I am using a dataset from DWD (Deutscher Wetterdienst) and want to select data by latitude and longitude. The import works so far. So no problem there. Now I want to select data by latitude and longitude. It works when I try to select data with sel when I use x and y.
But not with lat and long. I tried all the answer which I could find, like:
ds.sel(latitude=50, longitude=14, method='nearest')
but I am getting the error
ValueError: dimensions or multi-index levels ['latitude', 'longitude'] do not exist
That's my code:
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import xarray as xr
ds = xr.open_dataset(
'cosmo-d2_germany_rotated-lat-lon_single-level_2019061721_012_ASWDIFD_S.grib2',
engine='cfgrib',
backend_kwargs={'filter_by_keys': {'stepUnits': 1}}
)
print(ds)
Output:
<xarray.Dataset>
Dimensions: (x: 651, y: 716)
Coordinates:
time datetime64[ns] ...
step timedelta64[ns] ...
surface int32 ...
latitude (y, x) float64 ...
longitude (y, x) float64 ...
valid_time datetime64[ns] ...
Dimensions without coordinates: x, y
Data variables:
ASWDIFD_S (y, x) float32 ...
Attributes:
GRIB_edition: 2
GRIB_centre: edzw
GRIB_centreDescription: Offenbach
GRIB_subCentre: 255
Conventions: CF-1.7
institution: Offenbach
history: 2019-07-22T13:35:33 GRIB to CDM+CF via cfgrib-
In your file latitude and longitude are not dimensions but rather helper 2D variables containing coordinate data. In xarray parlance they are called non-dimension coordinates and you cannot slice on them. See also Working with Multidimensional Coordinates.
It would be better if you regrid the data to a regular grid inside python so that you have latitudes and longitudes as 1D vectors, you would have to make a grid and then interpolate the data over that grid.
Also you need to check https://www.ecmwf.int/sites/default/files/elibrary/2018/18727-cfgrib-easy-and-efficient-grib-file-access-xarray.pdf to see the way to access grib files in xarray. If you dont want to use xarray for this purpose pygrib is another option.
I can't test the solution as I don't have the cfgrib engine installed, but could you try to use
numpy.find_nearest(lonarray, lonvalue)
to find the lon and lat indexes near your point as per this soln:
Find nearest value in numpy array
And then select the point using the index directly on the x,y coordinates?
http://xarray.pydata.org/en/stable/indexing.html
i wrote a function for the files from the DWD:
import pygrib # https://jswhit.github.io/pygrib/docs/
import numpy as np
def get_grib_data_nearest_point(grib_file, inp_lat, inp_lon):
"""
Gets the correspondent value to a latitude-longitude pair of coordinates in
a grib file.
:param grib_file: path to the grib file in disk
:param lat: latitude
:param lon: longitude
:return: scalar
"""
# open the grib file, get the coordinates and values
grbs = pygrib.open(grib_file)
grb = grbs[1]
lats, lons = grb.latlons()
values = grb.values
grbs.close()
# check if user coords are valide
if inp_lat > max(grb.distinctLatitudes): return np.nan
if inp_lat < min(grb.distinctLatitudes): return np.nan
if inp_lon > max(grb.distinctLongitudes): return np.nan
if inp_lon < min(grb.distinctLongitudes): return np.nan
# find index for closest lat (x)
diff_save = 999
for x in range(0, len(lats)):
diff = abs(lats[x][0] - inp_lat)
if diff < diff_save:
diff_save = diff
else:
break
# find index for closest lon (y)
diff_save = 999
for y in range(0, len(lons[x])):
diff = abs(lons[x][y] - inp_lon)
if diff < diff_save:
diff_save = diff
else:
break
# index the array to return the correspondent value
return values[x][y]
As noted above, you can re-grid your data (probably given in curvilinear grid i.e., lat and lon in 2D arrays) to your desired resolution of 1-D array (lat/lon) , after which you can use .sel directly on the lat/lon coords to slice the data.
Check out xESMF(https://xesmf.readthedocs.io/en/latest/notebooks/Curvilinear_grid.html).
Easy, fast interpolation and regridding of Xarray fields with good examples and documentation.
Related
I have a Sentinel 3 image which is stored in a number of netcdf files. The variable is stored in the file "LST_in.nc" with dimensions = rows and columns of the image. The lat and long are in another file "geodetic_in.nc". I want to export the image with the lat and long to tiff format.
To my understanding, the names of dimensions and coordinates should be the same, while I failed to do this
here are my attempts
import rioxarray as rio
import xarray as xr
xds = xr.open_dataset('LST_in.nc')
coord =xr.open_dataset('geodetic_in.nc')
lat, lon = coord.latitude_in.data, coord.longitude_in.data
xds = xds.assign_coords({"lat":(["rows","columns"], lat), "lon":(["rows","columns"], lon)})
xds = xds.rename_dims({"rows": "lon", "columns": 'lat'})
Here I received this error
ValueError: Cannot rename rows to lon because lon already exists. Try using swap_dims instead.
Then I tried this
xds = xds.swap_dims({'rows' : 'lon', 'columns' : 'lat'})
but received another error
ValueError: replacement dimension 'lon' is not a 1D variable along the old dimension 'rows'
Also this one
lst = xds.LST
lst.rio.set_spatial_dims(x_dim = 'lon', y_dim = 'lat', inplace = True)
Error: MissingSpatialDimensionError: x dimension (lon) not found. Data variable: LST
The only one that works but with the wrong coordinates is
lst = xds.LST
lst.rio.set_spatial_dims(x_dim = 'columns', y_dim = 'rows', inplace = True)
lst.rio.write_crs("epsg:4326", inplace = True)
lst.rio.to_raster("lst.tif")
I would appreciate your help. attached is the image files
https://wetransfer.com/downloads/e3711adf56f73cd07119b43d19f7360820220117154330/c46b21
The short answer is: you can't. Because both netCDF and grib are gridded data format and the current data points positions can't be described using a regular latitude/longitude grid.
I plotted a sample of your data points latitude and longitude:
As you can see, the data points are not placed on lines of constant latitude and longitude, they do not follow any pattern that could be describe with projected grid, rotated grid or curvilinear grid either.
If you want to make a gridded file with the LST values and latitude and longitude as coordinates, you will have to reproject your data. You can use the rasterio.warp module, see here for more information.
I have a satellite image file. Loaded into dask array. I want to get pixel value (nearest) of a latitude, longitude of interest.
Satellite image is in GEOS projection. I have longitude and latitude information as 2D numpy arrays.
Satellite Image file
I have loaded it into a dask data array
from satpy import Scene
import matplotlib as plt
import os
cwd = os.getcwd()
fn = os.path.join(cwd, 'EUMETSAT_data/1Jan21/MSG1-SEVI-MSG15-0100-NA-20210101185741.815000000Z-20210101185757-1479430.nat')
files = [fn]
scn = Scene(filenames=files, reader='seviri_l1b_native')
scn.load(["VIS006"])
da = scn['VIS006']
This is what the dask array looks like:
I read lon lats from the area attribute with the help of satpy:
lon, lat = scn['VIS006'].attrs['area'].get_lonlats()
print(lon.shape)
print(lat.shape)
(1179, 808)
(1179, 808)
I get a 2d numpy array each, for longitude and latitude that are coordinates but I can not use them for slicing or selecting.
What is the best practice/method to get nearest lat long, pixel information?
How do I project the data onto lat long coordinates that I can then use for indexing to arrive at the pixel value.
At the end, I want to get pixel value (nearest) of lat long of interest.
Thanks in advance!!!
The AreaDefinition object you are using (.attrs['area']) has a few methods for getting different coordinate information.
area = scn['VIS006'].attrs['area']
col_idx, row_idx = area.get_xy_from_lonlat(lons, lats)
scn['VIS006'].values[row_idx, col_idx]
Note that row and column are flipped. The get_xy_from_lonlat method should work for arrays or scalars.
There are other methods for getting X/Y coordinates of each pixel if that is what you're interesting in.
You can find the location with following:
import numpy as np
px,py = (23.0,55.0) # some location to take out values:
dist = np.sqrt(np.cos(lat*np.pi/180.0)*(lon-px)**2+(lat-py)**2); # this is the distance matrix from point (px,py)
kkout = np.squeeze(np.where(np.abs(dist)==np.nanmin(dist))); # find location where distance is minimum
print(kkout) # you will see the row and column, where to take out data
#serge ballesta - thanks for the direction
Answering my own question.
Project the latitude and longitude (platecaree projection) onto the GEOS projection CRS. Find x and y. Use this x and y and nearest select method of xarray to get pixel value from dask array.
import cartopy.crs as ccrs
data_crs = ccrs.Geostationary(central_longitude=41.5, satellite_height=35785831, false_easting=0, false_northing=0, globe=None, sweep_axis='y')
lon = 77.541677 # longitude of interest
lat = 8.079148 # latitude of interst
# lon lat system in
x, y = data_crs.transform_point(lon, lat, src_crs=ccrs.PlateCarree())
dn = ds.sel(x=x,y=y, method='nearest')
Based on a xarray dataset containing latitude and longitude coordinates and several variables I would like to create a new variable containing objects based on the latitude and longitude coordinates.
For example, from the following dataset:
<xarray.Dataset>
Dimensions: (time: 100, x: 1000, y: 840)
Coordinates:
* x (x) float64 2.452e+06 2.458e+06 2.462e+06 ... 7.442e+06 7.448e+06
* y (y) float64 1.352e+06 1.358e+06 1.362e+06 ... 5.542e+06 5.548e+06
* time (time) datetime64[ns] 2015-01-01 ... 2015-01-05T03:00:00
... I would like to simply create a point object for each grid cell based on the respective latitude and longitude coordinates.
Pseudocode:
ds['points'] = (('y', 'x'), point_creation_function(ds.y, ds.x))
(How) Can I apply a function that requires the coordinate values as inputs such, that the result can be directly added as new variable?
A horrible implementation after an initialization of ds.points would be:
for x_value in ds.x:
for y_value in ds.y:
ds.points.loc[dict(x=x_value, y=y_value)] = (x_value, y_value)
I assume there is an elegant and computation-efficient solution available, but searching the documentation I did not understand how to use apply, reduce or other functions to achieve it.
If I undestand you question correctly, I think this is the answer:
import numpy as np
import xarray as xr
# Create some example data
data = np.random.rand(10,5,6)
# Make the dataset.
ds = xr.Dataset({"my_var": (["time", "x", "y"], data)})
# Create a MultiIndex
ds = ds.stack(points=("x", "y"))
I am using the following packages:
import pandas as pd
import numpy as np
import xarray as xr
import geopandas as gpd
I have the following objects storing data:
print(precip_da)
Out[]:
<xarray.DataArray 'precip' (time: 13665, latitude: 200, longitude: 220)>
[601260000 values with dtype=float32]
Coordinates:
* longitude (longitude) float32 35.024994 35.074997 35.125 35.175003 ...
* latitude (latitude) float32 5.0249977 5.074997 5.125 5.174999 ...
* time (time) datetime64[ns] 1981-01-01 1981-01-02 1981-01-03 ...
Attributes:
standard_name: convective precipitation rate
long_name: Climate Hazards group InfraRed Precipitation with St...
units: mm/day
time_step: day
geostatial_lat_min: -50.0
geostatial_lat_max: 50.0
geostatial_lon_min: -180.0
geostatial_lon_max: 180.0
This looks as follows:
precip_da.mean(dim="time").plot()
I have my shapefile as a geopandas.GeoDataFrame which represents a polygon.
awash = gpd.read_file(shp_dir)
awash
Out[]:
OID_ Name FolderPath SymbolID AltMode Base Clamped Extruded Snippet PopupInfo Shape_Leng Shape_Area geometry
0 0 Awash_Basin Awash_Basin.kml 0 0 0.0 -1 0 None None 30.180944 9.411263 POLYGON Z ((41.78939511000004 11.5539922500000...
Which looks as follows:
awash.plot()
Plotted one on top of the other they look like this:
ax = awash.plot(alpha=0.2, color='black')
precip_da.mean(dim="time").plot(ax=ax,zorder=-1)
My question is, how do I mask the xarray.DataArray by checking if the lat-lon points lie INSIDE the shapefile stored as a geopandas.GeoDataFrame?
So I want ONLY the precipitation values (mm/day) which fall INSIDE that shapefile.
I want to do something like the following:
masked_precip = precip_da.within(awash)
OR
masked_precip = precip_da.loc[precip_da.isin(awash)]
EDIT 1
I have thought about using the rasterio.mask module but I don't know what format the input data needs to be. It sounds as if it does exactly the right thing:
"Creates a masked or filled array using input shapes. Pixels are masked or set to nodata outside the input shapes"
Reposted from GIS Stack Exchange here
This is the current working solution that I have taken from this gist. This is Stephan Hoyer's answer to a github issue for the xarray project.
On top of the other packages above both affine and rasterio are required
from rasterio import features
from affine import Affine
def transform_from_latlon(lat, lon):
""" input 1D array of lat / lon and output an Affine transformation
"""
lat = np.asarray(lat)
lon = np.asarray(lon)
trans = Affine.translation(lon[0], lat[0])
scale = Affine.scale(lon[1] - lon[0], lat[1] - lat[0])
return trans * scale
def rasterize(shapes, coords, latitude='latitude', longitude='longitude',
fill=np.nan, **kwargs):
"""Rasterize a list of (geometry, fill_value) tuples onto the given
xray coordinates. This only works for 1d latitude and longitude
arrays.
usage:
-----
1. read shapefile to geopandas.GeoDataFrame
`states = gpd.read_file(shp_dir+shp_file)`
2. encode the different shapefiles that capture those lat-lons as different
numbers i.e. 0.0, 1.0 ... and otherwise np.nan
`shapes = (zip(states.geometry, range(len(states))))`
3. Assign this to a new coord in your original xarray.DataArray
`ds['states'] = rasterize(shapes, ds.coords, longitude='X', latitude='Y')`
arguments:
---------
: **kwargs (dict): passed to `rasterio.rasterize` function
attrs:
-----
:transform (affine.Affine): how to translate from latlon to ...?
:raster (numpy.ndarray): use rasterio.features.rasterize fill the values
outside the .shp file with np.nan
:spatial_coords (dict): dictionary of {"X":xr.DataArray, "Y":xr.DataArray()}
with "X", "Y" as keys, and xr.DataArray as values
returns:
-------
:(xr.DataArray): DataArray with `values` of nan for points outside shapefile
and coords `Y` = latitude, 'X' = longitude.
"""
transform = transform_from_latlon(coords[latitude], coords[longitude])
out_shape = (len(coords[latitude]), len(coords[longitude]))
raster = features.rasterize(shapes, out_shape=out_shape,
fill=fill, transform=transform,
dtype=float, **kwargs)
spatial_coords = {latitude: coords[latitude], longitude: coords[longitude]}
return xr.DataArray(raster, coords=spatial_coords, dims=(latitude, longitude))
def add_shape_coord_from_data_array(xr_da, shp_path, coord_name):
""" Create a new coord for the xr_da indicating whether or not it
is inside the shapefile
Creates a new coord - "coord_name" which will have integer values
used to subset xr_da for plotting / analysis/
Usage:
-----
precip_da = add_shape_coord_from_data_array(precip_da, "awash.shp", "awash")
awash_da = precip_da.where(precip_da.awash==0, other=np.nan)
"""
# 1. read in shapefile
shp_gpd = gpd.read_file(shp_path)
# 2. create a list of tuples (shapely.geometry, id)
# this allows for many different polygons within a .shp file (e.g. States of US)
shapes = [(shape, n) for n, shape in enumerate(shp_gpd.geometry)]
# 3. create a new coord in the xr_da which will be set to the id in `shapes`
xr_da[coord_name] = rasterize(shapes, xr_da.coords,
longitude='longitude', latitude='latitude')
return xr_da
It can be implemented as follows:
precip_da = add_shape_coord_from_data_array(precip_da, shp_dir, "awash")
awash_da = precip_da.where(precip_da.awash==0, other=np.nan)
awash_da.mean(dim="time").plot()
You should have a look at the following packages:
salem and the region of interest example
regionmask
Both may get you to what you want.
I am trying to find the equivalent (if there exists one) of an NCL function that returns the indices of two-dimensional latitude/longitude arrays closest to a user-specified latitude/longitude coordinate pair.
This is the link to the NCL function that I am hoping there is an equivalent to in python. I'm suspecting at this point that there is not, so any tips on how to get indices from lat/lon coordinates is appreciated
https://www.ncl.ucar.edu/Document/Functions/Contributed/getind_latlon2d.shtml
Right now , I have my coordinate values saved into an .nc file and are read by:
coords='coords.nc'
fh = Dataset(coords, mode='r')
lons = fh.variables['g5_lon_1'][:,:]
lats = fh.variables['g5_lat_0'][:,:]
rot = fh.variables['g5_rot_2'][:,:]
fh.close()
I found scipy spatial.KDTree can perform similar task. Here is my code of finding the model grid that is closest to the observation location
from scipy import spatial
from netCDF4 import Dataset
# read in the one dimensional lat lon info from a dataset
fname = '0k_T_ann_clim.nc'
fid = Dataset(fname, 'r')
lat = fid.variables['lat'][:]
lon = fid.variables['lon'][:]
# make them a meshgrid for later use KDTree
lon2d, lat2d = np.meshgrid(lon, lat)
# zip them together
model_grid = list( zip(np.ravel(lon2d), np.ravel(lat2d)) )
#target point location : 30.5N, 56.1E
target_pts = [30.5 56.1]
distance, index = spatial.KDTree(model_grid).query(target_pts)
# the nearest model location (in lat and lon)
model_loc_coord = [coord for i, coord in enumerate(model_grid) if i==index]
I'm not sure how lon/lat arrays are stored when read in python, so to use the following solution you may need to convert lon/lat to numpy arrays. You can just put the abs(array-target).argmin() in a function.
import numpy as np
# make a dummy longitude array, 0.5 degree resolution.
lon=np.linspace(0.5,360,720)
# find index of nearest longitude to 25.4
ind=abs(lon-25.4).argmin()
# check it works! this gives 25.5
lon[ind]