'caskt', 'catsk', 'catks',
'cakst', 'cakts', 'cksta', 'cksat', 'cktsa', 'cktas', 'ckast', 'ckats', 'kstac',
'kstca', 'ksatc', 'ksact', 'kscta', 'kscat', 'ktsac', 'ktsca', 'ktasc', 'ktacs',
'ktcsa', 'ktcas', 'kastc', 'kasct', 'katsc', 'katcs', 'kacst', 'kacts', 'kcsta',
'kcsat', 'kctsa', 'kctas', 'kcast', 'kcats']
120
120
[Finished in 0.3s]
def permute(seq):
if not seq:
yield seq
else:
for i in range(len(seq)):
rest = seq[:i]+seq[i+1:]
for x in permute(rest):
yield seq[i:i+1]+x
print(list(permute('stack')))
All Possible Word with stack
from itertools import permutations
for i in permutations('stack'):
print(''.join(i))
permutations(iterable, r=None)
Return successive r length permutations of elements in the iterable.
If r is not specified or is None, then r defaults to the length of the iterable and all possible full-length permutations are generated.
Permutations are emitted in lexicographic sort order. So, if the input iterable is sorted, the permutation tuples will be produced in sorted order.
Elements are treated as unique based on their position, not on their value. So if the input elements are unique, there will be no repeat values in each permutation.
This is a recursive solution with n! which accepts duplicate elements in the string
import math
def getFactors(root,num):
sol = []
# return condition
if len(num) == 1:
return [root+num]
# looping in next iteration
for i in range(len(num)):
# Creating a substring with all remaining char but the taken in this iteration
if i > 0:
rem = num[:i]+num[i+1:]
else:
rem = num[i+1:]
# Concatenating existing solutions with the solution of this iteration
sol = sol + getFactors(root + num[i], rem)
return sol
I validated the solution taking into account two elements, the number of combinations is n! and the result can not contain duplicates. So:
inpt = "1234"
results = getFactors("",inpt)
if len(results) == math.factorial(len(inpt)) | len(results) != len(set(results)):
print("Wrong approach")
else:
print("Correct Approach")
With recursive approach.
def permute(word):
if len(word) == 1:
return [word]
permutations = permute(word[1:])
character = word[0]
result = []
for p in permutations:
for i in range(len(p)+1):
result.append(p[:i] + character + p[i:])
return result
running code.
>>> permute('abc')
['abc', 'bac', 'bca', 'acb', 'cab', 'cba']
Yet another initiative and recursive solution. The idea is to select a letter as a pivot and then create a word.
def find_premutations(alphabet):
words = []
word =''
def premute(new_word, alphabet):
if not alphabet:
words.append(word)
else:
for i in range(len(alphabet)):
premute(new_word=word + alphabet[i], alphabet=alphabet[0:i] + alphabet[i+1:])
premute(word, alphabet)
return words
# let us try it with 'abc'
a = 'abc'
find_premutations(a)
Output:
abc
acb
bac
bca
cab
cba
Here's a really simple generator version:
def find_all_permutations(s, curr=[]):
if len(s) == 0:
yield curr
else:
for i, c in enumerate(s):
for combo in find_all_permutations(s[:i]+s[i+1:], curr + [c]):
yield "".join(combo)
I think it's not so bad!
def f(s):
if len(s) == 2:
X = [s, (s[1] + s[0])]
return X
else:
list1 = []
for i in range(0, len(s)):
Y = f(s[0:i] + s[i+1: len(s)])
for j in Y:
list1.append(s[i] + j)
return list1
s = raw_input()
z = f(s)
print z
Here's a simple and straightforward recursive implementation;
def stringPermutations(s):
if len(s) < 2:
yield s
return
for pos in range(0, len(s)):
char = s[pos]
permForRemaining = list(stringPermutations(s[0:pos] + s[pos+1:]))
for perm in permForRemaining:
yield char + perm
from itertools import permutations
perms = [''.join(p) for p in permutations('ABC')]
perms = [''.join(p) for p in permutations('stack')]
def perm(string):
res=[]
for j in range(0,len(string)):
if(len(string)>1):
for i in perm(string[1:]):
res.append(string[0]+i)
else:
return [string];
string=string[1:]+string[0];
return res;
l=set(perm("abcde"))
This is one way to generate permutations with recursion, you can understand the code easily by taking strings 'a','ab' & 'abc' as input.
You get all N! permutations with this, without duplicates.
Everyone loves the smell of their own code. Just sharing the one I find the simplest:
def get_permutations(word):
if len(word) == 1:
yield word
for i, letter in enumerate(word):
for perm in get_permutations(word[:i] + word[i+1:]):
yield letter + perm
This program does not eliminate the duplicates, but I think it is one of the most efficient approaches:
s=raw_input("Enter a string: ")
print "Permutations :\n",s
size=len(s)
lis=list(range(0,size))
while(True):
k=-1
while(k>-size and lis[k-1]>lis[k]):
k-=1
if k>-size:
p=sorted(lis[k-1:])
e=p[p.index(lis[k-1])+1]
lis.insert(k-1,'A')
lis.remove(e)
lis[lis.index('A')]=e
lis[k:]=sorted(lis[k:])
list2=[]
for k in lis:
list2.append(s[k])
print "".join(list2)
else:
break
With Recursion
# swap ith and jth character of string
def swap(s, i, j):
q = list(s)
q[i], q[j] = q[j], q[i]
return ''.join(q)
# recursive function
def _permute(p, s, permutes):
if p >= len(s) - 1:
permutes.append(s)
return
for i in range(p, len(s)):
_permute(p + 1, swap(s, p, i), permutes)
# helper function
def permute(s):
permutes = []
_permute(0, s, permutes)
return permutes
# TEST IT
s = "1234"
all_permute = permute(s)
print(all_permute)
With Iterative approach (Using Stack)
# swap ith and jth character of string
def swap(s, i, j):
q = list(s)
q[i], q[j] = q[j], q[i]
return ''.join(q)
# iterative function
def permute_using_stack(s):
stk = [(0, s)]
permutes = []
while len(stk) > 0:
p, s = stk.pop(0)
if p >= len(s) - 1:
permutes.append(s)
continue
for i in range(p, len(s)):
stk.append((p + 1, swap(s, p, i)))
return permutes
# TEST IT
s = "1234"
all_permute = permute_using_stack(s)
print(all_permute)
With Lexicographically sorted
# swap ith and jth character of string
def swap(s, i, j):
q = list(s)
q[i], q[j] = q[j], q[i]
return ''.join(q)
# finds next lexicographic string if exist otherwise returns -1
def next_lexicographical(s):
for i in range(len(s) - 2, -1, -1):
if s[i] < s[i + 1]:
m = s[i + 1]
swap_pos = i + 1
for j in range(i + 1, len(s)):
if m > s[j] > s[i]:
m = s[j]
swap_pos = j
if swap_pos != -1:
s = swap(s, i, swap_pos)
s = s[:i + 1] + ''.join(sorted(s[i + 1:]))
return s
return -1
# helper function
def permute_lexicographically(s):
s = ''.join(sorted(s))
permutes = []
while True:
permutes.append(s)
s = next_lexicographical(s)
if s == -1:
break
return permutes
# TEST IT
s = "1234"
all_permute = permute_lexicographically(s)
print(all_permute)
This code makes sense to me. The logic is to loop through all characters, extract the ith character, perform the permutation on the other elements and append the ith character at the beginning.
If i'm asked to get all permutations manually for string ABC. I would start by checking all combinations of element A:
A AB
A BC
Then all combinations of element B:
B AC
B CA
Then all combinations of element C:
C AB
C BA
def permute(s: str):
n = len(s)
if n == 1: return [s]
if n == 2:
return [s[0]+s[1], s[1]+s[0]]
permutations = []
for i in range(0, n):
current = s[i]
others = s[:i] + s[i+1:]
otherPermutations = permute(others)
for op in otherPermutations:
permutations.append(current + op)
return permutations
Simpler solution using permutations.
from itertools import permutations
def stringPermutate(s1):
length=len(s1)
if length < 2:
return s1
perm = [''.join(p) for p in permutations(s1)]
return set(perm)
def permute_all_chars(list, begin, end):
if (begin == end):
print(list)
return
for current_position in range(begin, end + 1):
list[begin], list[current_position] = list[current_position], list[begin]
permute_all_chars(list, begin + 1, end)
list[begin], list[current_position] = list[current_position], list[begin]
given_str = 'ABC'
list = []
for char in given_str:
list.append(char)
permute_all_chars(list, 0, len(list) -1)
The itertools module in the standard library has a function for this which is simply called permutations.
import itertools
def minion_game(s):
vow ="aeiou"
lsword=[]
ta=[]
for a in range(1,len(s)+1):
t=list(itertools.permutations(s,a))
lsword.append(t)
for i in range(0,len(lsword)):
for xa in lsword[i]:
if vow.startswith(xa):
ta.append("".join(xa))
print(ta)
minion_game("banana")

swapping every two chars in the string with Python [duplicate]

I want to swap each pair of characters in a string. '2143' becomes '1234', 'badcfe' becomes 'abcdef'.
How can I do this in Python?
oneliner:
>>> s = 'badcfe'
>>> ''.join([ s[x:x+2][::-1] for x in range(0, len(s), 2) ])
'abcdef'
s[x:x+2] returns string slice from x to x+2; it is safe for odd len(s).
[::-1] reverses the string in Python
range(0, len(s), 2) returns 0, 2, 4, 6 ... while x < len(s)
The usual way to swap two items in Python is:
a, b = b, a
So it would seem to me that you would just do the same with an extended slice. However, it is slightly complicated because strings aren't mutable; so you have to convert to a list and then back to a string.
Therefore, I would do the following:
>>> s = 'badcfe'
>>> t = list(s)
>>> t[::2], t[1::2] = t[1::2], t[::2]
>>> ''.join(t)
'abcdef'
Here's one way...
>>> s = '2134'
>>> def swap(c, i, j):
... c = list(c)
... c[i], c[j] = c[j], c[i]
... return ''.join(c)
...
>>> swap(s, 0, 1)
'1234'
>>>
''.join(s[i+1]+s[i] for i in range(0, len(s), 2)) # 10.6 usec per loop
or
''.join(x+y for x, y in zip(s[1::2], s[::2])) # 10.3 usec per loop
or if the string can have an odd length:
''.join(x+y for x, y in itertools.izip_longest(s[1::2], s[::2], fillvalue=''))
Note that this won't work with old versions of Python (if I'm not mistaking older than 2.5).
The benchmark was run on python-2.7-8.fc14.1.x86_64 and a Core 2 Duo 6400 CPU with s='0123456789'*4.
If performance or elegance is not an issue, and you just want clarity and have the job done then simply use this:
def swap(text, ch1, ch2):
text = text.replace(ch2, '!',)
text = text.replace(ch1, ch2)
text = text.replace('!', ch1)
return text
This allows you to swap or simply replace chars or substring.
For example, to swap 'ab' <-> 'de' in a text:
_str = "abcdefabcdefabcdef"
print swap(_str, 'ab','de') #decabfdecabfdecabf
Loop over length of string by twos and swap:
def oddswap(st):
s = list(st)
for c in range(0,len(s),2):
t=s[c]
s[c]=s[c+1]
s[c+1]=t
return "".join(s)
giving:
>>> s
'foobar'
>>> oddswap(s)
'ofbora'
and fails on odd-length strings with an IndexError exception.
There is no need to make a list. The following works for even-length strings:
r = ''
for in in range(0, len(s), 2) :
r += s[i + 1] + s[i]
s = r
A more general answer... you can do any single pairwise swap with tuples or strings using this approach:
# item can be a string or tuple and swap can be a list or tuple of two
# indices to swap
def swap_items_by_copy(item, swap):
s0 = min(swap)
s1 = max(swap)
if isinstance(item,str):
return item[:s0]+item[s1]+item[s0+1:s1]+item[s0]+item[s1+1:]
elif isinstance(item,tuple):
return item[:s0]+(item[s1],)+item[s0+1:s1]+(item[s0],)+item[s1+1:]
else:
raise ValueError("Type not supported")
Then you can invoke it like this:
>>> swap_items_by_copy((1,2,3,4,5,6),(1,2))
(1, 3, 2, 4, 5, 6)
>>> swap_items_by_copy("hello",(1,2))
'hlelo'
>>>
Thankfully python gives empty strings or tuples for the cases where the indices refer to non existent slices.
To swap characters in a string a of position l and r
def swap(a, l, r):
a = a[0:l] + a[r] + a[l+1:r] + a[l] + a[r+1:]
return a
Example:
swap("aaabcccdeee", 3, 7) returns "aaadcccbeee"
Do you want the digits sorted? Or are you swapping odd/even indexed digits? Your example is totally unclear.
Sort:
s = '2143'
p=list(s)
p.sort()
s = "".join(p)
s is now '1234'. The trick is here that list(string) breaks it into characters.
Like so:
>>> s = "2143658709"
>>> ''.join([s[i+1] + s[i] for i in range(0, len(s), 2)])
'1234567890'
>>> s = "badcfe"
>>> ''.join([s[i+1] + s[i] for i in range(0, len(s), 2)])
'abcdef'
re.sub(r'(.)(.)',r"\2\1",'abcdef1234')
However re is a bit slow.
def swap(s):
i=iter(s)
while True:
a,b=next(i),next(i)
yield b
yield a
''.join(swap("abcdef1234"))
One more way:
>>> s='123456'
>>> ''.join([''.join(el) for el in zip(s[1::2], s[0::2])])
'214365'
>>> import ctypes
>>> s = 'abcdef'
>>> mutable = ctypes.create_string_buffer(s)
>>> for i in range(0,len(s),2):
>>> mutable[i], mutable[i+1] = mutable[i+1], mutable[i]
>>> s = mutable.value
>>> print s
badcfe
def revstr(a):
b=''
if len(a)%2==0:
for i in range(0,len(a),2):
b += a[i + 1] + a[i]
a=b
else:
c=a[-1]
for i in range(0,len(a)-1,2):
b += a[i + 1] + a[i]
b=b+a[-1]
a=b
return b
a=raw_input('enter a string')
n=revstr(a)
print n
A bit late to the party, but there is actually a pretty simple way to do this:
The index sequence you are looking for can be expressed as the sum of two sequences:
0 1 2 3 ...
+1 -1 +1 -1 ...
Both are easy to express. The first one is just range(N). A sequence that toggles for each i in that range is i % 2. You can adjust the toggle by scaling and offsetting it:
i % 2 -> 0 1 0 1 ...
1 - i % 2 -> 1 0 1 0 ...
2 * (1 - i % 2) -> 2 0 2 0 ...
2 * (1 - i % 2) - 1 -> +1 -1 +1 -1 ...
The entire expression simplifies to i + 1 - 2 * (i % 2), which you can use to join the string almost directly:
result = ''.join(string[i + 1 - 2 * (i % 2)] for i in range(len(string)))
This will work only for an even-length string, so you can check for overruns using min:
N = len(string)
result = ''.join(string[min(i + 1 - 2 * (i % 2), N - 1)] for i in range(N))
Basically a one-liner, doesn't require any iterators beyond a range over the indices, and some very simple integer math.
While the above solutions do work, there is a very simple solution shall we say in "layman's" terms. Someone still learning python and string's can use the other answers but they don't really understand how they work or what each part of the code is doing without a full explanation by the poster as opposed to "this works". The following executes the swapping of every second character in a string and is easy for beginners to understand how it works.
It is simply iterating through the string (any length) by two's (starting from 0 and finding every second character) and then creating a new string (swapped_pair) by adding the current index + 1 (second character) and then the actual index (first character), e.g., index 1 is put at index 0 and then index 0 is put at index 1 and this repeats through iteration of string.
Also added code to ensure string is of even length as it only works for even length.
DrSanjay Bhakkad post above is also a good one that works for even or odd strings and is basically doing the same function as below.
string = "abcdefghijklmnopqrstuvwxyz123"
# use this prior to below iteration if string needs to be even but is possibly odd
if len(string) % 2 != 0:
string = string[:-1]
# iteration to swap every second character in string
swapped_pair = ""
for i in range(0, len(string), 2):
swapped_pair += (string[i + 1] + string[i])
# use this after above iteration for any even or odd length of strings
if len(swapped_pair) % 2 != 0:
swapped_adj += swapped_pair[-1]
print(swapped_pair)
badcfehgjilknmporqtsvuxwzy21 # output if the "needs to be even" code used
badcfehgjilknmporqtsvuxwzy213 # output if the "even or odd" code used
One of the easiest way to swap first two characters from a String is
inputString = '2134'
extractChar = inputString[0:2]
swapExtractedChar = extractChar[::-1] """Reverse the order of string"""
swapFirstTwoChar = swapExtractedChar + inputString[2:]
# swapFirstTwoChar = inputString[0:2][::-1] + inputString[2:] """For one line code"""
print(swapFirstTwoChar)
#Works on even/odd size strings
str = '2143657'
newStr = ''
for i in range(len(str)//2):
newStr += str[i*2+1] + str[i*2]
if len(str)%2 != 0:
newStr += str[-1]
print(newStr)
#Think about how index works with string in Python,
>>> a = "123456"
>>> a[::-1]
'654321'

Categories