How to simulate a reaction with an order < 1 in pyomo? - python

I am simulating a chemical reaction of the form A --> B --> C using a chemical batch reactor model. The corresponding ODE is a follows:
dcA/dt = - kA * cA(t) ** nA1
dcB/dt = kA * cA(t) ** nA1 - kB * cB(t) **nB2
dcC/dt = - kB * cB(t) ** nB2
Pyomo solves the ODE system fine if the exponents nA1 and nB2 are 1 or higher. But in my case they below 1 and as the components concentrations approach zero the ode integration fails, giving out only nans. The reason is that once the concentrations approach zero they numerically become values of cA(t) = -10e-20 for example and then the expression cA(t)**nA1 is not solvable any more.
I tried to implement a workaround of the form:
if cA < 0:
R1 = 0
else:
R1 = kA * cA(t) ** nA1
but I wasn't able to do it properly as I had a hard time using the pyomo synthax.
This is the minimal working example:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from pyomo.environ import *
from pyomo.dae import *
V = 40 # l
kA = 0.5 # 1/min
kB = 0.1 # 1/min
nA1 = 0.5
nB2 = 0.5
cAf = 2.0 # mol/l
def batch_plot(t, y):
plt.plot(t, y[:, 0], label = "cA")
plt.plot(t, y[:, 1], label = "cB")
plt.plot(t, y[:, 2], label = "cC")
plt.legend()
def batch():
m = ConcreteModel()
m.t = ContinuousSet(bounds = (0, 500))
m.cA = Var(m.t, domain = NonNegativeReals)
m.cB = Var(m.t, domain = NonNegativeReals)
m.cC = Var(m.t, domain = NonNegativeReals)
m.dcA = DerivativeVar(m.cA, wrt = m.t)
m.dcB = DerivativeVar(m.cB, wrt = m.t)
m.dcC = DerivativeVar(m.cC, wrt = m.t)
m.cA[0] = cAf
m.cB[0] = 0
m.cC[0] = 0
R1 = lambda m, t: kA * m.cA[t] ** nA1
R2 = lambda m, t: kB * m.cB[t] ** nB2
m.odeA = Constraint(m.t, rule = lambda m, t: m.dcA[t] == - R1(m, t) )
m.odeB = Constraint(m.t,
rule = lambda m, t: m.dcB[t] == R1(m, t) - R2(m, t) )
m.odeC = Constraint(m.t,
rule = lambda m, t: m.dcC[t] == R2(m, t) )
return m
tsim, profiles = Simulator(batch(), package = "scipy").simulate(numpoints = 100)
batch_plot(tsim, profiles)
I expect the ode integration to work even with reaction orders below 1.
Does anybody have an idea on how to achieve this?

There are two aims in modifying the power function x^n:
extend to negative x in a smooth way so that the numerical method does not hiccup close to x=0 and
have a small slope for small x so that the numerical integration for very small x has a greater chance to be stable.
The first condition is satisfied by constructs like
x*max(eps,abs(x))^(n-1) or
x*(eps+abs(x-eps))^(n-1),
x*(eps^2+abs(x-eps)^2)^(0.5*(n-1)),
which all have the exact same value x^n for x>eps and are continuous and piecewise smooth. But the slope at x=0 is of the size eps^(n-1) which will require very small step sizes even after the system stabilizes.
The solution is to extract even more integer power from the rational power in the form of
x*abs(x) * max(eps,abs(x))^(n-2)
or one of the other variants for the last factor. For 0<x<eps and n=0.5 this results in the value r(x)=x^2 * eps^(-1.5), so that the equation x'=-k*r(x) has the solution x(t)=x1/(1+x1*k*eps^(-1.5)*(t-t1)) after it fell to a point 0<x1<eps at t=t1. The slope of r is smaller 2, which is nice for numerical integrators.
This was implemented for scipy.integrate.solve_ivp, using method LSODA and rather strict tolerances, with the ODE right side function
# your original function, stabilizes at negative values
power0 = lambda x,n: max(0,x) ** n;
# linear at x=0, small step sizes
def power1(x,n): eps=1e-4; return x * max(eps, abs(x)) ** (n-1);
def power2(x,n): eps=1e-4; return x * (eps**2+(x-eps)**2) ** (0.5*(n-1))
# quadratic at x=0, large step sizes on the tail
eps = 1e-8
power3 = lambda x,n: x * abs(x) * max(eps,abs(x)) ** (n-2)
power4 = lambda x,n: x * abs(x) * (eps**2+(x-eps)**2) ** (0.5*n-1)
# select the power approximation used
power = power3
def model(t,u):
cA, cB, Cc = u;
R1 = kA * power(cA, nA1)
R2 = kB * power(cB, nB2)
return [ -R1, R1-R2, R2 ]
The integration runs successfully, using step sizes 20-30 in the tail end. The resulting plot looks qualitatively correct,
and in the zoom for small values is smooth and remains positive.

Related

solve_ivp discards imaginary part of complex solution

I am computing a solution to the free basis expansion of the dirac equation for electron-positron pairproduction. For this i need to solve a system of equations that looks like this:
Equation for pairproduction, from Mocken at al.
EDIT: This has been solved by passing y0 as complex type into the solver. As is stated in this issue: https://github.com/scipy/scipy/issues/8453 I would definitely consider this a bug but it seems like it has gone under the rock for at least 4 years
for this i am using SciPy's solve_ivp integrator in the following way:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from scipy.integrate import solve_ivp
import scipy.constants as constants
#Impulse
px, py = 0 , 0
#physics constants
e = constants.e
m = constants.m_e # electronmass
c = constants.c
hbar = constants.hbar
#relativistic energy
E = np.sqrt(m**2 *c**4 + (px**2+py**2) * c**2) # E_p
#adiabatic parameter
xi = 1
#Parameter of the system
w = 0.840 #frequency in 1/m_e
N = 8 # amount of amplitudes in window
T = 2* np.pi/w
#unit system
c = 1
hbar = 1
m = 1
#strength of electric field
E_0 = xi*m*c*w/e
print(E_0)
#vectorpotential
A = lambda t,F: -E_0/w *np.sin(t)*F
def linearFenster2(t):
conditions = [t <=0, (t/w>=0) and (t/w <= T/2), (t/w >= T/2) and (t/w<=T*(N+1/2)), (t/w>=T*(N+1/2)) and (t/w<=T*(N+1)), t/w>=T*(N+1)]
funcs = [lambda t: 0, lambda t: 1/np.pi *t, lambda t: 1, lambda t: 1-w/np.pi * (t/w-T*(N+1/2)), lambda t: 0]
return np.piecewise(t,conditions,funcs)
#Coefficient functions
nu = lambda t: -1j/hbar *e*A(w*t,linearFenster2(w*t)) *np.exp(2*1j/hbar * E*t) *(px*py*c**2 /(E*(E+m*c**2)) + 1j*(1- c**2 *py**2/(E*(E+m*c**2))))
kappa = lambda t: 1j*e*A(t,linearFenster2(w*t))* c*py/(E * hbar)
#System to solve
def System(t, y, nu, kappa):
df = kappa(t) *y[0] + nu(t) * y[1]
dg = -np.conjugate(nu(t)) * y[0] + np.conjugate(kappa(t))*y[1]
return np.array([df,dg], dtype=np.cdouble)
def solver(tmin, tmax,teval=None,f0=0,g0=1):
'''solves the system.
#tmin: starttime
#tmax: endtime
#f0: starting percentage of already present electrons of positive energy usually 0
#g0: starting percentage of already present electrons of negative energy, usually 1, therefore full vaccuum
'''
y0=[f0,g0]
tspan = np.array([tmin, tmax])
koeff = np.array([nu,kappa])
sol = solve_ivp(System,tspan,y0,t_eval= teval,args=koeff)
return sol
#Plotting of windowfunction
amount = 10**2
t = np.arange(0, T*(N+1), 1/amount)
vlinearFenster2 = np.array([linearFenster2(w*a) for a in t ], dtype = float)
fig3, ax3 = plt.subplots(1,1,figsize=[24,8])
ax3.plot(t,E_0/w * vlinearFenster2)
ax3.plot(t,A(w*t,vlinearFenster2))
ax3.plot(t,-E_0 /w * vlinearFenster2)
ax3.xaxis.set_minor_locator(ticker.AutoMinorLocator())
ax3.set_xlabel("t in s")
ax3.grid(which = 'both')
plt.show()
sol = solver(0, 70,teval = t)
ts= sol.t
f=sol.y[0]
fsquared = 2* np.absolute(f)**2
plt.plot(ts,fsquared)
plt.show()
The plot for the window function looks like this (and is correct)
window function
however the plot for the solution looks like this:
Plot of pairproduction probability
This is not correct based on the papers graphs (and further testing using mathematica instead).
When running the line 'sol = solver(..)' it says:
\numpy\core\_asarray.py:102: ComplexWarning: Casting complex values to real discards the imaginary part
return array(a, dtype, copy=False, order=order)
I simply do not know why solve_ivp discard the imaginary part. Its absolutely necessary.
Can someone enlighten me who knows more or sees the mistake?
According to the documentation, the y0 passed to solve_ivp must be of type complex in order for the integration to be over the complex domain. A robust way of ensuring this is to add the following to your code:
def solver(tmin, tmax,teval=None,f0=0,g0=1):
'''solves the system.
#tmin: starttime
#tmax: endtime
#f0: starting percentage of already present electrons of positive energy usually 0
#g0: starting percentage of already present electrons of negative energy, usually 1, therefore full vaccuum
'''
f0 = complex(f0) # <-- added
g0 = complex(g0) # <-- added
y0=[f0,g0]
tspan = np.array([tmin, tmax])
koeff = np.array([nu,kappa])
sol = solve_ivp(System,tspan,y0,t_eval= teval,args=koeff)
return sol
I tried the above, and it indeed made the warning disappear. However, the result of the integration seems to be the same regardless.

How to Implement Non-Linear Problem in Firedrake

I am new to firedrake / fenics. I believe I have a relatively simple non-linear toy problem to solve: 1D, 1-component diffusion reaction equation at steady-state. Boundary conditions are no flux at x = 1 and a constant concentration at x = 0.
When the reaction is first order m = 1, this problem solves and gives a reasonable solution. However, I cannot figure out how to implement this problem for reaction orders where m is not equal to 1 or 0.
I have tried various formulations for rxn_func and I have documented the various errors I receive when using these different formulations.
I have consulted the firedrake documentation, specifically: this unsteady non-linear problem. I tried to mimic the formulation there where they use inner(dot(u,nabla_grad(u)), v) to evaluate ((u⋅∇)u)⋅v.
I am pretty sure there is a simple solution, but I cannot decode the error messages I am receiving. Any help is appreciated.
'''
Simple Diffusion Reaction Problem
PDE / Governing Equation
D₁ ∂²c₁/∂x² - kᵣₓₙ⋅(c₁)ᵐ = 0
Boundary Conditions
c₁(x=0) = c₁_∞
𝐍₁(x=L) = 0
'''
import firedrake as fd
import firedrake_adjoint as fda
from firedrake import inner, grad, dot, dx, dS, ds, jump, sqrt
import matplotlib.pyplot as plt
import numpy as np
import os
max_iter = 200
L = 1.0 # cm
Diff_1 = fd.Constant(1.0e-6) # cm² / s
k_rxn = fd.Constant(3.0e-6) # s⁻¹
c_1_bulk = fd.Constant(1.0e-3) # mol / cm³
Flux_1_x_eq_L = fd.Constant(0.0)
# Create mesh
n = 100
mesh = fd.IntervalMesh(n, L) # (ncells, length)
x = fd.SpatialCoordinate(mesh)
# Define discrete function spaces and functions
V = fd.FunctionSpace(mesh, "CG", 1)
W = V
u, v = fd.TrialFunction(W), fd.TestFunction(W)
u_sol = fd.Function(W)
print(f"DOFs: {W.dim()}")
rxn_func = k_rxn * u # works - reaction order = 1
rxn_func = k_rxn * dot(u, u) # NotImplementedError: Cannot take length of non-vector expression.
rxn_func = k_rxn * inner(u, u) # NotImplementedError: Cannot take length of non-vector expression.
rxn_func = k_rxn * pow(u, 2) # ufl.algorithms.check_arities.ArityMismatch: Applying nonlinear operator Power to expression depending on form argument v_1.
# Define and solve the PDE equations
A = (-Diff_1 * inner(grad(u), grad(v)) - inner(rxn_func, v) ) * dx
# Add in the boundary conditions
# weakly imposed
L = -v * Flux_1_x_eq_L * ds(2) # 𝐍₁(x=L) = Flux_1_x_eq_L
# strongly imposed
bc_c1_0 = fd.DirichletBC(W.sub(0), c_1_bulk, 1) # c₁(x=0) = c₁_∞
# solve the system of equations
fd.solve(A == L, u_sol, bcs=[bc_c1_0])
c1 = u_sol
x_coord = mesh.coordinates.dat.data
# plot the concentration profile
fig, axes = plt.subplots(nrows=1, ncols=1)
axes.plot(x_coord, c1.dat.data[:] * 1e3)
axes.set_title('Concentration Profiles')
axes.set_xlabel('Position (cm)')
axes.set_ylabel('Concentration (mol / L)')
fig.tight_layout()
fig.savefig('OneComponent_Diffusion_Reaction.png', format='png')

Convergence tests of Leapfrog method for vectorial wave equation in Python

Considering the following Leapfrog scheme used to discretize a vectorial wave equation with given initial conditions and periodic boundary conditions. I have implemented the scheme and now I want to make numerical convergence tests to show that the scheme is of second order in space and time.
I'm mainly struggling with two points here:
I'm not 100% sure if I implemented the scheme correctly. I really wanted to use slicing because it is so much faster than using loops.
I don't really know how to get the right error plot, because I'm not sure which norm to use. In the examples I have found (they were in 1D) we've always used the L2-Norm.
import numpy as np
import matplotlib.pyplot as plt
# Initial conditions
def p0(x):
return np.cos(2 * np.pi * x)
def u0(x):
return -np.cos(2 * np.pi * x)
# exact solution
def p_exact(x, t):
# return np.cos(2 * np.pi * (x + t))
return p0(x + t)
def u_exact(x, t):
# return -np.cos(2 * np.pi * (x + t))
return u0(x + t)
# function for doing one time step, considering the periodic boundary conditions
def leapfrog_step(p, u):
p[1:] += CFL * (u[:-1] - u[1:])
p[0] = p[-1]
u[:-1] += CFL * (p[:-1] - p[1:])
u[-1] = u[0]
return p, u
# Parameters
CFL = 0.3
LX = 1 # space length
NX = 100 # number of space steps
T = 2 # end time
NN = np.array(range(50, 1000, 50)) # list of discretizations
Ep = []
Eu = []
for NX in NN:
print(NX)
errorsp = []
errorsu = []
x = np.linspace(0, LX, NX) # space grid
dx = x[1] - x[0] # spatial step
dt = CFL * dx # time step
t = np.arange(0, T, dt) # time grid
# TEST
# time loop
for time in t:
if time == 0:
p = p0(x)
u = u0(x)
else:
p, u = leapfrog_step(p, u)
errorsp.append(np.linalg.norm((p - p_exact(x, time)), 2))
errorsu.append(np.linalg.norm((u - u_exact(x, time)), 2))
errorsp = np.array(errorsp) * dx ** (1 / 2)
errorsu = np.array(errorsu) * dx ** (1 / 2)
Ep.append(errorsp[-1])
Eu.append(errorsu[-1])
# plot the error
plt.figure(figsize=(8, 5))
plt.xlabel("$Nx$")
plt.ylabel(r'$\Vert p-\bar{p}\Vert_{L_2}$')
plt.loglog(NN, 15 / NN ** 2, "green", label=r'$O(\Delta x^{2})$')
plt.loglog(NN, Ep, "o", label=r'$E_p$')
plt.loglog(NN, Eu, "o", label=r'$E_u$')
plt.legend()
plt.show()
I would really appreciate it if someone could quickly check the implementation of the scheme and an indication on how to get the error plot.
Apart from the initialization, I see no errors in your code.
As to the initialization, consider the first step. There you should compute, per the method description, approximations for p(dt,j*dx) from the values of p(0,j*dx) and u(0.5*dt, (j+0.5)*dx). This means that you need to initialize at time==0
u = u_exact(x+0.5*dx, 0.5*dt).
and also need to compare the then obtained solution against u_exact(x+0.5*dx, time+0.5*dt).
That you obtained the correct order is IMO more an artefact of the test problem than an accidentially still correct algorithm.
If no exact solution is known, or if you want to use a more realistic algorithm in the test, you would need to compute the initial u values from p(0,x) and u(0,x) via Taylor expansions
u(t,x) = u(0,x) + t*u_t(0,x) + 0.5*t^2*u_tt(0,x) + ...
u(0.5*dt,x) = u(0,x) - 0.5*dt*p_x(0,x) + 0.125*dt^2*u_xx(0,x) + ...
= u(0,x) - 0.5*CFL*(p(0,x+0.5*dx)-p(0,x-0.5*dx))
+ 0.125*CFL^2*(u(0,x+dx)-2*u(0,x)+u(0,x-dx)) + ...
It might be sufficient to take just the linear expansion,
u[j] = u0(x[j]+0.5*dx) - 0.5*CFL*(p0(x[j]+dx)-p0(x[j])
or with array operations
p = p0(x)
u = u0(x+0.5*dx)
u[:-1] -= 0.5*CFL*(p[1:]-p[:-1])
u[-1]=u[0]
as then the second order error in the initial data just adds to the general second order error.
You might want to change the space grid to x = np.linspace(0, LX, NX+1) to have dx = LX/NX.
I would define the exact solution and the initial condition the other way around, as that allows more flexibility in the test problems.
# components of the solution
def f(x): return np.cos(2 * np.pi * x)
def g(x): return 2*np.sin(6 * np.pi * x)
# exact solution
def u_exact(x,t): return f(x+t)+g(x-t)
def p_exact(x,t): return -f(x+t)+g(x-t)
# Initial conditions
def u0(x): return u_exact(x,0)
def p0(x): return p_exact(x,0)

Error using scicpy.integrate.odeint and sympy symbols

I'm trying to solve the following system: d²i/dt² + R'(i)/L di/dt + 1/LC i(t) = 1/L dE/dt as a set of coupled first order differential equations:
di/dt = k
dk/dt = 1/L dE/dt - R'(i)/L k - 1/LC i(t)
Here is the code I'm using:
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from scipy.integrate import odeint
#Define model: x = [i , k]
def RLC(x , t):
i = sp.Symbol('i')
t = sp.Symbol('t')
#Data:
E = sp.ln(t + 1)
dE_dt = E.diff(t)
R1 = 1000 #1 kOhm
R2 = 100 #100 Ohm
R = R1 * i + R2 * i**3
dR_di = R.diff(i)
i = x[0]
k = x[1]
L = 10e-3 #10 mHy
C = 1.56e-6 #1.56 uF
#Model
di_dt = k
dk_dt = 1/L * dE_dt - dR_di/L * k - 1/(L*C) * i
dx_dt = np.array([di_dt , dk_dt])
return dx_dt
#init cond:
x0 = np.array([0 , 0])
#time points:
time = np.linspace(0, 30, 1000)
#solve ODE:
x = odeint(RLC, x0, time)
i = x[: , 0]
However, I get the following error: TypeError: Cannot cast array data from dtype('O') to dtype('float64') according to the rule 'safe'
So, I don't know if sympy and odeint don't work well together. Or maybe is it a problem because I defined t as sp.Symbol?
When you differentiate a function, you get a function back. So you need to evaluate it at a point in order to get a number. To evaluate a sympy expression, you could use .subs() but I prefer .replace() which feels more powerful (at least for me).
You must try and make every single variable have its own name in order to avoid confusion. For example, you replace the float input t with a sympy Symbol from the very beginning, thus losing the value of t. The variables x and i are also repeated in the outer scope which is not good practice if they mean different things.
The following should avoid confusion and hopefully produce something that you were expecting:
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from scipy.integrate import odeint
# Define model: x = [i , k]
def RLC(x, t):
# define constants first
i = x[0]
k = x[1]
L = 10e-3 # 10 mHy
C = 1.56e-6 # 1.56 uF
R1 = 1000 # 1 kOhm
R2 = 100 # 100 Ohm
# define symbols (used to find derivatives)
i_symbol = sp.Symbol('i')
t_symbol = sp.Symbol('t')
# Data (differentiate and evaluate)
E = sp.ln(t_symbol + 1)
dE_dt = E.diff(t_symbol).replace(t_symbol, t)
R = R1 * i_symbol + R2 * i_symbol ** 3
dR_di = R.diff(i_symbol).replace(i_symbol, i)
# nothing should contain symbols from here onwards
# variables can however contain sympy expressions
# Model (convert sympy expressions to floats)
di_dt = float(k)
dk_dt = float(1 / L * dE_dt - dR_di / L * k - 1 / (L * C) * i)
dx_dt = np.array([di_dt, dk_dt])
return dx_dt
# init cond:
x0 = np.array([0, 0])
# time points:
time = np.linspace(0, 30, 1000)
# solve ODE:
solution = odeint(RLC, x0, time)
result = solution[:, 0]
print(result)
Just something to note: the value i = x[0] seemed to sit very close to 0 throughout each iteration. This means dR_di stayed basically at 1000 the whole time. I'm not familiar with odeint or your specific ODE, but hopefully this phenomenon is expected and isn't a problem.

How to solve a 9-equations system of non linear DE with python?

I'm desperately trying to solve (and display the graph) a system made of nine nonlinear differential equations which model the path of a boomerang. The system is the following:
All the letters on the left side are variables, the others are either constants or known functions depending on v_G and w_z
I have tried with scipy.odeint with no conclusive results (I had this issue but the workaround did not work.)
I begin to think that the problem is linked with the fact that these equations are nonlinear or that the function in denominator might cause a singularity that the scipy solver is simply unable to handle. However, I am not familiar with that sort of mathematical knowledge.
What possibilities python-wise do I have to solve this set of equations?
EDIT : Sorry if I was not clear enough. Since it models the path of a boomerang, my goal is not to solve analytically this system (ie I don't care about the mathematical expression of each function), but rather to get the values of each function for a specific time range (say, from t1 = 0s to t2 = 15s with an interval of 0.01s between each value) in order to display the graph of each function and the graph of the center of mass of the boomerang (X,Y,Z are its coordinates).
Here is the code I tried :
import scipy.integrate as spi
import numpy as np
#Constants
I3 = 10**-3
lamb = 1
L = 5*10**-1
mu = I3
m = 0.1
Cz = 0.5
rho = 1.2
S = 0.03*0.4
Kz = 1/2*rho*S*Cz
g = 9.81
#Initial conditions
omega0 = 20*np.pi
V0 = 25
Psi0 = 0
theta0 = np.pi/2
phi0 = 0
psi0 = -np.pi/9
X0 = 0
Y0 = 0
Z0 = 1.8
INPUT = (omega0, V0, Psi0, theta0, phi0, psi0, X0, Y0, Z0) #initial conditions
def diff_eqs(t, INP):
'''The main set of equations'''
Y=np.zeros((9))
Y[0] = (1/I3) * (Kz*L*(INP[1]**2+(L*INP[0])**2))
Y[1] = -(lamb/m)*INP[1]
Y[2] = -(1/(m * INP[1])) * ( Kz*L*(INP[1]**2+(L*INP[0])**2) + m*g) + (mu/I3)/INP[0]
Y[3] = (1/(I3*INP[0]))*(-mu*INP[0]*np.sin(INP[6]))
Y[4] = (1/(I3*INP[0]*np.sin(INP[3]))) * (mu*INP[0]*np.cos(INP[5]))
Y[5] = -np.cos(INP[3])*Y[4]
Y[6] = INP[1]*(-np.cos(INP[5])*np.cos(INP[4]) + np.sin(INP[5])*np.sin(INP[4])*np.cos(INP[3]))
Y[7] = INP[1]*(-np.cos(INP[5])*np.sin(INP[4]) - np.sin(INP[5])*np.cos(INP[4])*np.cos(INP[3]))
Y[8] = INP[1]*(-np.sin(INP[5])*np.sin(INP[3]))
return Y # For odeint
t_start = 0.0
t_end = 20
t_step = 0.01
t_range = np.arange(t_start, t_end, t_step)
RES = spi.odeint(diff_eqs, INPUT, t_range)
However, I keep getting the same problem as shown here and especially the error message :
Excess work done on this call (perhaps wrong Dfun type)
I am not quite sure what it means but it looks like the solver have troubles solving the system. In any case, when I try to display the 3D path thanks to the XYZ coordinates, I just get 3 or 4 points where there should be something like 2000.
So my questions are : - Am I doing something wrong in my code ?
- If not, is there an other maybe more sophisticated tool to solve this sytem ?
- If not, is it even possible to get what I want from this system of ODEs ?
Thanks in advance
There are several issues:
if I copy the code, it does not run
the workaround you mention does not work with odeint, the given
solution uses ode
The scipy reference for odeint says:"For new code, use
scipy.integrate.solve_ivp to solve a differential equation."
the call RES = spi.odeint(diff_eqs, INPUT, t_range) should be
consistent to the function head def diff_eqs(t, INP) . Mind the
order: RES = spi.odeint(diff_eqs,t_range, INPUT)
There are some issues about to mathematical formulas too:
have a look at the 3rd formula on your picture. It has no tendency term, it starts with a zero - what does that mean ?
it's hard to check wether you have translated the formula correctly into code since the code does not follow the formulas strictly.
Below I tried a solution with scipy solve_ivp. In case A I'm able to run a pendulum, but in case B no meaningful solution for the boomerang can be found. So check the maths, I guess some error in the mathematical expressions.
For the graphics use pandas to plot all variables together (see code below).
import scipy.integrate as spi
import numpy as np
import pandas as pd
def diff_eqs_boomerang(t,Y):
INP = Y
dY = np.zeros((9))
dY[0] = (1/I3) * (Kz*L*(INP[1]**2+(L*INP[0])**2))
dY[1] = -(lamb/m)*INP[1]
dY[2] = -(1/(m * INP[1])) * ( Kz*L*(INP[1]**2+(L*INP[0])**2) + m*g) + (mu/I3)/INP[0]
dY[3] = (1/(I3*INP[0]))*(-mu*INP[0]*np.sin(INP[6]))
dY[4] = (1/(I3*INP[0]*np.sin(INP[3]))) * (mu*INP[0]*np.cos(INP[5]))
dY[5] = -np.cos(INP[3])*INP[4]
dY[6] = INP[1]*(-np.cos(INP[5])*np.cos(INP[4]) + np.sin(INP[5])*np.sin(INP[4])*np.cos(INP[3]))
dY[7] = INP[1]*(-np.cos(INP[5])*np.sin(INP[4]) - np.sin(INP[5])*np.cos(INP[4])*np.cos(INP[3]))
dY[8] = INP[1]*(-np.sin(INP[5])*np.sin(INP[3]))
return dY
def diff_eqs_pendulum(t,Y):
dY = np.zeros((3))
dY[0] = Y[1]
dY[1] = -Y[0]
dY[2] = Y[0]*Y[1]
return dY
t_start, t_end = 0.0, 12.0
case = 'A'
if case == 'A': # pendulum
Y = np.array([0.1, 1.0, 0.0]);
Yres = spi.solve_ivp(diff_eqs_pendulum, [t_start, t_end], Y, method='RK45', max_step=0.01)
if case == 'B': # boomerang
Y = np.array([omega0, V0, Psi0, theta0, phi0, psi0, X0, Y0, Z0])
print('Y initial:'); print(Y); print()
Yres = spi.solve_ivp(diff_eqs_boomerang, [t_start, t_end], Y, method='RK45', max_step=0.01)
#---- graphics ---------------------
yy = pd.DataFrame(Yres.y).T
tt = np.linspace(t_start,t_end,yy.shape[0])
with plt.style.context('fivethirtyeight'):
plt.figure(1, figsize=(20,5))
plt.plot(tt,yy,lw=8, alpha=0.5);
plt.grid(axis='y')
for j in range(3):
plt.fill_between(tt,yy[j],0, alpha=0.2, label='y['+str(j)+']')
plt.legend(prop={'size':20})

Categories