Recoding from C to Python - python

I'm pretty much a layman in C and I'm learning Python. I need to write the routine described below (in C) for Python:
#include <stdio.h>
#include <math.h>
main()
{
float hold[26], hnew[26];
float dt, dx;
float t, s;
float ho;
float time;
float f1, d2h;
int i;
int nx, nlx;
int n, nend;
int kount, kprint;
dt = 5.0;
dx = 10.0;
t = 0.02;
s = 0.002;
nx = 11;
nlx = nx-1;
ho = 16.0;
for( i = 1; i <= nx; i++ )
{
hold[i] = ho;
hnew[i] = ho;
}
hold[nx] = 11.0;
printf("\t\t\t\thead\t\t\t\t time\n\n");
kount = 1;
kprint = 2;
time = dt;
nend = 100;
for( n = 1; n <= nend; n++ )
{
/* update solution */
for( i = 2; i <= nlx; i++ )
{
f1 = dt*t/s;
d2h = ( hold[i+1] - 2.0*hold[i] + hold[i-1])/(dx*dx);
hnew[i] = hold[i] + (f1*d2h);
}
for( i = 1; i <= nlx; i++ )
{
hold[i] = hnew[i];
}
if( kount == kprint )
{
for( i = 1; i <= nx; i++ )
{
printf(" %.2f",hold[i]);
}
printf(" %6.2f\n",time);
kount = 0;
}
time = time + dt;
kount = kount + 1;
}
}
This is my attempt at Python:
import numpy as np
dt = 5.0
dx = 10.0
t = 0.02
s = 0.002
nx = 11
nlx = nx - 1
ho = 16.0
hold = np.zeros(nx+1)
hnew = np.zeros(nx+1)
for i in range(nx):
hold[i] = ho
hnew[i] = ho
hold[nx] = 11.0
However, I can't get over this because I don't know the Python correspondent of the printf function. What would be the correct form of this function in Python? What does it reffer to?

Just print() in Python with .format.
For example:
x, y = 1, 2
print("x = {0}, y = {1}".format(x, y))
Here's the doc

To print similar to C's printf, the following is an example:
f = 3.25645
g = 3.14159265358979
for fl in (f,g):
print(f'{fl:.2f}')
3.26
3.14
The first f in the print is the format specifier. The f in the braces says to consider the number as a float.

it just print() (see a small program below)
squares = []
for x in range(14):
squares.append(x**2)
squares
squares2 = [x**2 for x in range(100)]
print (squares2)

Related

CUDA: does size of input/output data have to be a multiple of the number of threads per block?

I have a Python code (for implementing RayTracing) that I'm running in parallel with PyCuda.
import pycuda.driver as drv
import pycuda.autoinit
from pycuda.compiler import SourceModule
import numpy as np
from stl import mesh
import time
my_mesh = mesh.Mesh.from_file('test_solid_py.stl')
n = my_mesh.normals
v0 = my_mesh.v0
v1 = my_mesh.v1
v2 = my_mesh.v2
v0_x = v0[:,0]
v0_x = np.ascontiguousarray(v0_x)
v0_y = v0[:,1]
v0_y = np.ascontiguousarray(v0_y)
v0_z = v0[:,2]
v0_z = np.ascontiguousarray(v0_z)
v1_x = v1[:,0]
v1_x = np.ascontiguousarray(v1_x)
v1_y = v1[:,1]
v1_y = np.ascontiguousarray(v1_y)
v1_z = v1[:,2]
v1_z = np.ascontiguousarray(v1_z)
v2_x = v2[:,0]
v2_x = np.ascontiguousarray(v2_x)
v2_y = v2[:,1]
v2_y = np.ascontiguousarray(v2_y)
v2_z = v2[:,2]
v2_z = np.ascontiguousarray(v2_z)
mod = SourceModule("""
#include <math.h>
__global__ void intersect(float *origin,float *dir_x,float *dir_y,float *dir_z,float *v0_x,float *v0_y,float *v0_z,float *v1_x,float *v1_y,float *v1_z,float *v2_x,float *v2_y,float *v2_z,float *int_point_real_x, float *int_point_real_y,float *int_point_real_z)
{
using namespace std;
unsigned int idx = blockDim.x*blockIdx.x + threadIdx.x;
int count = 0;
float v0_current[3];
float v1_current[3];
float v2_current[3];
float dir_current[3] = {dir_x[idx],dir_y[idx],dir_z[idx]};
float int_point[3];
float int_pointS[2][3];
int int_faces[2];
float dist[2];
dist[0] = -999;
int n_tri = 105500;
for(int i = 0; i<n_tri; i++) {
v0_current[0] = v0_x[i];
v0_current[1] = v0_y[i];
v0_current[2] = v0_z[i];
v1_current[0] = v1_x[i];
v1_current[1] = v1_y[i];
v1_current[2] = v1_z[i];
v2_current[0] = v2_x[i];
v2_current[1] = v2_y[i];
v2_current[2] = v2_z[i];
double eps = 0.0000001;
float E1[3];
float E2[3];
float s[3];
for (int j = 0; j < 3; j++) {
E1[j] = v1_current[j] - v0_current[j];
E2[j] = v2_current[j] - v0_current[j];
s[j] = origin[j] - v0_current[j];
}
float h[3];
h[0] = dir_current[1] * E2[2] - dir_current[2] * E2[1];
h[1] = -(dir_current[0] * E2[2] - dir_current[2] * E2[0]);
h[2] = dir_current[0] * E2[1] - dir_current[1] * E2[0];
float a;
a = E1[0] * h[0] + E1[1] * h[1] + E1[2] * h[2];
if (a > -eps && a < eps) {
int_point[0] = false;
}
else {
double f = 1 / a;
float u;
u = f * (s[0] * h[0] + s[1] * h[1] + s[2] * h[2]);
if (u < 0 || u > 1) {
int_point[0] = false;
}
else {
float q[3];
q[0] = s[1] * E1[2] - s[2] * E1[1];
q[1] = -(s[0] * E1[2] - s[2] * E1[0]);
q[2] = s[0] * E1[1] - s[1] * E1[0];
float v;
v = f * (dir_current[0] * q[0] + dir_current[1] * q[1] + dir_current[2] * q[2]);
if (v < 0 || (u + v)>1) {
int_point[0] = false;
}
else {
float t;
t = f * (E2[0] * q[0] + E2[1] * q[1] + E2[2] * q[2]);
if (t > eps) {
for (int j = 0; j < 3; j++) {
int_point[j] = origin[j] + dir_current[j] * t;
}
//return t;
}
}
}
}
if (int_point[0] != false) {
count = count+1;
int_faces[count-1] = i;
dist[count-1] = sqrt(pow((origin[0] - int_point[0]), 2) + pow((origin[1] - int_point[1]), 2) + pow((origin[2] - int_point[2]), 2));
for (int j = 0; j<3; j++) {
int_pointS[count-1][j] = int_point[j];
}
}
}
double min = dist[0];
int ind_min = 0;
for (int i = 0; i < 2; i++){
if (min > dist[i]) {
min = dist[i];
ind_min = i;
}
}
if (dist[0] < -998){
int_point_real_x[idx] = -999;
int_point_real_y[idx] = -999;
int_point_real_z[idx] = -999;
}
else{
int_point_real_x[idx] = int_pointS[ind_min][0];
int_point_real_y[idx] = int_pointS[ind_min][1];
int_point_real_z[idx] = int_pointS[ind_min][2];
}
}
""")
n_rays = 20000
num_threads = 1024
num_blocks = int(n_rays/num_threads)
origin = np.asarray([-2, -2, -2]).astype(np.float32)
origin = np.ascontiguousarray(origin)
rand_x = np.random.randn(n_rays)
rand_y = np.random.randn(n_rays)
rand_z = np.random.randn(n_rays)
direction_x = np.ones((n_rays, 1)) * 3
direction_x = direction_x.astype(np.float32)
direction_x = np.ascontiguousarray(direction_x)
direction_y = np.ones((n_rays, 1)) * 4
direction_y = direction_y.astype(np.float32)
direction_y = np.ascontiguousarray(direction_y)
direction_z = np.ones((n_rays, 1)) * 5
direction_z = direction_z.astype(np.float32)
direction_z = np.ascontiguousarray(direction_z)
int_point_real_x = np.zeros((n_rays, 1)).astype(np.float32)
int_point_real_x = np.ascontiguousarray(int_point_real_x)
int_point_real_y = np.zeros((n_rays, 1)).astype(np.float32)
int_point_real_y = np.ascontiguousarray(int_point_real_y)
int_point_real_z = np.zeros((n_rays, 1)).astype(np.float32)
int_point_real_z = np.ascontiguousarray(int_point_real_z)
intersect = mod.get_function("intersect")
start = time.time()
intersect(drv.In(origin), drv.In(direction_x),drv.In(direction_y),drv.In(direction_z),drv.In(v0_x),drv.In(v0_y),drv.In(v0_z), drv.In(v1_x),drv.In(v1_y),drv.In(v1_z), drv.In(v2_x), drv.In(v2_y), drv.In(v2_z), drv.Out(int_point_real_x),drv.Out(int_point_real_y),drv.Out(int_point_real_z), block=(num_threads, 1, 1), grid=((num_blocks+0), 1, 1))
finish = time.time()
print(finish-start)
I give as input some arrays whose size is 20k (dir_x, dir_y, dir_z) and I have as output 3 arrays (int_point_real_x,int_point_real_y,int_point_real_z) that have the same size as the above mentioned arrays (20k).
If n_rays is a multiple of num_threads, e.g. n_rays=19456 and num_threads=1024, then int_point_real_x_y_z are correctly filled by the kernel.
Otherwise, if n_rays is NOT a multiple of num_threads, e.g. n_rays=20000 (what I really need) and num_threads=1024, then int_point_real_x_y_z are filled by the kernel up to position 19455 and the 544 spots left in the array are not filled.
Does anyone know if this is a rule of CUDA?
If it's not, how could I modify my code in order to use an arbitrary size of input array (and not only multiple of num_threads)?
Thanks
your int(n_rays/num_threads) is rounding down
to fix this, you need to round up and then put a condition into the kernel to enforce that idx is valid and "do nothing" if it's not. this will cause some cores to waste time, but your code looks pretty suboptimal anyway so it probably won't matter much

Data corruption Piping between C++ and Python

I am writing some code that takes binary data from Python, Pipes it to C++, does some processing on the data, (in this case calculating a mutual information metric) and then pipes the results back to python. While testing I have found that everything works fine if the data I send is a set of 2 arrays with dimensions less than 1500 X 1500, but if I send 2 arrays that are 2K X 2K I get back a lot of corrupted nonsense.
I currently believe the algorithmic portion of the code is fine because it provides the expected answers during testing with small (<=1500 X1500) arrays. That leads me to believe that this is an issue with either the stdin or stdout piping. That maybe I’m passing some intrinsic limit somewhere.
The Python Code and C++ code are below.
Python Code:
import subprocess
import struct
import sys
import numpy as np
#set up the variables needed
bytesPerDouble = 8
sizeX = 2000
sizeY = 2000
offset = sizeX*sizeY
totalBytesPerArray = sizeX*sizeY*bytesPerDouble
totalBytes = totalBytesPerArray*2 #the 2 is because we pass 2 different versions of the 2D array
#setup the testing data array
a = np.zeros(sizeX*sizeY*2, dtype='d')
for i in range(sizeX):
for j in range(sizeY):
a[j+i*sizeY] = i
a[j+i*sizeY+offset] = i
if i % 10 == 0:
a[j+i*sizeY+offset] = j
data = a.tobytes('C')
strTotalBytes = str(totalBytes)
strLineBytes = str(sizeY*bytesPerDouble)
#communicate with c++ code
print("starting C++ code")
command = "C:\Python27\PythonPipes.exe"
proc = subprocess.Popen([command, strTotalBytes, strLineBytes, str(sizeY), str(sizeX)], stdin=subprocess.PIPE,stderr=subprocess.PIPE,stdout=subprocess.PIPE)
ByteBuffer = (data)
proc.stdin.write(ByteBuffer)
print("Reading results back from C++")
for i in range(sizeX):
returnvalues = proc.stdout.read(sizeY*bytesPerDouble)
a = buffer(returnvalues)
b = struct.unpack_from(str(sizeY)+'d', a)
print str(b) + " " + str(i)
print('done')
C++ Code:
Main function:
int main(int argc, char **argv) {
int count = 0;
long totalbytes = stoi(argv[argc-4], nullptr,10); //bytes being transfered
long bytechunk = stoi(argv[argc - 3], nullptr, 10); //bytes being transfered at a time
long height = stoi(argv[argc-2], nullptr, 10); //bytes being transfered at a time
long width = stoi(argv[argc-1], nullptr, 10); //bytes being transfered at a time
long offset = totalbytes / sizeof(double) / 2;
data = new double[totalbytes/sizeof(double)];
int columnindex = 0;
//read in data from pipe
while (count<totalbytes) {
fread(&(data[columnindex]), 1, bytechunk, stdin);
columnindex += bytechunk / sizeof(double);
count += bytechunk;
}
//calculate the data transform
MutualInformation MI = MutualInformation();
MI.Initialize(data, height, width, offset);
MI.calcMI();
count = 0;
//*
//write out data to pipe
columnindex = 0;
while (count<totalbytes/2) {
fwrite(&(MI.getOutput()[columnindex]), 1, bytechunk, stdout);
fflush(stdout);
count += bytechunk;
columnindex += bytechunk/sizeof(double);
}
//*/
delete [] data;
return 0;
}
and in case you need it the actual processing code:
double MutualInformation::calcMI(){
double rvalue = 0.0;
std::map<int, map<int, double>> lHistXY = map<int, map<int, double>>();
std::map<int, double> lHistX = map<int, double>();
std::map<int, double> lHistY = map<int, double>();
typedef std::map<int, std::map<int, double>>::iterator HistXY_iter;
typedef std::map<int, double>::iterator HistY_iter;
//calculate Entropys and MI
double MI = 0.0;
double Hx = 0.0;
double Hy = 0.0;
double Px = 0.0;
double Py = 0.0;
double Pxy = 0.0;
//scan through the image
int ip = 0;
int jp = 0;
int chipsize = 3;
//setup zero array
double * zeros = new double[this->mHeight];
for (int j = 0; j < this->mHeight; j++){
zeros[j] = 0.0;
}
//zero out Output array
for (int i = 0; i < this->mWidth; i++){
memcpy(&(this->mOutput[i*this->mHeight]), zeros, this->mHeight*8);
}
double index = 0.0;
for (int ioutter = chipsize; ioutter < (this->mWidth - chipsize); ioutter++){
//write out processing status
//index = (double)ioutter;
//fwrite(&index, 8, 1, stdout);
//fflush(stdout);
//*
for (int j = chipsize; j < (this->mHeight - chipsize); j++){
//clear the histograms
lHistX.clear();
lHistY.clear();
lHistXY.clear();
//chip out a section of the image
for (int k = -chipsize; k <= chipsize; k++){
for (int l = -chipsize; l <= chipsize; l++){
ip = ioutter + k;
jp = j + l;
//update X histogram
if (lHistX.count(int(this->mData[ip*this->mHeight + jp]))){
lHistX[int(this->mData[ip*this->mHeight + jp])] += 1.0;
}else{
lHistX[int(this->mData[ip*this->mHeight + jp])] = 1.0;
}
//update Y histogram
if (lHistY.count(int(this->mData[ip*this->mHeight + jp+this->mOffset]))){
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] += 1.0;
}
else{
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] = 1.0;
}
//update X and Y Histogram
if (lHistXY.count(int(this->mData[ip*this->mHeight + jp]))){
//X Key exists check if Y key exists
if (lHistXY[int(this->mData[ip*this->mHeight + jp])].count(int(this->mData[ip*this->mHeight + jp + this->mOffset]))){
//X & Y keys exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] += 1;
}else{
//X exist but Y doesn't
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
}
}else{
//X Key Didn't exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
};
}
}
//calculate PMI, Hx, Hy
// iterator->first = key
// iterator->second = value
MI = 0.0;
Hx = 0.0;
Hy = 0.0;
for (HistXY_iter Hist2D_iter = lHistXY.begin(); Hist2D_iter != lHistXY.end(); Hist2D_iter++) {
Px = lHistX[Hist2D_iter->first] / ((double) this->mOffset);
Hx -= Px*log(Px);
for (HistY_iter HistY_iter = Hist2D_iter->second.begin(); HistY_iter != Hist2D_iter->second.end(); HistY_iter++) {
Py = lHistY[HistY_iter->first] / ((double) this->mOffset);
Hy -= Py*log(Py);
Pxy = HistY_iter->second / ((double) this->mOffset);
MI += Pxy*log(Pxy / Py / Px);
}
}
//normalize PMI to max(Hx,Hy) so that the PMI value runs from 0 to 1
if (Hx >= Hy && Hx > 0.0){
MI /= Hx;
}else if(Hy > Hx && Hy > 0.0){
MI /= Hy;
}
else{
MI = 0.0;
}
//write PMI to data output array
if (MI < 1.1){
this->mOutput[ioutter*this->mHeight + j] = MI;
}
else{
this->mOutput[ioutter*this->mHeight + j] = 0.0;
}
}
}
return rvalue;
}
with arrays that return something that makes sense I get output bounded between 0 and 1 like this:
(0.0, 0.0, 0.0, 0.7160627908692593, 0.6376472316395495, 0.5728801401524277,...
with the 2Kx2K or higher arrays I get nonesense like this (even though the code clamps the values between 0 and 1):
(-2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228, -2.2491400820412374e+228,...
I would like to know why this code is corrupting the data set after it is assigned between 0.0 and 1, and whether or not it is a piping issue, a stdin/stdout issue, a buffer issue of some sort, or a coding issue I am simply not seeing.
Update I tried passing the data in smaller chunks using the code that Chris suggested with no luck. also of note is that I added a catch for ferror on stdout and it never got tripped so I am pretty sure that the bytes are at least making it to stdout. Is it possible that something else is writing to stdout somehow? maybe an extra byte making its way into stdout while my program is running? I find this doubtful as the errors are appearing consistently on the 4th fwrite read in the 10th entry.
Per Craig's request here is the full C++ code (the full Python Code is already posted): it is sitting in 3 files:
main.cpp
#include <stdio.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include "./MutualInformation.h"
double * data;
using namespace std;
void
xxwrite(unsigned char *buf, size_t wlen, FILE *fo)
{
size_t xlen;
for (; wlen > 0; wlen -= xlen, buf += xlen) {
xlen = wlen;
if (xlen > 1024)
xlen = 1024;
xlen = fwrite(buf, 1, xlen, fo);
fflush(fo);
}
}
int main(int argc, char **argv) {
int count = 0;
long totalbytes = stoi(argv[argc-4], nullptr,10); //bytes being transfered
long bytechunk = stoi(argv[argc - 3], nullptr, 10); //bytes being transfered at a time
long height = stoi(argv[argc-2], nullptr, 10); //bytes being transfered at a time
long width = stoi(argv[argc-1], nullptr, 10); //bytes being transfered at a time
long offset = totalbytes / sizeof(double) / 2;
data = new double[totalbytes/sizeof(double)];
int columnindex = 0;
//read in data from pipe
while (count<totalbytes) {
fread(&(data[columnindex]), 1, bytechunk, stdin);
columnindex += bytechunk / sizeof(double);
count += bytechunk;
}
//calculate the data transform
MutualInformation MI = MutualInformation();
MI.Initialize(data, height, width, offset);
MI.calcMI();
count = 0;
columnindex = 0;
while (count<totalbytes/2) {
xxwrite((unsigned char*)&(MI.getOutput()[columnindex]), bytechunk, stdout);
count += bytechunk;
columnindex += bytechunk/sizeof(double);
}
delete [] data;
return 0;
}
MutualInformation.h
#include <map>
using namespace std;
class MutualInformation
{
private:
double * mData;
double * mOutput;
long mHeight;
long mWidth;
long mOffset;
public:
MutualInformation();
~MutualInformation();
bool Initialize(double * data, long Height, long Width, long Offset);
const double * getOutput();
double calcMI();
};
MutualInformation.cpp
#include "MutualInformation.h"
MutualInformation::MutualInformation()
{
this->mData = nullptr;
this->mOutput = nullptr;
this->mHeight = 0;
this->mWidth = 0;
}
MutualInformation::~MutualInformation()
{
delete[] this->mOutput;
}
bool MutualInformation::Initialize(double * data, long Height, long Width, long Offset){
bool rvalue = false;
this->mData = data;
this->mHeight = Height;
this->mWidth = Width;
this->mOffset = Offset;
//allocate output data
this->mOutput = new double[this->mHeight*this->mWidth];
return rvalue;
}
const double * MutualInformation::getOutput(){
return this->mOutput;
}
double MutualInformation::calcMI(){
double rvalue = 0.0;
std::map<int, map<int, double>> lHistXY = map<int, map<int, double>>();
std::map<int, double> lHistX = map<int, double>();
std::map<int, double> lHistY = map<int, double>();
typedef std::map<int, std::map<int, double>>::iterator HistXY_iter;
typedef std::map<int, double>::iterator HistY_iter;
//calculate Entropys and MI
double MI = 0.0;
double Hx = 0.0;
double Hy = 0.0;
double Px = 0.0;
double Py = 0.0;
double Pxy = 0.0;
//scan through the image
int ip = 0;
int jp = 0;
int chipsize = 3;
//setup zero array
double * zeros = new double[this->mHeight];
for (int j = 0; j < this->mHeight; j++){
zeros[j] = 0.0;
}
//zero out Output array
for (int i = 0; i < this->mWidth; i++){
memcpy(&(this->mOutput[i*this->mHeight]), zeros, this->mHeight*8);
}
double index = 0.0;
for (int ioutter = chipsize; ioutter < (this->mWidth - chipsize); ioutter++){
for (int j = chipsize; j < (this->mHeight - chipsize); j++){
//clear the histograms
lHistX.clear();
lHistY.clear();
lHistXY.clear();
//chip out a section of the image
for (int k = -chipsize; k <= chipsize; k++){
for (int l = -chipsize; l <= chipsize; l++){
ip = ioutter + k;
jp = j + l;
//update X histogram
if (lHistX.count(int(this->mData[ip*this->mHeight + jp]))){
lHistX[int(this->mData[ip*this->mHeight + jp])] += 1.0;
}else{
lHistX[int(this->mData[ip*this->mHeight + jp])] = 1.0;
}
//update Y histogram
if (lHistY.count(int(this->mData[ip*this->mHeight + jp+this->mOffset]))){
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] += 1.0;
}
else{
lHistY[int(this->mData[ip*this->mHeight + jp+this->mOffset])] = 1.0;
}
//update X and Y Histogram
if (lHistXY.count(int(this->mData[ip*this->mHeight + jp]))){
//X Key exists check if Y key exists
if (lHistXY[int(this->mData[ip*this->mHeight + jp])].count(int(this->mData[ip*this->mHeight + jp + this->mOffset]))){
//X & Y keys exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] += 1;
}else{
//X exist but Y doesn't
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
}
}else{
//X Key Didn't exist
lHistXY[int(this->mData[ip*this->mHeight + jp])][int(this->mData[ip*this->mHeight + jp + this->mOffset])] = 1;
};
}
}
//calculate PMI, Hx, Hy
// iterator->first = key
// iterator->second = value
MI = 0.0;
Hx = 0.0;
Hy = 0.0;
for (HistXY_iter Hist2D_iter = lHistXY.begin(); Hist2D_iter != lHistXY.end(); Hist2D_iter++) {
Px = lHistX[Hist2D_iter->first] / ((double) this->mOffset);
Hx -= Px*log(Px);
for (HistY_iter HistY_iter = Hist2D_iter->second.begin(); HistY_iter != Hist2D_iter->second.end(); HistY_iter++) {
Py = lHistY[HistY_iter->first] / ((double) this->mOffset);
Hy -= Py*log(Py);
Pxy = HistY_iter->second / ((double) this->mOffset);
MI += Pxy*log(Pxy / Py / Px);
}
}
//normalize PMI to max(Hx,Hy) so that the PMI value runs from 0 to 1
if (Hx >= Hy && Hx > 0.0){
MI /= Hx;
}else if(Hy > Hx && Hy > 0.0){
MI /= Hy;
}
else{
MI = 0.0;
}
//write PMI to data output array
if (MI < 1.1){
this->mOutput[ioutter*this->mHeight + j] = MI;
}
else{
this->mOutput[ioutter*this->mHeight + j] = 0.0;
//cout << "problem with output";
}
}
}
//*/
return rvalue;
}
SOLVED By 6502
6502's answer below solved my problem. I needed to explicitly tell Windows to use a binary mode for stdin / stdout. to do that I had to include 2 new header files in my main cpp file.
#include <fcntl.h>
#include <io.h>
add the following lines of code (modified away from 6502's POSIX versions because Visual Studio complained) to the beginning of my main function
_setmode(_fileno(stdout), O_BINARY);
_setmode(_fileno(stdin), O_BINARY);
and then add these lines to my Python code:
import os, msvcrt
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
The problem is that stdin/stdout in windows are opened in text mode, not in binary mode and therefore will mess up when the character 13 (\r) is sent.
You can set for example binary mode in Python with
import os, msvcrt
msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
msvcrt.setmode(sys.stdin.fileno(), os.O_BINARY)
and in C++ with
_setmode(fileno(stdout), O_BINARY);
_setmode(fileno(stdin), O_BINARY);
See https://msdn.microsoft.com/en-us/library/tw4k6df8.aspx
Your C++ fwrite code does not account for getting a "short" transfer.
Here's a slight tweak:
//write out data to pipe
columnindex = 0;
while (count < totalbytes / 2) {
wlen = fwrite(&(MI.getOutput()[columnindex]), 1, bytechunk, stdout);
fflush(stdout);
count += wlen;
columnindex += wlen / sizeof(double);
}
Note: You still need to be careful as this would still have issues if wlen returns and it's not a multiple of sizeof(double). For example, if bytechunk were 16 and wlen came back with 14, you'd need an additional fwrite with length 2 before continuing the loop. A generalization of this is just to treat the entire data matrix as a giant byte buffer and loop on that.
Actually, you'll get about the same efficiency with many much smaller transfers that are capped by a fixed (i.e. "known safe amount") of [say] 1024 bytes. This works because the output is a byte stream.
Here's a slightly more general solution that I've often used:
void
xxwrite(void *buf,size_t wlen,FILE *fo)
{
size_t xlen;
for (; wlen > 0; wlen -= xlen, buf += xlen) {
xlen = wlen;
if (xlen > 1024)
xlen = 1024;
xlen = fwrite(buf,1,xlen,fo);
fflush(fo);
}
}
//write out data to pipe
columnindex = 0;
while (count < totalbytes / 2) {
xxwrite(&(MI.getOutput()[columnindex]), bytechunk, stdout);
count += bytechunk;
columnindex += bytechunk / sizeof(double);
}
UPDATE:
I've downloaded all your code and run it. I've got good news and bad news: The code runs fine here, even for a matrix size above 3000. I ran it both using xxwrite and without and the results were the same.
Using my limited python skills, I added some pretty print to your python script (e.g. some line wrap) and had it check every value for range and annotate any bad values. There were none found by the script. Also, visual inspection of the values turned up nothing [this was true before the pretty print, so it hasn't introduced anything]. Just lots of zeros and then blocks in the 0.9 range.
The only difference I can see is that I'm using gcc [and, of course, python] on linux. But, from your script it seems your using Windows [based on the C:\... path for your C++ executable. This shouldn't matter for this application, but I mention it anyway.
So, pipes work here. One thing you might try is to direct the C++ output to a file. Then, have the script read back from the file (i.e. no pipe) and see if that makes a difference. I tend to think not, but ...
Also, I don't know what compiler and python implementation you're using under Windows. Whenever I have to do this, I usually have Cygwin installed as it gives one of the closest implementations of linux/Unix-like environment (i.e. pipes are more likely to work as advertised).
Anyway, here's the modified script. Also note that I added os.getenv to grab alternate matrix sizes and an alternate place for the C++ executable, so that it would work for both of us with minimal pain
#!/usr/bin/python
import subprocess
import struct
import sys
import os
import numpy as np
val = os.getenv("MTX","2000")
sizeX = int(val)
sizeY = sizeX
print "sizeX=%d sizeY=%d" % (sizeX,sizeY)
#set up the variables needed
bytesPerDouble = 8
offset = sizeX*sizeY
totalBytesPerArray = sizeX*sizeY*bytesPerDouble
totalBytes = totalBytesPerArray*2 #the 2 is because we pass 2 different versions of the 2D array
#setup the testing data array
a = np.zeros(sizeX*sizeY*2, dtype='d')
for i in range(sizeX):
for j in range(sizeY):
a[j+i*sizeY] = i
a[j+i*sizeY+offset] = i
if i % 10 == 0:
a[j+i*sizeY+offset] = j
data = a.tobytes('C')
strTotalBytes = str(totalBytes)
strLineBytes = str(sizeY*bytesPerDouble)
#communicate with c++ code
print("starting C++ code")
command = os.getenv("CPGM",None);
if command is None:
command = "C:\Python27\PythonPipes.exe"
proc = subprocess.Popen([command, strTotalBytes, strLineBytes, str(sizeY), str(sizeX)], stdin=subprocess.PIPE,stderr=subprocess.PIPE,stdout=subprocess.PIPE)
ByteBuffer = (data)
proc.stdin.write(ByteBuffer)
def prt(i,b):
hangflg = 0
per = 8
for j in range(0,len(b)):
if ((j % per) == 0):
print("[%d,%d]" % (i,j)),
q = b[j]
print(q),
hangflg = 1
if (q < 0.0) or (q > 1.0):
print("=WTF"),
if ((j % per) == (per - 1)):
print("")
hangflg = 0
if (hangflg):
print("")
print("Reading results back from C++")
for i in range(sizeX):
returnvalues = proc.stdout.read(sizeY*bytesPerDouble)
a = buffer(returnvalues)
b = struct.unpack_from(str(sizeY)+'d', a)
prt(i,b)
###print str(b) + " " + str(i)
###print str(i) + ": " + str(b)
print('done')

Python weave to speed up our code

We would really appreciate any kind of help, because we are driving crazy with our program making it faster using C language.
The values obtained don't change, always are 0,0,0,0
Here is the code, running in Linux:
from scipy import weave
pasa = 0
coorX = -11.8
coorY = -7.9
INC=0.01296
##def weave_update():
code="""
int i,j, pasa;
double coorX, coorY,INC;
for (i=0; i < 1296;i++){
yminf = coorY + INC*(i);
ymaxf = yminf + INC;
for (j=0; j < 1936;j++){
xminc = coorX + INC*(j);
xmaxc = xminc + INC;
pasa = 1;
break;
}
if (pasa == 1){
break;
}
}
"""
weave.inline(code,['yminf','xminc','xmaxc','ymaxf'],type_converters=weave.converters.blitz,compiler='gcc')
print yminf,xminc,xmaxc,ymaxf
Looks like two issues. First, you need to pass in all of the variables that the C code needs access to from python. So, your inline call needs to be:
weave.inline(code, ['coorX','coorY','INC'])
Secondly, you need to return the values you want from the weave code, because modifying them in C doesn't affect their value in Python. Here's one way to do it:
py::tuple ret(4);
ret[0] = yminf;
ret[1] = xminc;
ret[2] = xmaxc;
ret[3] = ymaxf;
return_val = ret;
With these modifications, the following file seems to work correctly:
from scipy import weave
coorX = -11.8
coorY = -7.9
INC = 0.01296
code="""
int i,j, pasa = 0;
double yminf,xminc,xmaxc,ymaxf;
for (i=0; i < 1296;i++){
yminf = coorY + INC*(i);
ymaxf = yminf + INC;
for (j=0; j < 1936;j++){
xminc = coorX + INC*(j);
xmaxc = xminc + INC;
pasa = 1;
break;
}
if (pasa == 1){
break;
}
}
py::tuple ret(4);
ret[0] = yminf;
ret[1] = xminc;
ret[2] = xmaxc;
ret[3] = ymaxf;
return_val = ret;
"""
yminf,xminc,xmaxc,ymaxf = weave.inline(code,['coorX','coorY','INC'])
print yminf,xminc,xmaxc,ymaxf

Java to Python Code Not Working

I am trying to convert the Java Code to Python Code and i have done it so far. Java Code works but Python Code doesn't work. Please help me.
Python Code
import random
class QLearning():
alpha = 0.1
gamma = 0.9
state_a = 0
state_b = 1
state_c = 2
state_d = 3
state_e = 4
state_f = 5
states_count = 6
states = [state_a, state_b, state_c, state_d, state_e, state_f]
R = [[0 for x in range(states_count)] for x in range(states_count)]
Q = [[0 for x in range(states_count)] for x in range(states_count)]
action_from_a = [state_b, state_d]
action_from_b = [state_a, state_c, state_e]
action_from_c = [state_c]
action_from_d = [state_a, state_e]
action_from_e = [state_b, state_d, state_f]
action_from_f = [state_c, state_e]
actions = [action_from_a, action_from_b, action_from_c, action_from_d, action_from_e, action_from_f]
state_names = ["A","B","C","D","E","F"]
def __init__(self):
self.R[self.state_b][self.state_c] = 100
self.R[self.state_f][self.state_c] = 100
def run(self):
for i in range(1000):
state = random.randrange(self.states_count)
while(state != self.state_c):
actions_from_state = self.actions[state]
index = random.randrange(len(actions_from_state))
action = actions_from_state[index]
next_state = action
q = self.Q_Value(state, action)
max_Q = self.max_q(next_state)
r = self.R_Value(state, action)
value = q + self.alpha * (r + self.gamma * max_Q - q)
self.set_q(state, action, value)
state = next_state
def max_q(self, s):
self.run().actions_from_state = self.actions[s]
max_value = 5
for i in range(len(self.run().actions_from_state)):
self.run().next_state = self.run().actions_from_state[i]
self.run().value = self.Q[s][self.run().next_state]
if self.run().value > max_value:
max_value = self.run().value
return max_value
def policy(self, state):
self.run().actions_from_state = self.actions[state]
max_value = 5
policy_goto_state = state
for i in range(len(self.run().actions_from_state)):
self.run().next_state = self.run().actions_from_state[i]
self.run().value = self.Q[state][self.run().next_state]
if self.run().value > max_value:
max_value = self.run().value
policy_goto_state = self.run().next_state
return policy_goto_state
def Q_Value(self, s,a):
return self.Q[s][a]
def set_q(self, s, a, value):
self.Q[s][a] = value
def R_Value(self, s, a):
return self.R[s][a]
def print_result(self):
print("Print Result")
for i in range(len(self.Q)):
print("Out From (0)".format(self.state_names[i]))
for j in range(len(self.Q[i])):
print(self.Q[i][j])
def show_policy(self):
print("Show Policy")
for i in range(len(self.states)):
fro = self.states[i]
to = self.policy(fro)
print("From {0} goto {1}".format(self.state_names[fro], self.state_names[to]))
obj = QLearning()
obj.run()
obj.print_result()
obj.show_policy()
Java Code
import java.text.DecimalFormat;
import java.util.Random;
public class Qlearning {
final DecimalFormat df = new DecimalFormat("#.##");
// path finding
final double alpha = 0.1;
final double gamma = 0.9;
// states A,B,C,D,E,F
// e.g. from A we can go to B or D
// from C we can only go to C
// C is goal state, reward 100 when B->C or F->C
//
// _______
// |A|B|C|
// |_____|
// |D|E|F|
// |_____|
//
final int stateA = 0;
final int stateB = 1;
final int stateC = 2;
final int stateD = 3;
final int stateE = 4;
final int stateF = 5;
final int statesCount = 6;
final int[] states = new int[]{stateA,stateB,stateC,stateD,stateE,stateF};
// http://en.wikipedia.org/wiki/Q-learning
// http://people.revoledu.com/kardi/tutorial/ReinforcementLearning/Q-Learning.htm
// Q(s,a)= Q(s,a) + alpha * (R(s,a) + gamma * Max(next state, all actions) - Q(s,a))
int[][] R = new int[statesCount][statesCount]; // reward lookup
double[][] Q = new double[statesCount][statesCount]; // Q learning
int[] actionsFromA = new int[] { stateB, stateD };
int[] actionsFromB = new int[] { stateA, stateC, stateE };
int[] actionsFromC = new int[] { stateC };
int[] actionsFromD = new int[] { stateA, stateE };
int[] actionsFromE = new int[] { stateB, stateD, stateF };
int[] actionsFromF = new int[] { stateC, stateE };
int[][] actions = new int[][] { actionsFromA, actionsFromB, actionsFromC,
actionsFromD, actionsFromE, actionsFromF };
String[] stateNames = new String[] { "A", "B", "C", "D", "E", "F" };
public Qlearning() {
init();
}
public void init() {
R[stateB][stateC] = 100; // from b to c
R[stateF][stateC] = 100; // from f to c
}
public static void main(String[] args) {
long BEGIN = System.currentTimeMillis();
Qlearning obj = new Qlearning();
obj.run();
obj.printResult();
obj.showPolicy();
long END = System.currentTimeMillis();
System.out.println("Time: " + (END - BEGIN) / 1000.0 + " sec.");
}
void run() {
/*
1. Set parameter , and environment reward matrix R
2. Initialize matrix Q as zero matrix
3. For each episode: Select random initial state
Do while not reach goal state o
Select one among all possible actions for the current state o
Using this possible action, consider to go to the next state o
Get maximum Q value of this next state based on all possible actions o
Compute o Set the next state as the current state
*/
// For each episode
Random rand = new Random();
for (int i = 0; i < 1000; i++) { // train episodes
// Select random initial state
int state = rand.nextInt(statesCount);
while (state != stateC) // goal state
{
// Select one among all possible actions for the current state
int[] actionsFromState = actions[state];
// Selection strategy is random in this example
int index = rand.nextInt(actionsFromState.length);
int action = actionsFromState[index];
// Action outcome is set to deterministic in this example
// Transition probability is 1
int nextState = action; // data structure
// Using this possible action, consider to go to the next state
double q = Q(state, action);
double maxQ = maxQ(nextState);
int r = R(state, action);
double value = q + alpha * (r + gamma * maxQ - q);
setQ(state, action, value);
// Set the next state as the current state
state = nextState;
}
}
}
double maxQ(int s) {
int[] actionsFromState = actions[s];
double maxValue = Double.MIN_VALUE;
for (int i = 0; i < actionsFromState.length; i++) {
int nextState = actionsFromState[i];
double value = Q[s][nextState];
if (value > maxValue)
maxValue = value;
}
return maxValue;
}
// get policy from state
int policy(int state) {
int[] actionsFromState = actions[state];
double maxValue = Double.MIN_VALUE;
int policyGotoState = state; // default goto self if not found
for (int i = 0; i < actionsFromState.length; i++) {
int nextState = actionsFromState[i];
double value = Q[state][nextState];
if (value > maxValue) {
maxValue = value;
policyGotoState = nextState;
}
}
return policyGotoState;
}
double Q(int s, int a) {
return Q[s][a];
}
void setQ(int s, int a, double value) {
Q[s][a] = value;
}
int R(int s, int a) {
return R[s][a];
}
void printResult() {
System.out.println("Print result");
for (int i = 0; i < Q.length; i++) {
System.out.print("out from " + stateNames[i] + ": ");
for (int j = 0; j < Q[i].length; j++) {
System.out.print(df.format(Q[i][j]) + " ");
}
System.out.println();
}
}
// policy is maxQ(states)
void showPolicy() {
System.out.println("\nshowPolicy");
for (int i = 0; i < states.length; i++) {
int from = states[i];
int to = policy(from);
System.out.println("from "+stateNames[from]+" goto "+stateNames[to]);
}
}
}
Traceback
C:\Python33\python.exe "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py"
Traceback (most recent call last):
File "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py", line 4, in <module>
class QLearning():
File "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py", line 19, in QLearning
R = [[0 for x in range(states_count)] for x in range(states_count)]
File "C:/Users/Ajay/Documents/Python Scripts/RL/QLearning.py", line 19, in <listcomp>
R = [[0 for x in range(states_count)] for x in range(states_count)]
NameError: global name 'states_count' is not defined
To access all of the class attributes you define (i.e. everything between class QLearning and def __init__), you need to use self or the class name:
self.states_count
or
QLearning.states_count
I don't know the algorithm, but it is possible that these class attributes should be instance attributes (i.e. separate for each instance of the class, rather than shared amongst all instances) and therefore defined in __init__ (or other instance methods) using self anyway.

Segmentation fault in if clause using gcc/ubuntu

I am writing a c-function for use in python. When run a segmentation fault occurs, which, according to printf calls, is thrown at an if-clause. The output to the shell is:
row 1, col 0: 1.000000
row:0, -col:0, index:0
-2: 0.000000
else
row:0, -col:1, index:1
-2: 0.000000
else
row:0, -col:2, index:2
-2: 0.000000
else
row:0, -col:3, index:3
-2: 0.000000
else
row:0, -col:4, index:4
-2: 0.000000
else
row:1, -col:0, index:5
-2: 1.000000
Speicherzugriffsfehler (Speicherabzug geschrieben)
(the last line means segmentation fault)
and the c-code is:
#include <stdio.h>
#include <math.h>
#define pi 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
void hough(const void* img, int imgRowCount, int imgColCount, const void* thetas, int thetaCount, const void* rhos, int rhoCount, void* out)
{
const double* imgD = (double*) img;
double* outD = (double*)out;
const double* thetasD = (double*)thetas;
const double* rhosD = (double*)rhos;
printf("row 1, col 0: %f\n", imgD[getIndex(1, 0, imgColCount)]);
int row, col, thetaInd, rhoInd, index;
double rhoVal, minDiff, diff, tmp;
for(row = 0; row<imgRowCount; row++)
{
for(col = 0; col<imgColCount; col++)
{
printf("row:%d, -col:%d, index:%d\n", row, col, getIndex(row, col, imgColCount));
tmp = imgD[getIndex(row, col, imgColCount)];
printf("-2: %f\n", tmp);
if (tmp>0.0)
{
printf("-1");
for(thetaInd = 0; thetaInd<thetaCount; thetaInd++)
{
rhoVal = col*cos(thetasD[thetaInd]*(pi/180)) + row*sin(thetasD[thetaInd]*(pi/180));
minDiff = INFINITY;
index = -1;
for(rhoInd = 0; rhoInd<rhoCount; rhoInd++)
{
diff = abs(rhoVal-rhosD[rhoInd]);
if(diff<minDiff)
{
minDiff = diff;
index = rhoInd;
}
}
if(index>=0)
{
printf("1\n");
outD[getIndex(index, thetaInd, thetaCount)] += 1;
}
}
}
else
{
printf("else\n");
}
}
}
}
int getIndex(int row, int col, int maxCol)
{
return col + row*maxCol;
}
and at last the python code beeing used:
import numpy as np
import ctypes
from scipy.misc import imread
def makeReady(arr):
return np.require(arr, dtype=np.double, requirements=["C_CONTIGUOUS"])
def hough(imgBin, thetaRes=1, rhoRes=1):
if len(imgBin.shape) > 2:
imgBin = np.mean(imgBin, axis=2)
if imgBin.max() > 1:
imgBin /= imgBin.max()
if ((imgBin!=0) * (imgBin!=1)).sum()>0:
imgBin = imgBin > (imgBin.max()/2.0)
nR,nC = imgBin.shape
theta = np.linspace(-90.0, 90.0, np.ceil(180.0/thetaRes) + 1.0)
D = np.sqrt((nR - 1)**2 + (nC - 1)**2)
q = np.ceil(D/rhoRes)
nrho = 2*q + 1
rho = np.linspace(-q*rhoRes, q*rhoRes, nrho)
H = np.zeros((len(rho), len(theta)))
imgC = makeReady(imgBin)
thetasC = makeReady(theta)
rhosC = makeReady(rho)
outC = makeReady(H)
lib = ctypes.cdll.LoadLibrary("./hough.so")
lib.hough(imgC.ctypes.data_as(ctypes.c_void_p), imgC.shape[0], imgC.shape[1], thetasC.ctypes.data_as(ctypes.c_void_p), len(thetasC), rhosC.ctypes.data_as(ctypes.c_void_p),outC.ctypes.data_as(ctypes.c_void_p))
if __name__ == "__main__":
img = 1 - (imread("lines.jpeg"))>125
print img.shape
a = np.zeros((5,5))
a[1,0] = 5
hough(a)
what am i doing wrong?
Thank you
The only thing that looks like it could cause that error is going out-of-bounds on an array. Using the function getIndex(...) inside of [] could be causing your problem.
However, due to the difficulty to read the code (no comments, and no context), I recommend using a debugger (like valgrind) to give you information about the location of the error. In fact, valgrind will even print the line number the error occurs on, provided you compile with debug symbols (-g -O0 on gcc and clang).
From the output the error seems to happen in this part of the code:
for(thetaInd = 0; thetaInd<thetaCount; thetaInd++)
{
rhoVal = col*cos(thetasD[thetaInd]*(pi/180)) + row*sin(thetasD[thetaInd]*(pi/180));
minDiff = INFINITY;
index = -1;
for(rhoInd = 0; rhoInd<rhoCount; rhoInd++)
{
diff = abs(rhoVal-rhosD[rhoInd]);
if(diff<minDiff)
{
minDiff = diff;
index = rhoInd;
}
}
if(index>=0)
{
printf("1\n");
outD[getIndex(index, thetaInd, thetaCount)] += 1;
}
}
A segmentation violation could only be caused here by accessing one of the three arrays (thetasD and rhosD and outD) out of their bounds.
This could only happend if the indices run to far, which in turn could only happen if the for-loops' break condtions are wrong, which could only happen if the wrong values had been passed to hough.
The latter indeed seems to be the case, as the Python script is missing to pass rho's size and though is passing nothing for outD.
This line:
lib.hough(imgC.ctypes.data_as(ctypes.c_void_p), imgC.shape[0], imgC.shape[1],
thetasC.ctypes.data_as(ctypes.c_void_p), len(thetasC),
rhosC.ctypes.data_as(ctypes.c_void_p),
outC.ctypes.data_as(ctypes.c_void_p))
should look like:
lib.hough(imgC.ctypes.data_as(ctypes.c_void_p), imgC.shape[0], imgC.shape[1],
thetasC.ctypes.data_as(ctypes.c_void_p), len(thetasC),
rhosC.ctypes.data_as(ctypes.c_void_p), len(rhosC),
outC.ctypes.data_as(ctypes.c_void_p))

Categories