Which are the modern glTranslate and glRotate alternatives? [closed] - python

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
Important edit: I am using the PyOpenGL binding of OpenGL
I am trying not to use the glRotate and glTranslate functions, but I have not found any alternative to this two functions. This functions are deprecated. What can I use?

The modern way is to write a Shader program, to use Vertex Array Objects and to use Uniform variable(s) of type mat4.
There is more code to write, in compare to the deprecated fixed function pipeline but the benefit is high flexibility and a far better performance, in compare to drawing by glBegin/glEnd sequences.
For the matrix calculations can be used the PyGLM library, which is the python version of the c++ OpenGL Mathematics (glm) library.
e.g. A scale, rotation matrix around the z-axis by an angle and translation can set by:
model = glm.mat4(1)
model = glm.translate(model, glm.vec3(0.2, 0.2, 0))
model = glm.rotate(model, angle, glm.vec3(0, 0, 1))
model = glm.scale(model, glm.vec3(0.5, 0.5, 1))
In compare to the the Legacy OpenGL operation glRoatate, the angle has to be set in radians.
Note, instead of using PyGLM it is also possible to use the popular NumPy library and numpy.matrix, but PyGLM is closer to that what you know from Legacy OpenGL and the functions glScale, glTranslate and glRotate.
Of course it would be possible to set the the 4x4 matrices with out any library and to implement the matrix operations by yourself, too.
See the small example program, which uses PyOpenGL and PyGLM (beside the modules math and ctypes):
import math
import ctypes
import glm
from OpenGL.GLUT import *
from OpenGL.GL import *
from OpenGL.GL.shaders import *
class MyWindow:
__caption = 'OpenGL Window'
__vp_size = [800, 600]
__vp_valid = False
__glut_wnd = None
__glsl_vert = """
#version 450 core
layout (location = 0) in vec3 a_pos;
layout (location = 1) in vec4 a_col;
out vec4 v_color;
layout (location = 0) uniform mat4 u_proj;
layout (location = 1) uniform mat4 u_view;
layout (location = 2) uniform mat4 u_model;
void main()
{
v_color = a_col;
gl_Position = u_proj * u_view * u_model * vec4(a_pos.xyz, 1.0);
}
"""
__glsl_frag = """
#version 450 core
out vec4 frag_color;
in vec4 v_color;
void main()
{
frag_color = v_color;
}
"""
__program = None
__vao = None
__vbo = None
def __init__(self, w, h):
self.__vp_size = [w, h]
glutInit()
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
glutInitWindowSize(self.__vp_size[0], self.__vp_size[1])
__glut_wnd = glutCreateWindow(self.__caption)
self.__program = compileProgram(
compileShader( self.__glsl_vert, GL_VERTEX_SHADER ),
compileShader( self.__glsl_frag, GL_FRAGMENT_SHADER ),
)
attribures = [
# x y z R G B A
-0.866, -0.5, 0, 1, 0, 0, 1,
0.866, -0.5, 0, 1, 1, 0, 1,
0, 1.0, 0, 0, 0, 1, 1
]
vertex_attributes = (GLfloat * len(attribures))(*attribures)
itemsize = ctypes.sizeof(ctypes.c_float)
self.__vbo = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, self.__vbo)
glBufferData(GL_ARRAY_BUFFER, vertex_attributes, GL_STATIC_DRAW)
self.__vao = glGenVertexArrays(1)
glBindVertexArray(self.__vao)
glVertexAttribPointer(0, 3, GL_FLOAT, False, 7*itemsize, None)
glEnableVertexAttribArray(0)
glVertexAttribPointer(1, 4, GL_FLOAT, False, 7*itemsize, ctypes.c_void_p(3*itemsize))
glEnableVertexAttribArray(1)
glUseProgram(self.__program)
glutReshapeFunc(self.__reshape)
glutDisplayFunc(self.__mainloop)
def run(self):
self.__starttime = 0
self.__starttime = self.elapsed_ms()
glutMainLoop()
def elapsed_ms(self):
return glutGet(GLUT_ELAPSED_TIME) - self.__starttime
def __reshape(self, w, h):
self.__vp_valid = False
def __mainloop(self):
if not self.__vp_valid:
self.__vp_size = [glutGet(GLUT_WINDOW_WIDTH), glutGet(GLUT_WINDOW_HEIGHT)]
self.__vp_valid = True
glViewport(0, 0, self.__vp_size[0], self.__vp_size[1])
proj = glm.mat4(1)
view = glm.mat4(1)
model = glm.mat4(1)
aspect = self.__vp_size[0]/self.__vp_size[1]
aspect_x = aspect if self.__vp_size[0] > self.__vp_size[1] else 1.0
aspect_y = 1/aspect if self.__vp_size[0] < self.__vp_size[1] else 1.0
proj = glm.ortho(-aspect_x, aspect_x, -aspect_y, aspect_y, -1.0, 1.0)
angle = self.elapsed_ms() * math.pi * 2 / 3000.0
model = glm.translate(model, glm.vec3(0.2, 0.2, 0))
model = glm.rotate(model, angle, glm.vec3(0, 0, 1))
model = glm.scale(model, glm.vec3(0.5, 0.5, 1))
glUniformMatrix4fv(0, 1, GL_FALSE, glm.value_ptr(proj) )
glUniformMatrix4fv(1, 1, GL_FALSE, glm.value_ptr(view) )
glUniformMatrix4fv(2, 1, GL_FALSE, glm.value_ptr(model) )
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glDrawArrays(GL_TRIANGLES, 0, 3)
glutSwapBuffers()
glutPostRedisplay()
window = MyWindow(800, 600)
window.run()

Related

Why is my PyOpenGL program using shaders not displaying anything?

I have the following minimal shader example (running in Python 2.7). I expect to see the entire screen taken up by a shaded quad (that is red). Instead I just see black. This example used to work perfectly on my previous Mac machine but now it seizes to function -- am I missing some OpenGL call that is needed?
from OpenGL.GLU import *
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLUT.freeglut import glutLeaveMainLoop
from OpenGL.arrays import vbo
from OpenGL.GL import shaders
from OpenGL.GL.ARB.color_buffer_float import *
from OpenGL.raw.GL.ARB.color_buffer_float import *
import numpy as np
QUAD_VERTEX_SHADER = """
attribute vec2 points;
varying vec2 coord;
varying vec2 index;
void main() {
index = (points + 1.0) / 2.0;
coord = (points * vec2(1, -1) + 1.0) / 2.0;
gl_Position = vec4(points, 0.0, 1.0);
}
"""
FRAG_SHADER = """
varying vec2 index;
void main() {
gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}
"""
def display():
glViewport(0, 0, int(width), int(height))
shaders.glUseProgram(shader)
vbo.bind()
glEnableClientState(GL_VERTEX_ARRAY)
glVertexPointerf(vbo)
glDrawArrays(GL_TRIANGLES, 0, 6)
vbo.unbind()
glDisableClientState(GL_VERTEX_ARRAY)
glutSwapBuffers()
def idle():
glutPostRedisplay()
width = 640
height = 480
vertices = [
[ -1, 1, 0 ],
[ -1,-1, 0 ],
[ 1,-1, 0 ],
[ -1, 1, 0 ],
[ 1,-1, 0 ],
[ 1, 1, 0 ]
]
glutInit(sys.argv)
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_ACCUM | GLUT_DEPTH)
glutInitWindowSize(width, height)
window_id = glutCreateWindow('Visualization')
glClearColor(0.,0.,0.,0.)
glClampColor(GL_CLAMP_READ_COLOR, GL_FALSE)
glEnable(GL_CULL_FACE)
glEnable(GL_DEPTH_TEST)
glEnable( GL_PROGRAM_POINT_SIZE )
glMatrixMode(GL_MODELVIEW)
glutIdleFunc(idle)
glutDisplayFunc(display)
vp = shaders.compileShader(QUAD_VERTEX_SHADER, GL_VERTEX_SHADER)
fp = shaders.compileShader(FRAG_SHADER, GL_FRAGMENT_SHADER)
shader = shaders.compileProgram(vp, fp)
vbo = vbo.VBO(np.array(vertices,'float32'))
glutMainLoop()
You have to specify the array of vertex attributes with glVertexAttribPointer and you have to enable it with glEnableVertexAttribArray:
shader = shaders.compileProgram(vp, fp)
points_loc = glGetAttribLocation(shader, 'points');
glUseProgram(shader)
vbo.bind()
glEnableVertexAttribArray(points_loc);
glVertexAttribPointer(points_loc, 3, GL_FLOAT, GL_FALSE, 0, None)
glDrawArrays(GL_TRIANGLES, 0, 6)

Porting C++ OpenGL to PyOpenGL not rendering properly

I've been facing an issue for the past couple of days, and I still haven't been able to figure it out.. I'm trying to port a previous C++ Opengl project to PyOpengl, but I'm not able to get the object to render as it should. I'm simply trying to render a 3D grid model, which works in the original C++ code, but not in Python PyOpenGL.
What it should look like: (C++ OpenGL)
What it looks like (Python PyOpenGL)
This is the code I end up with in PyOpenGL :
import glfw
import glm
import numpy as np
from OpenGL.GL import *
import Shader
# Settings
SCR_WIDTH = 800
SCR_HEIGHT = 600
def framebuffer_size_callback(window, width, height):
if width != 0 and height != 0:
width = width
height = height
glViewport(0, 0, width, height)
def create_v_array():
vertexArray = []
indexArray = []
for x in range(-100, 102, 2):
# To draw lines across x axis from z = -1 to z = 1
vertexArray.append(glm.vec3(x / 100.0, 0.0, -1.0)) # Vertex position 1
vertexArray.append(glm.vec3(1.0, 1.0, 1.0)) # color for v1
vertexArray.append(glm.vec3(x / 100.0, 0.0, 1.0)) # Vertex position 2
vertexArray.append(glm.vec3(1.0, 1.0, 1.0)) # color for v2
for z in range(-100, 102, 2):
# To draw lines across z axis from x = -1 to x = 1
vertexArray.append(glm.vec3(-1.0, 0.0, z / 100.0)) # Vertex position 1
vertexArray.append(glm.vec3(1.0, 1.0, 1.0)) # color for v1
vertexArray.append(glm.vec3(1.0, 0.0, z / 100.0)) # Vertex position 2
vertexArray.append(glm.vec3(1.0, 1.0, 1.0)) # color for v2
for i in range(10000):
indexArray.append(i)
vao = GLuint()
vbo = GLuint()
ebo = GLuint()
vertexArray = np.array(vertexArray, dtype=np.float32)
indexArray = np.array(indexArray, dtype=np.float32)
# Bind vao
glGenVertexArrays(1, vao)
glBindVertexArray(vao)
# Upload Vertex Buffer (VBO) to the GPU, keep a reference to it (vertexBufferObject)
glGenBuffers(1, vbo)
glBindBuffer(GL_ARRAY_BUFFER, vbo)
glBufferData(GL_ARRAY_BUFFER, vertexArray.nbytes, vertexArray, GL_STATIC_DRAW)
# Upload Index Buffer (EBO) to the GPU, keep a reference to it (elementBufferObject)
glGenBuffers(1, ebo)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indexArray.nbytes, indexArray, GL_STATIC_DRAW)
# Position
glVertexAttribPointer(0,
3,
GL_FLOAT,
GL_FALSE,
24,
None
)
glEnableVertexAttribArray(0)
# Color
glVertexAttribPointer(1,
3,
GL_FLOAT,
GL_FALSE,
24,
ctypes.c_void_p(12)
)
glEnableVertexAttribArray(1)
glBindBuffer(GL_ARRAY_BUFFER, 0)
glBindVertexArray(0)
return vao
def main():
# Initialize the library
#glfw.glewExperimental = GL_TRUE
if not glfw.init():
return
glfw.window_hint(glfw.CONTEXT_VERSION_MAJOR, 3)
glfw.window_hint(glfw.CONTEXT_VERSION_MINOR, 2)
glfw.window_hint(glfw.OPENGL_PROFILE, glfw.OPENGL_CORE_PROFILE)
glfw.window_hint(glfw.OPENGL_FORWARD_COMPAT, GL_TRUE)
# Create a windowed mode window and its OpenGL context
window = glfw.create_window(SCR_WIDTH, SCR_HEIGHT, "OpenGL", None, None)
if not window:
glfw.terminate()
return
# Make the window's context current
glfw.make_context_current(window)
glfw.set_framebuffer_size_callback(window, framebuffer_size_callback)
#glEnable(GL_DEPTH_TEST)
#glDepthFunc(GL_LESS)
shader = Shader.Shader("VertexShader.vsh", "FragmentShader.fsh")
vao = create_v_array()
glUseProgram(shader.ID)
# Loop until the user closes the window
while not glfw.window_should_close(window):
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT)
glUseProgram(shader.ID)
glBindVertexArray(vao)
model = glm.mat4(1)
view = glm.mat4(1)
model = glm.rotate(model, glm.radians(15.0), glm.vec3(1.0, 0.0, 0.0))
view = glm.translate(view, glm.vec3(0.0, 0.0, -1.0))
projection = glm.perspective(glm.radians(45.0), (SCR_WIDTH/SCR_HEIGHT), 0.1, 100.0)
shader.set_mat4("model", model)
shader.set_mat4("view", view)
shader.set_mat4("projection", projection)
glBindVertexArray(vao)
glDrawElements(GL_LINES, 20000, GL_UNSIGNED_INT, None)
glfw.swap_buffers(window)
glfw.poll_events()
glfw.terminate()
if __name__ == "__main__":
main()
Custom Shader class:
class Shader:
def __init__(self, vertex_path, fragment_path):
vertex_code = get_file_content(vertex_path)
fragment_code = get_file_content(fragment_path)
vertex = glCreateShader(GL_VERTEX_SHADER)
glShaderSource(vertex, vertex_code)
glCompileShader(vertex)
result = glGetShaderiv(vertex, GL_COMPILE_STATUS)
if not (result):
print("Vertex shader ERROR!")
raise RuntimeError(glGetShaderInfoLog(vertex))
fragment = glCreateShader(GL_FRAGMENT_SHADER)
glShaderSource(fragment, fragment_code)
glCompileShader(fragment)
result2 = glGetShaderiv(fragment, GL_COMPILE_STATUS)
if not (result2):
print("Fragment shader ERROR!")
raise RuntimeError(glGetShaderInfoLog(vertex))
self.ID = glCreateProgram()
glAttachShader(self.ID, vertex)
glAttachShader(self.ID, fragment)
glLinkProgram(self.ID)
success = glGetProgramiv(self.ID, GL_LINK_STATUS)
if not success:
print("gad darn")
infolog = glGetProgramInfoLog(self.ID)
print("ERROR::SHADER::PROGRAM::LINKING_FAILED\n", infolog)
glDeleteShader(vertex)
glDeleteShader(fragment)
def set_mat4(self, name, matrix):
glUniformMatrix4fv(glGetUniformLocation(self.ID, name), 1, GL_FALSE, glm.value_ptr(matrix))
def use(self):
glUseProgram(self.ID)
# Helper Function
def get_file_content(file):
with open(file) as f:
content = f.read()
return content
glsl files:
Vertex Shader:
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
out vec3 vertexColor;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(aPos, 1.0);
vertexColor = aColor;
}
Fragment Shader:
#version 330 core
in vec3 vertexColor;
out vec4 FragColor;
void main()
{
FragColor = vec4(vertexColor.r, vertexColor.g, vertexColor.b, 1.0f);
}
The type of the indices must be integral instead of the floating point:
indexArray = np.array(indexArray, dtype=np.float32)
indexArray = np.array(indexArray, dtype=np.uint32)

Problem making Sphere using PyOpenGL and PyQt5 [closed]

Closed. This question is not reproducible or was caused by typos. It is not currently accepting answers.
This question was caused by a typo or a problem that can no longer be reproduced. While similar questions may be on-topic here, this one was resolved in a way less likely to help future readers.
Closed 3 years ago.
Improve this question
I am trying to make sphere with OpenGL in Python but only single red dot appears in the center of screen. My code is as follow
def paintGL(self):
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
try:
glUseProgram(self.shader)
glBindVertexArray(self.vao)
glDrawArrays(GL_POINTS, 0, int(self.buff_size/3))
finally:
glBindVertexArray(0)
glUseProgram(0)
def geometry(self):
self.vao = glGenVertexArrays(1)
self.vbo = glGenBuffers(1)
lats = 180
longs = 360
r = 0.5
data = []
for i in range(lats):
lat0 = np.pi * (-0.5 + (i - 1) / lats)
z0 = np.sin(lat0)
zr0 = np.cos(lat0)
lat1 = np.pi * (-0.5 + i / lats)
z1 = np.sin(lat1)
zr1 = np.cos(lat1)
for j in range(longs):
lng = 2 * np.pi * (j - 1) / longs
x_cord = np.cos(lng)
y = np.sin(lng)
data.extend([x_cord * zr0, y * zr0, z0])
data.extend([r * x_cord * zr0, r * y * zr0, r * z0])
data.extend([x_cord * zr1, y * zr1, z1])
data.extend([r * x_cord * zr1, r * y * zr1, r * z1])
data_input = np.array(data, dtype=np.float32)
self.buff_size = len(data_input)
vertex_size = int(data_input.nbytes / self.buff_size) * 3
glUseProgram(self.shader)
glBindVertexArray(self.vao)
glBindBuffer(GL_ARRAY_BUFFER, self.vbo)
glBufferData(GL_ARRAY_BUFFER, data_input.nbytes, data_input, GL_DYNAMIC_DRAW)
self.vertex_position = glGetAttribLocation(self.shader, 'position')
glVertexAttribPointer(self.vertex_position, 3, GL_FLOAT, GL_FALSE, vertex_size, None)
glEnableVertexAttribArray(self.vertex_position)
glDisableVertexAttribArray(self.vertex_position)
glBindBuffer(GL_ARRAY_BUFFER, 0)
glBindVertexArray(0)
glUseProgram(0)
Shader for my program is:
self.vertex_shader = shaders.compileShader(
"""
#version 330
in vec3 pos;
uniform mat4 movement;
void main()
{
gl_Position = movement * vec4(pos, 1.0);
}
"""
, GL_VERTEX_SHADER
)
self.fragment_shader = shaders.compileShader(
"""
#version 330
out vec4 gl_FragColor;
void main()
{
gl_FragColor = vec4(1.0,0.0,0.5,1.0);
}
"""
, GL_FRAGMENT_SHADER
)
self.shader = shaders.compileProgram(self.vertex_shader, self.fragment_shader)
I don't know where I'm having issue. I also tried using indices with GL_ELEMENT_ARRAY_BUFFER and glDrawElements as GL_QUAD_STRIP but no success. If you know how I can fix this then please share. Thanks
The name of the vertex attribute is pos:
in vec3 pos;
So the argument to glGetAttribLocation has to be 'pos' rather than 'position':
self.vertex_position = glGetAttribLocation(self.shader, 'position')
self.vertex_position = glGetAttribLocation(self.shader, 'pos')
If the specification and enable state is stored in the Vertex Array Object. If you glDisableVertexAttribArray(self.vertex_position), this state is stored to the self.vao. Remove it:
glBindVertexArray(self.vao)
glBindBuffer(GL_ARRAY_BUFFER, self.vbo)
glBufferData(GL_ARRAY_BUFFER, data_input.nbytes, data_input, GL_DYNAMIC_DRAW)
self.vertex_position = glGetAttribLocation(self.shader, 'pos')
glVertexAttribPointer(self.vertex_position, 3, GL_FLOAT, GL_FALSE, vertex_size, None)
glEnableVertexAttribArray(self.vertex_position)
#glDisableVertexAttribArray(self.vertex_position) # <--- DELETE
glBindBuffer(GL_ARRAY_BUFFER, 0)
glBindVertexArray(0)
A matrix unfiorm be default is initialized with all fields 0.
uniform mat4 movement;
If you do not need the uniform, then remove it. Or initialize it by the Identity matrix.
glUseProgram(self.shader)
ident4x4 = np.identity(4, np.float32)
self.movement_loc = glGetUniformLocation(self.shader, 'movement')
glUniformMatrix4fv(self.movement_loc, 1, GL_FALSE, ident4x4)
Alternatively you can use a view and perspective projection matrix (self.width and self.height are the width and height of the window):
# projection matrix
aspect, ta, near, far = self.width/self.height, np.tan(np.radians(90.0) / 2), 0.1, 10
proj = np.matrix(((1/ta/aspect, 0, 0, 0), (0, 1/ta, 0, 0), (0, 0, -(far+near)/(far-near), -1), (0, 0, -2*far*near/(far-near), 0)), np.float32)
# view matrix
view = np.matrix(((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, -3, 1)), np.float32)
glUniformMatrix4fv(self.movement_loc, 1, GL_FALSE, view * proj)

PyOpenGL passing variable to the vertex shader

After a few suggestion I decided the learn a little bit OpenGL with the hard way. I tried to pass a (float - named myAttrib) variable to the vertex shader and it seemed to work (line 33), but obviously doesn't. Later I would like to divide the code into further parts.
Code:
from OpenGL.GL import *
from OpenGL.GL.shaders import *
import pygame
from pygame.locals import *
import numpy, time
def getFileContent(file):
content = open(file, 'r').read()
return content
def initDraw():
pygame.init()
pygame.display.set_mode((640, 480), HWSURFACE | OPENGL | DOUBLEBUF)
vertices = [0.0, 0.5,
0.5, -0.5,
-0.5, -0.5,]
vertices = numpy.array(vertices, dtype = numpy.float32)
myAttrib = 0.3
vertexShader = compileShader(getFileContent("helloTriangle.vert"), GL_VERTEX_SHADER)
fragmentShader = compileShader(getFileContent("helloTriangle.frag"), GL_FRAGMENT_SHADER)
shaderProgram = glCreateProgram()
glAttachShader(shaderProgram, vertexShader)
glAttachShader(shaderProgram, fragmentShader)
glBindAttribLocation(shaderProgram, 1, "myAttrib")
glLinkProgram(shaderProgram)
print(glGetAttribLocation(shaderProgram, "myAttrib"))
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, vertices)
glEnableVertexAttribArray(0)
glClearColor(0, 0, 0, 1)
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
glUseProgram(shaderProgram)
glDrawArrays(GL_TRIANGLES, 0, 3)
pygame.display.flip()
time.sleep(2)
initDraw()
Vertex shader:
#version 130
attribute vec2 vPosition;
attribute float myAttrib;
void main()
{
gl_Position = vec4(vPosition.x, vPosition.y + myAttrib, 0.0, 1.0);
}
Fragment shader:
#version 130
void main()
{
gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);
}
If you use an attribute, the you have to define an array of generic vertex attributes, with one attribute value per vertex coordinate (3 in your case). See Vertex Specification.
If you would use a uniform, then you can set one value for the program stored in an uniform variable in the default uniform block (you can imagine this somehow like a global variable). See Uniform (GLSL):
Case 1 - Attribute myAttrib:
Vertex shader
#version 130
attribute vec2 vPosition;
attribute float myAttrib;
void main()
{
gl_Position = vec4(vPosition.x, vPosition.y + myAttrib, 0.0, 1.0);
}
You have to define an array of generic vertex attributes as you do it for the vertex coordinates:
attrib = [-0.2, 0.2, 0.0]
myAttrib = numpy.array(attrib, dtype = numpy.float32)
# .....
glLinkProgram(shaderProgram)
myAttrib_location = glGetAttribLocation(shaderProgram, "myAttrib")
# .....
glVertexAttribPointer(myAttrib_location, 1, GL_FLOAT, GL_FALSE, 0, myAttrib)
glEnableVertexAttribArray(myAttrib_location)
or
glBindAttribLocation(shaderProgram, 1, "myAttrib")
glLinkProgram(shaderProgram)
# .....
glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, 0, myAttrib)
glEnableVertexAttribArray(1)
Case 2 - Uniform myUniform
Vertex shader
#version 130
attribute vec2 vPosition;
uniform float myUniform;
void main()
{
gl_Position = vec4(vPosition.x, vPosition.y + myUniform, 0.0, 1.0);
}
Get the location of the uniform ("myUniform") by glGetUniformLocation and set the value to the uniform by glUniform:
myUniform = 0.3
# .....
glLinkProgram(shaderProgram)
myUniform_location = glGetUniformLocation(shaderProgram, "myUniform")
# .....
glUseProgram(shaderProgram)
glUniform1f(myUniform_location, myUniform)
glDrawArrays(GL_TRIANGLES, 0, 3)

Visualizing a 3D NumPy array with PyOpenGL

I want to create a PyOpenGL/QtOpenGL widget that will allow me to visualize an arbitrary NumPy 3D matrix, not unlike the following Hinton diagram envisioned as a "cube of cubes" instead of a "square of squares":
I'm having a bit of a rough time with OpenGL though. Here is my code thus far:
from OpenGL.GL import *
from OpenGL.GLUT import *
from PyQt4 import QtGui, QtOpenGL
import numpy as np
action_keymap = {
# 'a': lambda: glTranslate(-1, 0, 0),
# 'd': lambda: glTranslate( 1, 0, 0),
# 'w': lambda: glTranslate( 0, 1, 0),
# 's': lambda: glTranslate( 0,-1, 0),
'a': lambda: glRotate(-5, 0, 1, 0),
'd': lambda: glRotate( 5, 0, 1, 0),
# 'W': lambda: glRotate(-5, 1, 0, 0),
# 'S': lambda: glRotate( 5, 1, 0, 0),
}
ARRAY = np.ones([3,3,3])
class GLWidget(QtOpenGL.QGLWidget):
def paintGL(self):
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
for idx, value in np.ndenumerate(ARRAY):
rel_pos = np.array(idx)/np.max(ARRAY.shape)
glTranslate(* rel_pos)
glutSolidCube(0.9/np.max(ARRAY.shape))
glTranslate(*-rel_pos)
def resizeGL(self, w, h):
glLoadIdentity()
glRotate(35,1,0,0)
glRotate(45,0,1,0)
def initializeGL(self):
glClearColor(0.1, 0.1, 0.3, 1.0)
def keyPressEvent(self, event):
action = action_keymap.get(str(event.text()))
if action:
action()
self.updateGL()
def mousePressEvent(self, event):
super().mousePressEvent(event)
self.press_point = event.pos()
def mouseMoveEvent(self, event):
super().mouseMoveEvent(event)
motion = event.pos()-self.press_point
self.press_point = event.pos()
glRotate(motion.x(),0,1,0)
glRotate(motion.y(),1,0,0)
self.updateGL()
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
w = GLWidget()
w.show()
sys.exit(app.exec_())
My problems are as follows:
1) Lighting. I've been reading up on lighting and materials, but I cannot seem to get a simple light somewhere giving the shape some clarity. I'd like the simplest, most basic possible light to be able to distinguish the squares instead of them being all rendered as pure white on all sides. I know how to change the color, but it doesn't alleviate the problem. What is the simplest light I can shine on this lattice to get some clarity on the subcomponents?
2) It is slow. I'll work out the math to achieve proper positioning and resizing of squares down the line, but I was wondering if there was a way to vectorize the process (after all, it's only turning the index into a translation and the value into a cube size for every element in the array). Should I write an extension in cpp, wrap my code with ctypes, or is there a way to outsource the work to OpenGL explicitly? What is the standard way to send a repetitive task to OpenGL from Python?
This task is perfectly suited for Instancing. With instancing an object can be rendered multiple times.
In this case instancing is used to render a cube for ach element of a 3d NumPy array.
Lets assume we've the following 3D array (array3d) of random values in the range [0, 1]:
shape = [5, 4, 6]
number_of = shape[0] * shape[1] * shape[2]
array3d = np.array(np.random.rand(number_of), dtype=np.float32).reshape(shape)
For each element of the array an instance of a mesh (cube) has to be rendered:
e.g.
number_of = array3d.shape[0] * array3d.shape[1] * array3d.shape[2]
glDrawElementsInstanced(GL_TRIANGLES, self.__no_indices, GL_UNSIGNED_INT, None, number_of)
The array can be loaded to a 3D texture (glTexImage3D):
glActiveTexture(GL_TEXTURE1)
tex3DObj = glGenTextures(1)
glBindTexture(GL_TEXTURE_3D, tex3DObj)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, 0)
glTexImage3D(GL_TEXTURE_3D, 0, GL_R16F, *array3d.shape, 0, GL_RED, GL_FLOAT, array3d)
In the vertex shader for a single cube, a instance transformation matrix can be computes by the dimension of the 3D texture (which is equal the shape of the 3D array) and the gl_InstanceID of the element cube.
The element cube is further scaled by the value of the element in the 3D texture.
Assuming a vertex shader with a §D texture sampler uniform u_array3D and a vertex coordinate attribute a_pos:
in vec3 a_pos;
uniform sampler3D u_array3D;
The dimension of the texture can be get by textureSize:
ivec3 dim = textureSize(u_array3D, 0);
With the dimension and the gl_InstanceID, the index of the element can be computed:
ivec3 inx = ivec3(0);
inx.z = gl_InstanceID / (dim.x * dim.y);
inx.y = (gl_InstanceID - inx.z * dim.x * dim.y) / dim.x;
inx.x = gl_InstanceID - inx.z * dim.x * dim.y - inx.y * dim.x;
and the value of the element can be fetched (texelFetch):
float value = texelFetch(u_array3D, inx, 0).x;
Finally a instance transformation matrix dependent on the element index and element value can be calculated:
vec3 scale = 1.0 / vec3(dim);
scale = vec3(min(scale.x, min(scale.y, scale.z)));
vec3 trans = 2 * scale * (vec3(inx) - vec3(dim-1) / 2.0);
mat4 instanceMat = mat4(
vec4(scale.x * cube_scale, 0.0, 0.0, 0.0),
vec4(0.0, scale.y * cube_scale, 0.0, 0.0),
vec4(0.0, 0.0, scale.z * cube_scale, 0.0),
vec4(trans, 1.0)
);
vec4 instance_pos = instanceMat * vec4(a_pos, 1.0);
The value can be additionally visualized by the color of the cube. For this the floating point value in the range [0.0, 1.0] is transformed to a RGB color in the HSV color range:
vec3 HUEtoRGB(in float H)
{
float R = abs(H * 6.0 - 3.0) - 1.0;
float G = 2.0 - abs(H * 6.0 - 2.0);
float B = 2.0 - abs(H * 6.0 - 4.0);
return clamp( vec3(R,G,B), 0.0, 1.0 );
}
vec3 color = HUEtoRGB(0.66 * (1-0 - value));
See also OpenGL - Python examples
Pure NumPy / PyOpenGL example program. The values of the array are changed randomly:
import numpy as np
from OpenGL.GLUT import *
from OpenGL.GL import *
from OpenGL.GL.shaders import *
class MyWindow:
__glsl_vert = """
#version 450 core
layout (location = 0) in vec3 a_pos;
layout (location = 1) in vec3 a_nv;
layout (location = 2) in vec4 a_col;
out vec3 v_pos;
out vec3 v_nv;
out vec4 v_color;
layout (binding = 1) uniform sampler3D u_array3D;
uniform mat4 u_proj;
uniform mat4 u_view;
uniform mat4 u_model;
vec3 HUEtoRGB(in float H)
{
float R = abs(H * 6.0 - 3.0) - 1.0;
float G = 2.0 - abs(H * 6.0 - 2.0);
float B = 2.0 - abs(H * 6.0 - 4.0);
return clamp( vec3(R,G,B), 0.0, 1.0 );
}
void main()
{
ivec3 dim = textureSize(u_array3D, 0);
vec3 scale = 1.0 / vec3(dim);
scale = vec3(min(scale.x, min(scale.y, scale.z)));
ivec3 inx = ivec3(0);
inx.z = gl_InstanceID / (dim.x * dim.y);
inx.y = (gl_InstanceID - inx.z * dim.x * dim.y) / dim.x;
inx.x = gl_InstanceID - inx.z * dim.x * dim.y - inx.y * dim.x;
float value = texelFetch(u_array3D, inx, 0).x;
vec3 trans = 2 * scale * (vec3(inx) - vec3(dim-1) / 2.0);
mat4 instanceMat = mat4(
vec4(scale.x * value, 0.0, 0.0, 0.0),
vec4(0.0, scale.y * value, 0.0, 0.0),
vec4(0.0, 0.0, scale.z * value, 0.0),
vec4(trans, 1.0)
);
mat4 model_view = u_view * u_model * instanceMat;
mat3 normal = transpose(inverse(mat3(model_view)));
vec4 view_pos = model_view * vec4(a_pos.xyz, 1.0);
v_pos = view_pos.xyz;
v_nv = normal * a_nv;
v_color = vec4(HUEtoRGB(0.66 * (1-0 - value)), 1.0);
gl_Position = u_proj * view_pos;
}
"""
__glsl_frag = """
#version 450 core
out vec4 frag_color;
in vec3 v_pos;
in vec3 v_nv;
in vec4 v_color;
void main()
{
vec3 N = normalize(v_nv);
vec3 V = -normalize(v_pos);
float ka = 0.1;
float kd = max(0.0, dot(N, V)) * 0.9;
frag_color = vec4(v_color.rgb * (ka + kd), v_color.a);
}
"""
def __init__(self, w, h):
self.__caption = 'OpenGL Window'
self.__vp_valid = False
self.__vp_size = [w, h]
glutInit()
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH)
glutInitWindowSize(self.__vp_size[0], self.__vp_size[1])
self.__glut_wnd = glutCreateWindow(self.__caption)
self.__program = compileProgram(
compileShader( self.__glsl_vert, GL_VERTEX_SHADER ),
compileShader( self.__glsl_frag, GL_FRAGMENT_SHADER ),
)
self.___attrib = { a : glGetAttribLocation (self.__program, a) for a in ['a_pos', 'a_nv', 'a_col'] }
print(self.___attrib)
self.___uniform = { u : glGetUniformLocation (self.__program, u) for u in ['u_model', 'u_view', 'u_proj'] }
print(self.___uniform)
v = [[-1,-1,1], [1,-1,1], [1,1,1], [-1,1,1], [-1,-1,-1], [1,-1,-1], [1,1,-1], [-1,1,-1]]
c = [[1.0, 0.0, 0.0], [1.0, 0.5, 0.0], [1.0, 0.0, 1.0], [1.0, 1.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
n = [[0,0,1], [1,0,0], [0,0,-1], [-1,0,0], [0,1,0], [0,-1,0]]
e = [[0,1,2,3], [1,5,6,2], [5,4,7,6], [4,0,3,7], [3,2,6,7], [1,0,4,5]]
index_array = [si*4+[0, 1, 2, 0, 2, 3][vi] for si in range(6) for vi in range(6)]
attr_array = []
for si in range(len(e)):
for vi in e[si]:
attr_array += [*v[vi], *n[si], *c[si], 1]
self.__no_vert = len(attr_array) // 10
self.__no_indices = len(index_array)
vertex_attributes = np.array(attr_array, dtype=np.float32)
indices = np.array(index_array, dtype=np.uint32)
self.__vao = glGenVertexArrays(1)
self.__vbo, self.__ibo = glGenBuffers(2)
glBindVertexArray(self.__vao)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.__ibo)
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices, GL_STATIC_DRAW)
glBindBuffer(GL_ARRAY_BUFFER, self.__vbo)
glBufferData(GL_ARRAY_BUFFER, vertex_attributes, GL_STATIC_DRAW)
float_size = vertex_attributes.itemsize
glVertexAttribPointer(0, 3, GL_FLOAT, False, 10*float_size, None)
glVertexAttribPointer(1, 3, GL_FLOAT, False, 10*float_size, c_void_p(3*float_size))
glVertexAttribPointer(2, 4, GL_FLOAT, False, 10*float_size, c_void_p(6*float_size))
glEnableVertexAttribArray(0)
glEnableVertexAttribArray(1)
glEnableVertexAttribArray(2)
glEnable(GL_DEPTH_TEST)
glUseProgram(self.__program)
shape = [5, 4, 6]
number_of = shape[0] * shape[1] * shape[2]
self.array3d = np.array(np.random.rand(number_of), dtype=np.float32).reshape(shape)
glActiveTexture(GL_TEXTURE1)
self.tex3DObj = glGenTextures(1)
glBindTexture(GL_TEXTURE_3D, self.tex3DObj)
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAX_LEVEL, 0)
glTexImage3D(GL_TEXTURE_3D, 0, GL_R16F, *self.array3d.shape, 0, GL_RED, GL_FLOAT, self.array3d)
glutReshapeFunc(self.__reshape)
glutDisplayFunc(self.__mainloop)
def run(self):
self.__starttime = 0
self.__starttime = self.elapsed_ms()
glutMainLoop()
def elapsed_ms(self):
return glutGet(GLUT_ELAPSED_TIME) - self.__starttime
def __reshape(self, w, h):
self.__vp_valid = False
def __mainloop(self):
number_of = self.array3d.shape[0] * self.array3d.shape[1] * self.array3d.shape[2]
rand = (np.random.rand(number_of) - 0.5) * 0.05
self.array3d = np.clip(np.add(self.array3d, rand.reshape(self.array3d.shape)), 0, 1)
glTexSubImage3D(GL_TEXTURE_3D, 0, 0, 0, 0, *self.array3d.shape, GL_RED, GL_FLOAT, self.array3d)
if not self.__vp_valid:
self.__vp_size = [glutGet(GLUT_WINDOW_WIDTH), glutGet(GLUT_WINDOW_HEIGHT)]
self.__vp_valid = True
glViewport(0, 0, self.__vp_size[0], self.__vp_size[1])
aspect, ta, near, far = self.__vp_size[0]/self.__vp_size[1], np.tan(np.radians(90.0) / 2), 0.1, 10
proj = np.array(((1/ta/aspect, 0, 0, 0), (0, 1/ta, 0, 0), (0, 0, -(far+near)/(far-near), -1), (0, 0, -2*far*near/(far-near), 0)), np.float32)
view = np.array(((1, 0, 0, 0), (0, 0, -1, 0), (0, 1, 0, 0), (0, 0, -2, 1)), np.float32)
c, s = (f(np.radians(30.0)) for f in [np.cos, np.sin])
viewRotX = np.array(((1, 0, 0, 0), (0, c, s, 0), (0, -s, c, 0), (0, 0, 0, 1)), np.float32)
view = np.matmul(viewRotX, view)
c1, s1, c2, s2, c3, s3 = (f(self.elapsed_ms() * np.pi * 2 / tf) for tf in [5000.0, 7333.0, 10000.0] for f in [np.cos, np.sin])
rotMatZ = np.array(((c3, s3, 0, 0), (-s3, c3, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)), np.float32)
model = rotMatZ
glUniformMatrix4fv(self.___uniform['u_proj'], 1, GL_FALSE, proj )
glUniformMatrix4fv(self.___uniform['u_view'], 1, GL_FALSE, view )
glUniformMatrix4fv(self.___uniform['u_model'], 1, GL_FALSE, model )
glClearColor(0.2, 0.3, 0.3, 1.0)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glDrawElementsInstanced(GL_TRIANGLES, self.__no_indices, GL_UNSIGNED_INT, None, number_of)
glutSwapBuffers()
glutPostRedisplay()
window = MyWindow(800, 600)
window.run()
This won't directly create the sort of visualization you're looking for, but I would highly recommend taking a look at the glumpy package by Nicholas Rougier : https://code.google.com/p/glumpy/. OpenGL can be a pain to use, especially for someone who is not a graphics expert, and glumpy abstracts away most of the pain to let you just display numpy arrays on the screen.

Categories