Sum df columns for weighted average - python

Backstory: I have a pandas dataframe scaledData that is just a standard df of information as follows:
COL NAME0 COL NAME1 ... COL NAME3 COL NAME4
0 Alabama 4.099099 ... 2.042345 1.392755
1 Alaska 1.396396 ... 1.000000 1.000000
2 Arizona 4.189189 ... 2.003257 1.537777
3 Arkansas 2.927928 ... 2.208723 1.007370
4 California 3.378378 ... 1.754930 2.012395
5 Colorado 3.378378 ... 3.282196 2.843435
6 Connecticut 5.000000 ... 1.452587 4.277286
7 Delaware 4.409692 ... 2.134501 1.970434
8 District of Columbia 5.000000 ... 1.000000 1.000000
9 Florida 4.628118 ... 1.806412 2.213038
10 Georgia 4.628118 ... 1.513896 2.748559
11 Hawaii 3.902494 ... 2.891694 3.872309
12 Idaho 1.090703 ... 2.978469 4.127419
13 Illinois 4.537415 ... 1.242970 1.888353
14 Indiana 4.537415 ... 2.368881 2.307914
15 Iowa 2.088435 ... 3.298368 3.421122
16 Kansas 2.723356 ... 2.791375 2.160330
17 Kentucky 3.902494 ... 1.692890 4.133744
18 Louisiana 2.451247 ... 1.000000 1.000000
19 Maine 3.448980 ... 2.535328 5.000000
20 Maryland 5.000000 ... 1.632194 1.046567
I want to create another column Total in this df that is a result of adding all of the column values per each state (COL NAME0) divided by the sum of a dictionary weights. Additionally, column E to perform the same total but only for columns with those specific tags. The weights dictionary's key is the column names of the df and the values are a tuple containing the weight values for the columns (used previously but irrelevant to this problem) and the category the column belongs to. Here is my current implementation:
weights = {'COL NAME1': (2.14, 'E'), 'COL NAME2': (5.14, 'E'), 'COL NAME3': (10, 'G'), 'COL NAME4' : (5, 'E')}
eWeights = { key: value for key, value in weights.items() if value[1] == 'E'}
gWeights = { key: value for key, value in weights.items() if value[1] == 'G'}
#Total should be the result of adding each of the columns per COL NAME0 row
#and dividing by the sum of the weight values.
scaledData['Total'] = scaledData.sum(axis = 1, skipna = True)/ sum(list(weights.values())[0])
#Same calculation on only columns marked 'E'
for key in eWeights:
scaledData['E'] = scaledData['E'] + scaledData[key]
scaledData['E'] = scaledData['E'] / sum(list(eWeights.values())[0])
Unfortunately, the above code results in the following error (caused by the line creating the Total column in scaledData) :
TypeError: unsupported operand type(s) for +: 'float' and 'str'
I've simplified the scaledData and weights but any solution or suggestions will help me with my actual df with many more rows and columns. Appreciate the help and let me know if more information is needed.

Your df seems to be stored as float. Try:
for key in eWeights:
scaledData['E'] = scaledData['E'].astype(float) + scaledData[key].astype(float)
scaledData['E'] / sum(list(eWeights.values())[0])
# should this be a print? Are you trying to set any values?

Related

How to sum rows containing specific targets in pandas?

Here is my code. I would like to sum the FPKM rows containing all specific target and print all the corresponding targets and sum values in a new pd.
# coding=utf-8
import pandas as pd
import numpy as np
classes = [('Carbon;Pyruvate;vitamins', 16.7, 1),
('Pyruvate;Carbohydrate;Pentose and glucuronate', 30, 7),
('Lipid;Carbon;Galactose', 40.5, 9),
('Galactose;Pyruvate;Fatty acid', 57, 10),
('Fatty acid;Lipid', 22, 4)]
labels = ['Ko_class','FPKM', 'count']
alls = pd.DataFrame.from_records(classes, columns=labels)
target = [['Carbon'],['Pyruvate'],['Galactose']]
targetsum = pd.DataFrame.from_records(target,columns=['target'])
#######
targets = '|'.join(sum(target, []))
targetsum['total_FPKM']=(alls['FPKM']
.groupby(alls['Ko_class']
.str.contains(targets))
.sum())
targetsum['count']=(alls['count']
.groupby(alls['Ko_class']
.str.contains(targets))
.sum())
targetsum
Its results:
target total_FPKM count
0 Carbon NaN NaN
1 Pyruvate NaN NaN
2 Galactose NaN NaN
What I want is :
target total_FPKM count
0 Carbon 57.2 10
1 Pyruvate 103.7 18
2 Galactose 97.5 19
Hope I have described my question clearly:(
try this :
def aggregation(dataframe,target):
targetsum = pd.DataFrame(columns=['target','sum','count'])
for val in target:
df_tempo=dataframe.loc[dataframe['Ko_class'].str.contains(val),:].copy()
new_row = {'target':val, 'sum':df_tempo['FPKM'].sum(), 'count':df_tempo['count'].sum()}
targetsum = targetsum.append(new_row, ignore_index=True)
return targetsum
df_result=aggregation(alls,['Carbon','Pyruvate','Galactose'])
Result :
target sum count
0 Carbon 57.2 10
1 Pyruvate 103.7 18
2 Galactose 97.5 19
You can use str.findall to find the substances that appear in your 'Ko_class' column, and assign that back to a new column. Exploding this new list-valued column into a separate rows using explode will allow you to groupby on them and perform your aggregation:
target_list = ['Carbon','Pyruvate','Galactose']
target_substances = '|'.join(target_list)
alls.assign(
Ko_class_contains_target = alls['Ko_class'].str.findall(target_substances)
).explode('Ko_class_contains_target').groupby('Ko_class_contains_target').agg('sum')
prints back:
FPKM count
Ko_class_contains_target
Carbon 57.2 10
Galactose 97.5 19
Pyruvate 103.7 18

Find the second largest date in df python [duplicate]

I am using pandas to analyse some election results. I have a DF, Results, which has a row for each constituency and columns representing the votes for the various parties (over 100 of them):
In[60]: Results.columns
Out[60]:
Index(['Constituency', 'Region', 'Country', 'ID', 'Type', 'Electorate',
'Total', 'Unnamed: 9', '30-50', 'Above',
...
'WP', 'WRP', 'WVPTFP', 'Yorks', 'Young', 'Zeb', 'Party', 'Votes',
'Share', 'Turnout'],
dtype='object', length=147)
So...
In[63]: Results.head()
Out[63]:
Constituency Region Country ID Type \
PAID
1 Aberavon Wales Wales W07000049 County
2 Aberconwy Wales Wales W07000058 County
3 Aberdeen North Scotland Scotland S14000001 Burgh
4 Aberdeen South Scotland Scotland S14000002 Burgh
5 Aberdeenshire West & Kincardine Scotland Scotland S14000058 County
Electorate Total Unnamed: 9 30-50 Above ... WP WRP WVPTFP \
PAID ...
1 49821 31523 NaN NaN NaN ... NaN NaN NaN
2 45525 30148 NaN NaN NaN ... NaN NaN NaN
3 67745 43936 NaN NaN NaN ... NaN NaN NaN
4 68056 48551 NaN NaN NaN ... NaN NaN NaN
5 73445 55196 NaN NaN NaN ... NaN NaN NaN
Yorks Young Zeb Party Votes Share Turnout
PAID
1 NaN NaN NaN Lab 15416 0.489040 0.632725
2 NaN NaN NaN Con 12513 0.415052 0.662230
3 NaN NaN NaN SNP 24793 0.564298 0.648550
4 NaN NaN NaN SNP 20221 0.416490 0.713398
5 NaN NaN NaN SNP 22949 0.415773 0.751528
[5 rows x 147 columns]
The per-constituency results for each party are given in the columns Results.ix[:, 'Unnamed: 9': 'Zeb']
I can find the winning party (i.e. the party which polled highest number of votes) and the number of votes it polled using:
RawResults = Results.ix[:, 'Unnamed: 9': 'Zeb']
Results['Party'] = RawResults.idxmax(axis=1)
Results['Votes'] = RawResults.max(axis=1).astype(int)
But, I also need to know how many votes the second-place party got (and ideally its index/name). So is there any way in pandas to return the second highest value/index in a set of columns for each row?
To get the highest values of a column, you can use nlargest() :
df['High'].nlargest(2)
The above will give you the 2 highest values of column High.
You can also use nsmallest() to get the lowest values.
Here is a NumPy solution:
In [120]: df
Out[120]:
a b c d e f g h
0 1.334444 0.322029 0.302296 -0.841236 -0.360488 -0.860188 -0.157942 1.522082
1 2.056572 0.991643 0.160067 -0.066473 0.235132 0.533202 1.282371 -2.050731
2 0.955586 -0.966734 0.055210 -0.993924 -0.553841 0.173793 -0.534548 -1.796006
3 1.201001 1.067291 -0.562357 -0.794284 -0.554820 -0.011836 0.519928 0.514669
4 -0.243972 -0.048144 0.498007 0.862016 1.284717 -0.886455 -0.757603 0.541992
5 0.739435 -0.767399 1.574173 1.197063 -1.147961 -0.903858 0.011073 -1.404868
6 -1.258282 -0.049719 0.400063 0.611456 0.443289 -1.110945 1.352029 0.215460
7 0.029121 -0.771431 -0.285119 -0.018216 0.408425 -1.458476 -1.363583 0.155134
8 1.427226 -1.005345 0.208665 -0.674917 0.287929 -1.259707 0.220420 -1.087245
9 0.452589 0.214592 -1.875423 0.487496 2.411265 0.062324 -0.327891 0.256577
In [121]: np.sort(df.values)[:,-2:]
Out[121]:
array([[ 1.33444404, 1.52208164],
[ 1.28237078, 2.05657214],
[ 0.17379254, 0.95558613],
[ 1.06729107, 1.20100071],
[ 0.86201603, 1.28471676],
[ 1.19706331, 1.57417327],
[ 0.61145573, 1.35202868],
[ 0.15513379, 0.40842477],
[ 0.28792928, 1.42722604],
[ 0.48749578, 2.41126532]])
or as a pandas Data Frame:
In [122]: pd.DataFrame(np.sort(df.values)[:,-2:], columns=['2nd-largest','largest'])
Out[122]:
2nd-largest largest
0 1.334444 1.522082
1 1.282371 2.056572
2 0.173793 0.955586
3 1.067291 1.201001
4 0.862016 1.284717
5 1.197063 1.574173
6 0.611456 1.352029
7 0.155134 0.408425
8 0.287929 1.427226
9 0.487496 2.411265
or a faster solution from #Divakar:
In [6]: df
Out[6]:
a b c d e f g h
0 0.649517 -0.223116 0.264734 -1.121666 0.151591 -1.335756 -0.155459 -2.500680
1 0.172981 1.233523 0.220378 1.188080 -0.289469 -0.039150 1.476852 0.736908
2 -1.904024 0.109314 0.045741 -0.341214 -0.332267 -1.363889 0.177705 -0.892018
3 -2.606532 -0.483314 0.054624 0.979734 0.205173 0.350247 -1.088776 1.501327
4 1.627655 -1.261631 0.589899 -0.660119 0.742390 -1.088103 0.228557 0.714746
5 0.423972 -0.506975 -0.783718 -2.044002 -0.692734 0.980399 1.007460 0.161516
6 -0.777123 -0.838311 -1.116104 -0.433797 0.599724 -0.884832 -0.086431 -0.738298
7 1.131621 1.218199 0.645709 0.066216 -0.265023 0.606963 -0.194694 0.463576
8 0.421164 0.626731 -0.547738 0.989820 -1.383061 -0.060413 -1.342769 -0.777907
9 -1.152690 0.696714 -0.155727 -0.991975 -0.806530 1.454522 0.788688 0.409516
In [7]: a = df.values
In [8]: a[np.arange(len(df))[:,None],np.argpartition(-a,np.arange(2),axis=1)[:,:2]]
Out[8]:
array([[ 0.64951665, 0.26473378],
[ 1.47685226, 1.23352348],
[ 0.17770473, 0.10931398],
[ 1.50132666, 0.97973383],
[ 1.62765464, 0.74238959],
[ 1.00745981, 0.98039898],
[ 0.5997243 , -0.0864306 ],
[ 1.21819904, 1.13162068],
[ 0.98982033, 0.62673128],
[ 1.45452173, 0.78868785]])
Here is an interesting approach. What if we replace the maximum value with the minimum value and calculate. Although it is a quick hack and, not recommended!
first_highest_value_index = df.idxmax()
second_highest_value_index = df.replace(df.max(),df(min)).idxmax()
first_highest_value = df[first_highest_value_index]
second_highest_value = df[second_highest_value_index]
You could just sort your results, such that the first rows will contain the max. Then you can simply use indexing to get the first n places.
RawResults = Results.ix[:, 'Unnamed: 9': 'Zeb'].sort_values(by='votes', ascending=False)
RawResults.iloc[0, :] # First place
RawResults.iloc[1, :] # Second place
RawResults.iloc[n, :] # nth place
Here is a solution using nlargest function:
>>> df
a b c
0 4 20 2
1 5 10 2
2 3 40 5
3 1 50 10
4 2 30 15
>>> def give_largest(col,n):
... largest = col.nlargest(n).reset_index(drop = True)
... data = [x for x in largest]
... index = [f'{i}_largest' for i in range(1,len(largest)+1)]
... return pd.Series(data,index=index)
...
...
>>> def n_largest(df, axis, n):
... '''
... Function to return the n-largest value of each
... column/row of the input DataFrame.
... '''
... return df.apply(give_largest, axis = axis, n = n)
...
>>> n_largest(df,axis = 1, n = 2)
1_largest 2_largest
0 20 4
1 10 5
2 40 5
3 50 10
4 30 15
>>> n_largest(df,axis = 0, n = 2)
a b c
1_largest 5 50 15
2_largest 4 40 10
import numpy as np
import pandas as pd
df = pd.DataFrame({
'a': [4, 5, 3, 1, 2],
'b': [20, 10, 40, 50, 30],
'c': [25, 20, 5, 15, 10]
})
def second_largest(df):
return (df.nlargest(2).min())
print(df.apply(second_largest))
a 4
b 40
c 20
dtype: int64
df
a b c d e f g h
0 1.334444 0.322029 0.302296 -0.841236 -0.360488 -0.860188 -0.157942 1.522082
1 2.056572 0.991643 0.160067 -0.066473 0.235132 0.533202 1.282371 -2.050731
2 0.955586 -0.966734 0.055210 -0.993924 -0.553841 0.173793 -0.534548 -1.796006
3 1.201001 1.067291 -0.562357 -0.794284 -0.554820 -0.011836 0.519928 0.514669
4 -0.243972 -0.048144 0.498007 0.862016 1.284717 -0.886455 -0.757603 0.541992
5 0.739435 -0.767399 1.574173 1.197063 -1.147961 -0.903858 0.011073 -1.404868
6 -1.258282 -0.049719 0.400063 0.611456 0.443289 -1.110945 1.352029 0.215460
7 0.029121 -0.771431 -0.285119 -0.018216 0.408425 -1.458476 -1.363583 0.155134
8 1.427226 -1.005345 0.208665 -0.674917 0.287929 -1.259707 0.220420 -1.087245
9 0.452589 0.214592 -1.875423 0.487496 2.411265 0.062324 -0.327891 0.256577
tranpose and use nlargest in a for loop to get the results order by each line:
df1=df.T
results=list()
for col in df1.columns: results.append(df1[col].nlargest(len(df.columns))
the results var is a list of pandas objects, where the first item on the list will be the df's first row sorted in descending order and so on. Since each item on the list is a pandas object, it carries df's column as index (it was transposed), so you will get the values and the df's columns name of each row sorted
results
[h 1.522082
a 1.334444
b 0.322029
c 0.302296
g -0.157942
e -0.360488
d -0.841236
f -0.860188
Name: 0, dtype: float64,
a 2.056572
g 1.282371
b 0.991643
f 0.533202
e 0.235132
c 0.160067
d -0.066473
h -2.050731
Name: 1, dtype: float64,
....

Python : Remodeling the presentation data from a pandas Dataframe / group duplicates

Let's say that I have this dataframe with three column : "Name", "Account" and "Ccy".
import pandas as pd
Name = ['Dan', 'Mike', 'Dan', 'Dan', 'Sara', 'Charles', 'Mike', 'Karl']
Account = ['100', '30', '50', '200', '90', '20', '65', '230']
Ccy = ['EUR','EUR','USD','USD','','CHF', '','DKN']
df = pd.DataFrame({'Name':Name, 'Account' : Account, 'Ccy' : Ccy})
Name Account Ccy
0 Dan 100 EUR
1 Mike 30 EUR
2 Dan 50 USD
3 Dan 200 USD
4 Sara 90
5 Charles 20 CHF
6 Mike 65
7 Karl 230 DKN
I would like to reprensent this data differently. I would like to write a script that find all the duplicates in the column name and regroup them wit the different account and if there are an currency "Ccy", it add a new column next to it with all the currency associated.
So something like that :
Dan Ccy1 Mike Ccy2 Sara Charles Ccy3 Karl Ccy4
0 100 EUR 30 EUR 90 20 CHF 230 DKN
1 50 USD 65
2 200 USD
I dont' really know how to start that ! So I simplify the problem to do step y step. I try to regroup the dupicates by the name with a list however it did not identify the duplicates.
x_len, y_len = df.shape
new_data = []
for i in range(x_len) :
if df.iloc[i,0] not in new_data :
print(str(df.iloc[i,0]) + '\t'+ str(df.iloc[i,1])+ '\t' + str(bool(df.iloc[i,0] not in new_data)))
new_data.append([df.iloc[i,0],df.iloc[i,1]])
else:
new_data[str(df.iloc[i,0])].append(df.iloc[i,1])
Then I thought that it was easier to use a dictionary. So I try this loop but there is an error and maybe it is not the best way to go to the expected final result
from collections import defaultdict
dico=defaultdict(list)
x_len, y_len = df.shape
for i in range(x_len) :
if df.iloc[i,0] not in dico :
print(str(df.iloc[i,0]) + '\t'+ str(df.iloc[i,1])+ '\t' + str(bool(df.iloc[i,0] not in dico)))
dico[str(df.iloc[i,0])] = df.iloc[i,1]
print(dico)
else :
dico[df.iloc[i,0]].append(df.iloc[i,1])
Anyone has an idea how to start or to do the code if it is simple ?
Thank you
Use GroupBy.cumcount for counter, reshape by DataFrame.set_index and DataFrame.unstack and last flatten columns names:
g = df.groupby(['Name']).cumcount()
df = df.set_index([g,'Name']).unstack().sort_index(level=1, axis=1)
df.columns = df.columns.map(lambda x: f'{x[0]}_{x[1]}')
print (df)
Account_Charles Ccy_Charles Account_Dan Ccy_Dan Account_Karl Ccy_Karl \
0 20 CHF 100 EUR 230 DKN
1 NaN NaN 50 USD NaN NaN
2 NaN NaN 200 USD NaN NaN
Account_Mike Ccy_Mike Account_Sara Ccy_Sara
0 30 EUR 90
1 65 NaN NaN
2 NaN NaN NaN NaN
If need custom columns names use if-else in list comprehension:
g = df.groupby(['Name']).cumcount()
df = df.set_index([g,'Name']).unstack().sort_index(level=1, axis=1)
L = [b if a == 'Account' else f'{a}{i // 2}' for i, (a, b) in enumerate(df.columns)]
df.columns = L
print (df)
Charles Ccy0 Dan Ccy1 Karl Ccy2 Mike Ccy3 Sara Ccy4
0 20 CHF 100 EUR 230 DKN 30 EUR 90
1 NaN NaN 50 USD NaN NaN 65 NaN NaN
2 NaN NaN 200 USD NaN NaN NaN NaN NaN NaN

How do I calculate an average of a range from a series within in a dataframe?

Im new to Python and working with data manipulation
I have a dataframe
df3
Out[22]:
Breed Lifespan
0 New Guinea Singing Dog 18
1 Chihuahua 17
2 Toy Poodle 16
3 Jack Russell Terrier 16
4 Cockapoo 16
.. ... ...
201 Whippet 12--15
202 Wirehaired Pointing Griffon 12--14
203 Xoloitzcuintle 13
204 Yorkie--Poo 14
205 Yorkshire Terrier 14--16
As you observe above, some of the lifespans are in a range like 14--16. The datatype of [Lifespan] is
type(df3['Lifespan'])
Out[24]: pandas.core.series.Series
I want it to reflect the average of these two numbers i.e. 15. I do not want any ranges. Just the average as a single digit. How do I do this?
Using split and expand=True
df = pd.DataFrame({'Breed': ['Dog1', 'Dog2'],
'Lifespan': [12, '14--15']})
df['Lifespan'] = (df['Lifespan']
.astype(str).str.split('--', expand=True)
.astype(float).mean(axis=1)
)
df
# Breed Lifespan
# 0 Dog1 12.0
# 1 Dog2 14.5

How to sum columns in csv file in python more efficiently

This is my data:
Year Country Albania Andorra Armenia Austria Azerbaijan
2009 Lithuania 0 0 0 0 1
2009 Israel 0 7 0 0 0
2008 Israel 1 2 2 0 4
2008 Lithuania 1 5 1 0 8
Actually, it is csv file and delimiter is , so raw data is:
Year,Country,Albania,Andorra,Armenia,Austria,Azerbaijan
2009,Lithuania,0,0,0,0,1
2009,Israel,0,7,0,0,0
2008,Israel,1,2,2,0,4
2008,Lithuania,1,5,1,0,8
where the first element of the list means sum by column for Lithuania and the second element means sum by column for Israel (for Albania column)?
I am a beginner in python and don't really know many python tricks. What I do know is that I probably complicate too much in my code.
And I want to get this:
final_dict = {Albania: [1, 1], Andorra: [5, 9], Armenia: [1, 2], Austria: [0, 0], Azerbaijan: [9, 4]}
Explanation of output: for every country in first row (Albania, Andorra, Armenia, Austria and Azerbaijan) I want to get sum by countries from Country column.
Andorra: [5,9]
# 5 is sum for Lithuania in Andorra column
# 9 is sum for Israel in Andorra column
You can use the Pandas module which is perfect for this type of application:
import pandas as pd
df = pd.read_csv('songfestival.csv')
gb = df.groupby('Country')
res = pd.concat([i[1].sum(numeric_only=True) for i in gb], axis=1).T
res.pop('Year')
order = [i[0] for i in gb]
print(order)
print(res)
#['Israel', 'Lithuania']
# Albania Andorra Armenia Austria Azerbaijan
#0 1 9 2 0 4
#1 1 5 1 0 9
to query the result for each column you can simply do:
print(res.Albania)
print(res.Andorra)
...
Ok, so you want the the lines aggregated by year:
import csv
from collections import defaultdict
with open("songfestival.csv", "r") as ifile:
reader = csv.DictReader(ifile)
country_columns = [k for k in reader.fieldnames if k not in ["Year","Country"]]
data = defaultdict(lambda:defaultdict(int))
for line in reader:
curr_country = data[line["Country"]]
for country_column in country_columns:
curr_country[country_column] += int(line[country_column])
with open("songfestival_aggr.csv", "w") as ofile:
writer = csv.DictWriter(ofile, fieldnames=country_columns+["Country"])
writer.writeheader()
for k, v in data.items():
row = dict(v)
row["Country"] = k
writer.writerow(row)
I toke the liberty to output it in another csv file. Your data struct is very error prone, since it depends on the order of the columns. Better to use an intermediate dict in a dict to assign names to the aggregations -> see #gboffi's comment on your question.
Your hattrick is using the defaultdict from the collections module, please search for
python defaultdict
on SO, you'll find lot of useful examples, and here is my answer
import csv
from collections import defaultdict
# slurp the data
data = list(csv.reader(open('points.csv')))
# massage the data
for i, row in enumerate(data[1:],1):
data[i] = [int(elt) if elt.isdigit() else elt for elt in row]
points = {} # an empty dictionary
for i, country in enumerate(data[0][2:],2):
# for each country, a couple country:defaultdict is put in points
points[country] = defaultdict(int)
for row in data[1:]:
opponent = row[1]
points[country][opponent] += row[i]
# here you can post-process points as you like,
# I'll simply print out the stuff
for country in points:
for opponent in points[country]:
print country, "vs", opponent, "scored",
print points[country][opponent], "points."
The example output for your data has been
Andorra vs Israel scored 9 points.
Andorra vs Lithuania scored 5 points.
Austria vs Israel scored 0 points.
Austria vs Lithuania scored 0 points.
Albania vs Israel scored 1 points.
Albania vs Lithuania scored 1 points.
Azerbaijan vs Israel scored 4 points.
Azerbaijan vs Lithuania scored 9 points.
Armenia vs Israel scored 2 points.
Armenia vs Lithuania scored 1 points.
Edit
If you're against defaultdict, you can use the .get method of an ordinary dict, that allows you to have back an optional default value if the key:value pair was not initialised
points[country] = {} # a standard empty dict
for row in data[1:]:
opponent = row[1]
points[country][opponent] = points[country].get(opponent,0) + row[i]
as you see, it's a bit clumsier, but still manageable.

Categories