Recover images from patches using python - python

I modify the code of stuff_patches_3D to recover 3D rib image from overlapping patches, but find the results is not completely correct.
First, I use the following code to extract patches:
def extract_patches(arr, patch_shape=24, extraction_step=8):
# From: scikit-learn/sklearn/feature_extraction/image.py
"""Extracts patches of any n-dimensional array in place using strides.
Parameters
----------
arr : ndarray. n-dimensional array of which patches are to be extracted
patch_shape : integer or tuple of length arr.ndim
extraction_step : integer or tuple of length arr.ndim
Returns
-------
patches : strided ndarray
"""
print('Extract Patch...')
arr_ndim = arr.ndim
if isinstance(patch_shape, numbers.Number):
patch_shape = tuple([patch_shape] * arr_ndim)
if isinstance(extraction_step, numbers.Number):
extraction_step = tuple([extraction_step] * arr_ndim)
patch_strides = arr.strides
slices = tuple(slice(None, None, st) for st in extraction_step)
indexing_strides = arr[slices].strides
patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) //
np.array(extraction_step)) + 1
shape = tuple(list(patch_indices_shape) + list(patch_shape))
strides = tuple(list(indexing_strides) + list(patch_strides))
patches = as_strided(arr, shape=shape, strides=strides)
return patches
Then, I use the modified codes from the post of Google to recover patches:
def stuff_patches_3D(img_org, patches,xstep=12,ystep=12,zstep=12):
out_shape = img_org.shape
print('Recover image...')
out = np.zeros(out_shape, patches.dtype)
denom = np.zeros(out_shape, patches.dtype)
patch_shape = patches.shape[-3:]
patches_shape = ((out.shape[0]-patch_shape[0])//xstep+1, (out.shape[1]-patch_shape[1])//ystep+1,
(out.shape[2]-patch_shape[2])//zstep+1, patch_shape[0], patch_shape[1], patch_shape[2])
patches_strides = (out.strides[0]*xstep, out.strides[1] * ystep,out.strides[2] * zstep, out.strides[0], out.strides[1],out.strides[2])
patches_6D = np.lib.stride_tricks.as_strided(out, patches_shape, patches_strides)
denom_6D = np.lib.stride_tricks.as_strided(denom, patches_shape, patches_strides)
grid_inds = tuple(x.ravel() for x in np.indices(patches_6D.shape))
np.add.at(patches_6D, grid_inds, patches.ravel())
np.add.at(denom_6D, grid_inds, 1)
# in case there are 0 elements in denom
inds = denom != 0
img_recover = np.zeros(out.shape, dtype=out.dtype)
img_recover[inds] = out[inds]/denom[inds]
return img_recover
I plt.imshow() the recovered image of out_new, whick looks like the original image. But, when using the codes of inds = img_recover!=img_org and num = np.sum(inds) to test the recovered image, I find the num is far larger than 0. In fact, the shape of img_org is 399*196*299, that's 23382996 voxels, and num=1317528.
I cannot find the reason. Any helps? Thanks in advance!

Related

What is the best script in python that replicates matlabs imresize3?

I am translating code from MATLAB to python but cannot perfectly replicate the results of MATLAB's imresize3. My input is a 101x101x101 array. First four inputs ([0,0:3,0] or (1,1:4,1)) are: 0.3819 0.4033 0.4336 0.2767. The data input for both languages is identical.
sampleQDNormSmall = imresize3(sampleQDNorm,0.5);
This results in a 51x51x51 array where the first four values (1,1:4,1) for example are: 0.3443 0.2646 0.2700 0.2835
Now I've tried two different pieces of code in python to replicate these results:
from skimage.transform import resize
from skimage.transform import rescale
sampleQDNormSmall = resize(sampleQDNorm,(0.5*sampleQDNorm.shape[0],0.5*sampleQDNorm.shape[1],0.5*sampleQDNorm.shape[2]),order=3,anti_aliasing=True);
sampleQDNormSmall1=rescale(sampleQDNorm,0.5,order=3,anti_aliasing=True)
The first one gives a 51x51x51 array that has the first four values [0,0:3,0] of: 0.3452 0.2669 0.2774 0.3099. Which is very close but not exactly the same numerical outputs. I don't know enough about the optional arguments to know might get me a better result.
The second one gives a 50x50x50 array that has the first four values [0,0:3,0] of: 0.3422 0.2623 0.2810 0.3006. This is a different output array size and also doesn't reproduce the same numerical outputs as the MATLAB code or the other python function
I don't know enough about the optional arguments to know might get me a better result. I know for this type of array, MATLAB's default is cubic interpolation which is why I am using order 3 in python. The default for anti-aliasing in both is true. I have a two bigger arrays that I am having the same issues with: a (873x873x873) array and a bool (873x873x873) array.
The MATLAB code I'm using is considered the "correct answer" for the work I am doing so I am trying to replicate the results as accurately as possible into python. Please let me know what I can try in python to reproduce the correct data.
sampleQDNorm is roughly random decimals between 0 and 1 for [0:100,0:100,0:100] and is padded with zeros on sides [:,:,101],[:,101,:],[101,:,:]
Getting the exact same result as MATLAB imresize3 is challenging.
One reason is that MATLAB enables Antialiasing filter by default, and I can't seem to find the equivalent Python implementation.
The closet existing Python alternatives are described in this post.
scipy.ndimage.zoom supports 3D resizing.
It could be that skimage.transform.resize gives closer result, but none are identical to MATLAB result.
Reimplementing imresize3:
Looking at the MATLAB implementation of imresize3 (MATLAB source code), it is apparent that MATLAB implementation "simply" uses resize along each axis:
Resize (by half) along the vertical axis.
Resize the above result (by half) along the horizontal axis.
Resize the above result (by half) along the depth axis.
Here is a MATLAB codes sample that demonstrates the implementation (using cubic interpolation):
I1 = imread('peppers.png');
I2 = imresize(imread('autumn.tif'), [size(I1, 1), size(I1, 2)]);
I3 = imresize(imread('football.jpg'), [size(I1, 1), size(I1, 2)]);
I4 = imresize(imread('cameraman.tif'), [size(I1, 1), size(I1, 2)]);
I = cat(3, I1, I2, I3, I4);
J = imresize3(I, 0.5, 'cubic', 'Antialiasing', false);
imwrite(I1, '/Tmp/I1.png');
imwrite(I2, '/Tmp/I2.png');
imwrite(I3, '/Tmp/I3.png');
imwrite(I4, '/Tmp/I4.png');
imwrite(J(:,:,1), '/Tmp/J1.png');
imwrite(J(:,:,2), '/Tmp/J2.png');
imwrite(J(:,:,3), '/Tmp/J3.png');
imwrite(J(:,:,4), '/Tmp/J4.png');
imwrite(J(:,:,5), '/Tmp/J5.png');
K = cubicResize3(I, 0.5);
max_abs_diff = max(abs(double(J(:)) - double(K(:))));
disp(['max_abs_diff = ', num2str(max_abs_diff)])
function B = cubicResize3(A, scale)
order = [1 2 3];
B = A;
for k = 1:numel(order)
dim = order(k);
B = cubicResizeAlongDim(B, dim, scale);
end
end
function out = cubicResizeAlongDim(in, dim, scale)
% If dim is 3, permute the input matrix so that the third dimension
% becomes the first dimension. This way, we can resize along the
% third dimensions as though we were resizing along the first dimension.
isThirdDimResize = (dim == 3);
if isThirdDimResize
in = permute(in, [3 2 1]);
dim = 1;
end
if dim == 1
out_rows = round(size(in, 1)*scale);
out_cols = size(in, 2);
else % dim == 2
out_rows = size(in, 1);
out_cols = round(size(in,2)*scale);
end
out = zeros(out_rows, out_cols, size(in, 3), class(in)); % Allocate array for storing the output.
for i = 1:size(in, 3)
% Resize each color plane separately
out(:, :, i) = imresize(in(:, :, i), [out_rows, out_cols], 'bicubic', 'Antialiasing', false);
end
% Permute back so that the original dimensions are restored if we were
% resizing along the third dimension.
if isThirdDimResize
out = permute(out, [3 2 1]);
end
end
The result is max_abs_diff = 0, meaning that cubicResize3 and imresize3 gave the same output.
Note:
The above implementation stores images in Tmp folder to be used a input for testing Python implementation.
Here is a Python implementation using OpenCV:
import numpy as np
import cv2
#from scipy.ndimage import zoom
def cubic_resize_along_dim(inp, dim, scale):
""" Implementation is based on MATLAB source code of resizeAlongDim function """
# If dim is 3, permute the input matrix so that the third dimension
# becomes the first dimension. This way, we can resize along the
# third dimensions as though we were resizing along the first dimension.
is_third_dim_resize = (dim == 2)
if is_third_dim_resize:
inp = np.swapaxes(inp, 2, 0).copy() # in = permute(in, [3 2 1])
dim = 0
if dim == 0:
out_rows = int(np.round(inp.shape[0]*scale)) # out_rows = round(size(in, 1)*scale);
out_cols = inp.shape[1] # out_cols = size(in, 2);
else: # dim == 1
out_rows = inp.shape[0] # out_rows = size(in, 1);
out_cols = int(np.round(inp.shape[1]*scale)) # out_cols = round(size(in,2)*scale);
out = np.zeros((out_rows, out_cols, inp.shape[2]), inp.dtype) # out = zeros(out_rows, out_cols, size(in, 3), class(in)); % Allocate array for storing the output.
for i in range(inp.shape[2]):
# Resize each color plane separately
out[:, :, i] = cv2.resize(inp[:, :, i], (out_cols, out_rows), interpolation=cv2.INTER_CUBIC) # out(:, :, i) = imresize(inp(:, :, i), [out_rows, out_cols], 'bicubic', 'Antialiasing', false);
# Permute back so that the original dimensions are restored if we were
# resizing along the third dimension.
if is_third_dim_resize:
out = np.swapaxes(out, 2, 0) # out = permute(out, [3 2 1]);
return out
def cubic_resize3(a, scale):
b = a.copy()
for k in range(3):
b = cubic_resize_along_dim(b, k, scale)
return b
# Build 3D input image (10 channels with resolution 512x384).
i1 = cv2.cvtColor(cv2.imread('/Tmp/I1.png', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB)
i2 = cv2.cvtColor(cv2.imread('/Tmp/I2.png', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB)
i3 = cv2.cvtColor(cv2.imread('/Tmp/I3.png', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB)
i4 = cv2.imread('/Tmp/I4.png', cv2.IMREAD_UNCHANGED)
im = np.dstack((i1, i2, i3, i4)) # Stack arrays along the third axis
# Read and adjust MATLAB output (out_mat is used as reference for testing).
# out_mat is the result of J = imresize3(I, 0.5, 'cubic', 'Antialiasing', false);
j1 = cv2.imread('/Tmp/J1.png', cv2.IMREAD_UNCHANGED)
j2 = cv2.imread('/Tmp/J2.png', cv2.IMREAD_UNCHANGED)
j3 = cv2.imread('/Tmp/J3.png', cv2.IMREAD_UNCHANGED)
j4 = cv2.imread('/Tmp/J4.png', cv2.IMREAD_UNCHANGED)
j5 = cv2.imread('/Tmp/J5.png', cv2.IMREAD_UNCHANGED)
out_mat = np.dstack((j1, j2, j3, j4, j5)) # Stack arrays along the third axis
#out_py = zoom(im, 0.5, order=3, mode='reflect')
# Execute 3D resize in Python
out_py = cubic_resize3(im, 0.5)
abs_diff = np.absolute(out_mat.astype(np.int16) - out_py.astype(np.int16))
print(f'max_abs_diff = {abs_diff.max()}')
The Python implementation reads the input files stored by MATLAB (and convert from BGR to RGB when required).
The implementation compares the result of cubic_resize3 with the MATLAB output of imresize3.
The maximum difference is 12 (not zero).
Apparently cv2.resize and MATLAB imresize gives slightly different results.
Update:
Replacing:
out[:, :, i] = cv2.resize(inp[:, :, i], (out_cols, out_rows), interpolation=cv2.INTER_CUBIC)
with:
out[:, :, i] = transform.resize(inp[:, :, i], (out_rows, out_cols), order=3, mode='edge', anti_aliasing=False, preserve_range=True)
Reduces the maximum difference to 4.

Slicing 2D numpy array periodically

I have a numpy array of 300x300 where I want to keep all elements periodically. Specifically, for both axes I want to keep the first 5 elements, then discard 15, keep 5, discard 15, etc. This should result in an array of 75x75 elements. How can this be done?
You can created a 1D mask, that carries out the keep/discard function, and then repeat the mask and apply the mask to the array. Here is an example.
import numpy as np
size = 300
array = np.arange(size).reshape((size, 1)) * np.arange(size).reshape((1, size))
mask = np.concatenate((np.ones(5), np.zeros(15))).astype(bool)
period = len(mask)
mask = np.repeat(mask.reshape((1, period)), repeats=size // period, axis=0)
mask = np.concatenate(mask, axis=0)
result = array[mask][:, mask]
print(result.shape)
You can view the array as series of 20x20 blocks, of which you want to keep the upper-left 5x5 portion. Let's say you have
keep = 5
discard = 15
This only works if
assert all(s % (keep + discard) == 0 for s in arr.shape)
First compute the shape of the view and use it:
block = keep + discard
shape1 = (arr.shape[0] // block, block, arr.shape[1] // block, block)
view = arr.reshape(shape1)[:, :keep, :, :keep]
The following operation will create a copy of the data because the view creates a non-contiguous buffer:
shape2 = (shape1[0] * keep, shape1[2] * keep)
result = view.reshape(shape2)
You can compute shape1 and shape2 in a more general manner with something like
shape1 = tuple(
np.stack((np.array(arr.shape) // block,
np.full(arr.ndim, block)), -1).ravel())
shape2 = tuple(np.array(shape1[::2]) * keep)
I would recommend packaging this into a function.
Here is my first thought of a solution. Will update later if I think of one with fewer lines. This should work even if the input is not square:
output = []
for i in range(len(arr)):
tmp = []
if i % (15+5) < 5: # keep first 5, then discard next 15
for j in range(len(arr[i])):
if j % (15+5) < 5: # keep first 5, then discard next 15
tmp.append(arr[i,j])
output.append(tmp)
Update:
Building off of Yang's answer, here is another way which uses np.tile, which repeats an array a given number of times along each axis. This relies on the input array being square in dimension.
import numpy as np
# Define one instance of the keep/discard box
keep, discard = 5, 15
mask = np.concatenate([np.ones(keep), np.zeros(discard)])
mask_2d = mask.reshape((keep+discard,1)) * mask.reshape((1,keep+discard))
# Tile it out -- overshoot, then trim to match size
count = len(arr)//len(mask_2d) + 1
tiled = np.tile(mask_2d, [count,count]).astype('bool')
tiled = tiled[:len(arr), :len(arr)]
# Apply the mask to the input array
dim = sum(tiled[0])
output = arr[tiled].reshape((dim,dim))
Another option using meshgrid and a modulo:
# MyArray = 300x300 numpy array
r = np.r_[0:300] # A slide from 0->300
xv, yv = np.meshgrid(r, r) # x and y grid
mask = ((xv%20)<5) & ((yv%20)<5) # We create the boolean mask
result = MyArray[mask].reshape((75,75)) # We apply the mask and reshape the final output

Implement ConvND in Tensorflow

So I need a ND convolutional layer that also supports complex numbers. So I decided to code it myself.
I tested this code on numpy alone and it worked. Tested with several channels, 2D and 1D and complex. However, I have problems when I do it on TF.
This is my code so far:
def call(self, inputs):
with tf.name_scope("ComplexConvolution_" + str(self.layer_number)) as scope:
inputs = self._verify_inputs(inputs) # Check inputs are of expected shape and format
inputs = self.apply_padding(inputs) # Add zeros if needed
output_np = np.zeros( # I use np because tf does not support the assigment
(inputs.shape[0],) + # Per each image
self.output_size, # Image out size
dtype=self.input_dtype # To support complex numbers
)
img_index = 0
for image in inputs:
for filter_index in range(self.filters):
for i in range(int(np.prod(self.output_size[:-1]))): # for each element in the output
index = np.unravel_index(i, self.output_size[:-1])
start_index = tuple([a * b for a, b in zip(index, self.stride_shape)])
end_index = tuple([a+b for a, b in zip(start_index, self.kernel_shape)])
# set_trace()
sector_slice = tuple(
[slice(start_index[ind], end_index[ind]) for ind in range(len(start_index))]
)
sector = image[sector_slice]
new_value = tf.reduce_sum(sector * self.kernels[filter_index]) + self.bias[filter_index]
# I use Tied Bias https://datascience.stackexchange.com/a/37748/75968
output_np[img_index][index][filter_index] = new_value # The complicated line
img_index += 1
output = apply_activation(self.activation, output_np)
return output
input_size is a tuple of shape (dim1, dim2, ..., dim3, channels). An 2D rgb conv for example will be (32, 32, 3) and inputs will have shape (None, 32, 32, 3).
The output size is calculated from an equation I found in this paper: A guide to convolution arithmetic for deep learning
out_list = []
for i in range(len(self.input_size) - 1): # -1 because the number of input channels is irrelevant
out_list.append(int(np.floor((self.input_size[i] + 2 * self.padding_shape[i] - self.kernel_shape[i]) / self.stride_shape[i]) + 1))
out_list.append(self.filters)
Basically, I use np.zeros because if I use tf.zeros I cannot assign the new_value and I get:
TypeError: 'Tensor' object does not support item assignment
However, in this current state I am getting:
NotImplementedError: Cannot convert a symbolic Tensor (placeholder_1:0) to a numpy array.
On that same assignment. I don't see an easy fix, I think I should change the strategy of the code completely.
In the end, I did it in a very inefficient way based in this comment, also commented here but at least it works:
new_value = tf.reduce_sum(sector * self.kernels[filter_index]) + self.bias[filter_index]
indices = (img_index,) + index + (filter_index,)
mask = tf.Variable(tf.fill(output_np.shape, 1))
mask = mask[indices].assign(0)
mask = tf.cast(mask, dtype=self.input_dtype)
output_np = array * mask + (1 - mask) * new_value
I say inefficient because I create a whole new array for each assignment. My code is taking ages to compute for the moment so I will keep looking for improvements and post here if I get something better.

How to vectorize a code with python numpy.bincount, using apply along axis

I'm trying to vectorize a code with numpy, to run it using multiprocessing, but i can't understand how numpy.apply_along_axis works. This is an example of the code, vectorized using map
import numpy
from scipy import sparse
import multiprocessing
from matplotlib import pyplot
#first i build a matrix of some x positions vs time datas in a sparse format
matrix = numpy.random.randint(2, size = 100).astype(float).reshape(10,10)
x = numpy.nonzero(matrix)[0]
times = numpy.nonzero(matrix)[1]
weights = numpy.random.rand(x.size)
#then i define an array of y positions
nStepsY = 5
y = numpy.arange(1,nStepsY+1)
#now i build an image using x-y-times coordinates and x-times weights
def mapIt(ithStep):
ncolumns = 80
image = numpy.zeros(ncolumns)
yTimed = y[ithStep]*times
positions = (numpy.round(x-yTimed)+50).astype(int)
values = numpy.bincount(positions,weights)
values = values[numpy.nonzero(values)]
positions = numpy.unique(positions)
image[positions] = values
return image
image = list(map(mapIt, range(nStepsY)))
image = numpy.array(image)
a = pyplot.imshow(image, aspect = 10)
Here the output plot
I tried to use numpy.apply_along_axis, but this function allows me to iterate only along the rows of image, while i need to iterate along the ithStep index too. E.g.:
#now i build an image using x-y-times coordinates and x-times weights
nrows = nStepsY
ncolumns = 80
matrix = numpy.zeros(nrows*ncolumns).reshape(nrows,ncolumns)
def applyIt(image):
image = numpy.zeros(ncolumns)
yTimed = y[ithStep]*times
positions = (numpy.round(x-yTimed)+50).astype(int)
values = numpy.bincount(positions,weights)
values = values[numpy.nonzero(values)]
positions = numpy.unique(positions)
image[positions] = values
return image
imageApplied = numpy.apply_along_axis(applyIt,1,matrix)
a = pyplot.imshow(imageApplied, aspect = 10)
It obviously return only the firs row nrows times, since nothing iterates ithStep:
And here the wrong plot
There is a way to iterate an index, or to use an index while numpy.apply_along_axis iterates?
Here the code with only matricial operations: it's quite faster than map or apply_along_axis but uses so much memory.
(in this function i use a trick with scipy.sparse, which works more intuitively than numpy arrays when you try to sum numbers on a same element)
def fullmatrix(nRows, nColumns):
y = numpy.arange(1,nStepsY+1)
image = numpy.zeros((nRows, nColumns))
yTimed = numpy.outer(y,times)
x3d = numpy.outer(numpy.ones(nStepsY),x)
weights3d = numpy.outer(numpy.ones(nStepsY),weights)
y3d = numpy.outer(y,numpy.ones(x.size))
positions = (numpy.round(x3d-yTimed)+50).astype(int)
matrix = sparse.coo_matrix((numpy.ravel(weights3d), (numpy.ravel(y3d), numpy.ravel(positions)))).todense()
return matrix
image = fullmatrix(nStepsY, 80)
a = pyplot.imshow(image, aspect = 10)
This way is simplier and very fast! Thank you so much.
nStepsY = 5
nRows = nStepsY
nColumns = 80
y = numpy.arange(1,nStepsY+1)
image = numpy.zeros((nRows, nColumns))
fakeRow = numpy.zeros(positions.size)
def itermatrix(ithStep):
yTimed = y[ithStep]*times
positions = (numpy.round(x-yTimed)+50).astype(int)
matrix = sparse.coo_matrix((weights, (fakeRow, positions))).todense()
matrix = numpy.ravel(matrix)
missColumns = (nColumns-matrix.size)
zeros = numpy.zeros(missColumns)
matrix = numpy.concatenate((matrix, zeros))
return matrix
for i in numpy.arange(nStepsY):
image[i] = itermatrix(i)
#or, without initialization of image:
imageMapped = list(map(itermatrix, range(nStepsY)))
imageMapped = numpy.array(imageMapped)
It feels like attempting to use map or apply_along_axis is obscuring the essentially iteration of the problem.
I rewrote your code as an explicit loop on y:
nStepsY = 5
y = numpy.arange(1,nStepsY+1)
image = numpy.zeros((nStepsY, 80))
for i, yi in enumerate(y):
yTimed = yi*times
positions = (numpy.round(x-yTimed)+50).astype(int)
values = numpy.bincount(positions,weights)
values = values[numpy.nonzero(values)]
positions = numpy.unique(positions)
image[i, positions] = values
a = pyplot.imshow(image, aspect = 10)
pyplot.show()
Looking at the code, I think I could calculate positions for all y values making a (y.shape[0],times.shape[0]) array. But the rest, the bincount and unique still have to work row by row.
apply_along_axis when working with a 2d array, and axis=1 essentially does:
res = np.zeros_like(arr)
for i in range....:
res[i,:] = func1d(arr[i,:])
If the input array has more dimensions it constructs a more elaborate indexing object [i,j,k,:]. And it can handle cases where func1d returns a different size array than the input. But in any case it is just a generalized iteration tool.
Moving the initial positions creation outside the loop:
yTimed = y[:,None]*times
positions = (numpy.round(x-yTimed)+50).astype(int)
image = numpy.zeros((positions.shape[0], 80))
for i, pos in enumerate(positions):
values = numpy.bincount(pos,weights)
values = values[numpy.nonzero(values)]
pos = numpy.unique(pos)
image[i, pos] = values
Now I can cast this as an apply_along_axis problem, with an applyIt that takes a positions vector (with all the yTimed information) rather than blank image vector.
def applyIt(pos, size, weights):
acolumn = numpy.zeros(size)
values = numpy.bincount(pos,weights)
values = values[numpy.nonzero(values)]
pos = numpy.unique(pos)
acolumn[pos] = values
return acolumn
image = numpy.apply_along_axis(applyIt, 1, positions, 80, weights)
Timing wise I expect it's a bit slower than my explicit iteration. It has to do more setup work, including a test call applyIt(positions[0,:],...) to determine the size of its return array (i.e image has different shape than positions.)
def csrmatrix(y, times, x, weights):
yTimed = numpy.outer(y,times)
n=y.shape[0]
x3d = numpy.outer(numpy.ones(n),x)
weights3d = numpy.outer(numpy.ones(n),weights)
y3d = numpy.outer(y,numpy.ones(x.size))
positions = (numpy.round(x3d-yTimed)+50).astype(int)
#print(y.shape, weights3d.shape, y3d.shape, positions.shape)
matrix = sparse.csr_matrix((numpy.ravel(weights3d), (numpy.ravel(y3d), numpy.ravel(positions))))
#print(repr(matrix))
return matrix
# one call
image = csrmatrix(y, times, x, weights)
# iterative call
alist = []
for yi in numpy.arange(1,nStepsY+1):
alist.append(csrmatrix(numpy.array([yi]), times, x, weights))
def mystack(alist):
# concatenate without offset
row, col, data = [],[],[]
for A in alist:
A = A.tocoo()
row.extend(A.row)
col.extend(A.col)
data.extend(A.data)
print(len(row),len(col),len(data))
return sparse.csr_matrix((data, (row, col)))
vimage = mystack(alist)

Algorithm to create a square matrix given any number of smaller square matrices

I will want to plot some images using Opencv, and for this I would like to glue images together.
Imagine I have 4 pictures. The best way would be to glue them in a 2x2 image matrix.
a = img; a.shape == (48, 48)
b = img; b.shape == (48, 48)
c = img; c.shape == (48, 48)
d = img; d.shape == (48, 48)
I now use the np.reshape which takes a list such as [a,b,c,d], and then I manually put the dimensions to get the following:
np.reshape([a,b,c,d], (a.shape*2, a.shape*2)).shape == (96, 96)
The issue starts when I have 3 pictures. I kind of figured that I can take the square root of the length of the list and then the ceiling value which will yield the square matrix dimension of 2 (np.ceil(sqrt(len([a,b,c]))) == 2). I would then have to add a white image with the dimension of the first element to the list and there we go. But I imagine there must be an easier way to accomplish this for plotting, most likely already defined somewhere.
So, how to easily combine any amount of square matrices into one big square matrix?
EDIT:
I came up with the following:
def plotimgs(ls):
shp = ls[0].shape[0] # the image's dimension
dim = np.ceil(sqrt(len(ls))) # the amount of pictures per row AND column
emptyimg = (ls[1]*0 + 1)*255 # used to add to the list to allow square matrix
for i in range(int(dim*dim - len(ls))):
ls.append(emptyimg)
enddim = int(shp*dim) # enddim by enddim is the final matrix dimension
# Convert to 600x600 in the end to resize the pictures to fit the screen
newimg = cv2.resize(np.reshape(ls, (enddim, enddim)), (600, 600))
cv2.imshow("frame", newimg)
cv2.waitKey(10)
plotimgs([a,b,d])
Somehow, even though the dimensions are okay, it actually clones some pictures more:
When I give 4 pictures, I get 8 pictures.
When I give 9 pictures, I get 27 pictures.
When I give 16 pictures, I get 64 pictures.
So in fact rather than squared, I get to the third power of images somehow. Though, e.g.
plotimg([a]*9) gives a picture with dimensions of 44*3 x 44*3 = 144x144 which should be correct for 9 images?
Here's a snippet that I use for doing this sort of thing:
import numpy as np
def montage(imgarray, nrows=None, border=5, border_val=np.nan):
"""
Returns an array of regularly spaced images in a regular grid, separated
by a border
imgarray:
3D array of 2D images (n_images, rows, cols)
nrows:
the number of rows of images in the output array. if
unspecified, nrows = ceil(sqrt(n_images))
border:
the border size separating images (px)
border_val:
the value of the border regions of the output array (np.nan
renders as transparent with imshow)
"""
dims = (imgarray.shape[0], imgarray.shape[1]+2*border,
imgarray.shape[2] + 2*border)
X = np.ones(dims, dtype=imgarray.dtype) * border_val
X[:,border:-border,border:-border] = imgarray
# array dims should be [imageno,r,c]
count, m, n = X.shape
if nrows != None:
mm = nrows
nn = int(np.ceil(count/nrows))
else:
mm = int(np.ceil(np.sqrt(count)))
nn = mm
M = np.ones((nn * n, mm * m)) * np.nan
image_id = 0
for j in xrange(mm):
for k in xrange(nn):
if image_id >= count:
break
sliceM, sliceN = j * m, k * n
img = X[image_id,:, :].T
M[sliceN:(sliceN + n), sliceM:(sliceM + m)] = img
image_id += 1
return np.flipud(np.rot90(M))
Example:
from scipy.misc import lena
from matplotlib import pyplot as plt
img = lena().astype(np.float32)
img -= img.min()
img /= img.max()
imgarray = np.sin(np.linspace(0, 2*np.pi, 25)[:, None, None] + img)
m = montage(imgarray)
plt.imshow(m, cmap=plt.cm.jet)
Reusing chunks from How do you split a list into evenly sized chunks? :
def chunks(l, n):
""" Yield successive n-sized chunks from l.
"""
for i in xrange(0, len(l), n):
yield l[i:i+n]
Rewriting your function:
def plotimgs(ls):
shp = ls[0].shape[0] # the image's dimension
dim = int(np.ceil(sqrt(len(ls)))) # the amount of pictures per row AND column
emptyimg = (ls[1]*0 + 1)*255 # used to add to the list to allow square matrix
ls.extend((dim **2 - ls) * [emptyimg]) # filling the list with missing images
newimg = np.concatenate([np.concatenate(c, axis=0) for c in chunks(ls, dim)], axis=1)
cv2.imshow("frame", newimg)
cv2.waitKey(10)
plotimgs([a,b,d])

Categories