I have a CNN with a structure loosely close to AlexNet, see below:
Convolutional Neural Network structure:
100x100x3 Input image
25x25x12 Convolutional layer: 4x4x12, stride = 4, padding = 0
12x12x12 Max pooling layer: 3x3, stride = 2
12x12x24 Convolutional layer: 5x5x24, stride = 1, padding = 2
5x5x24 Max pooling layer: 4x4, stride = 2
300x1x1 Flatten layer: 600 -> 300
300x1x1 Fully connected layer: 300
3x1x1 Fully connected layer: 3
Obviously, with only max pooling and convolutional layers, the numbers will approach 0 and infinity, depending of how negative the weights are. I was wondering of any approaches to combat this, seeing as I would like to avoid large numbers.
One problem that arrises from this is if you use sigmoid in the final layers. Seeing as the derivative of sigmoid is s(x)*(1-s(x)). Having larger numbers will inevitably make the value of sigmoid 1, and so you'll notice on back prop, you have 1*(1-1), which obviously doesn't go down too well.
So I would like to know of any ways to try and keep the numbers low.
Tagged with python because that's what I implemented this in. I used my own code.
I asked this question on AI stack exchange (which it is better suited for) and through implementing the correct weight initialisation, numbers will neither explode or vanish on a forward or backward pass. See here: https://ai.stackexchange.com/questions/13106/how-are-exploding-numbers-in-a-forward-pass-of-a-cnn-combated
Related
I am trying to train a resnet for 32x32 images, and I came upon a tutorial: https://towardsdatascience.com/resnets-for-cifar-10-e63e900524e0, which applies to cifar-10 (32x32 image dataset), but I don't understand what its saying.
This is from the site:
"The rest of the notes from the authors to construct the ResNet are:
Use a stack of 6 layers of 3x3 convolutions. The choice of will determine the size of our ResNet.
The feature map sizes are {32, 16, 8} respectively with 2 convolutions for each feature map size. Also, the number of filters is {16, 32, 64} respectively.
The down sampling of the volumes through the ResNet is achieved increasing the stride to 2, for the first convolution of each layer. Therefore, no pooling operations are used until right before the dense layer.
For the bypass connections, no projections will be used. In the cases where there is a different in the shape of the volume, the input will be simply padded with zeros, so the output size matched the size of the volume before the addition.
This would leave Figure 4 as the representation of our first layer. In this case, our bypass connection is a regular Identity Shortcut because the dimensionality of the volume is constant thorough the layer operations. Since we chose n=1, 2 convolutions are applied within the layer 1.
We still can check from Figure 2 that the output volume of Layer1 is indeed 32x32x16. Let’s go deeper!"
I am confused why the number of channels in the output is 16, when the number of filters was {16, 32, 64}
Lately, I start a project about classification, using a very shallow ResNet.
The model just has 10 conv. layer and then connects a Global avg pooling layer before softmax layer.
The performance is good as my expectation --- 93% (yeah, it is ok).
However, for some reasons, I need replace the Global avg pooling layer.
I have tried the following ways:
(Given the input shape of this layer [-1, 128, 1, 32], tensorflow form)
Global max pooling layer. but got 85% ACC
Exponential Moving Average. but got 12% (almost didn't work)
split_list = tf.split(input, 128, axis=1)
avg_pool = split_list[0]
beta = 0.5
for i in range(1, 128):
avg_pool = beta*split_list[i] + (1-beta)*avg_pool
avg_pool = tf.reshape(avg_pool, [-1,32])
Split input into 4 parts, avg_pool each parts, finally concatenate them.
but got 75%
split_shape = [32,32,32,32]
split_list = tf.split(input,
split_shape,
axis=1)
for i in range(len(split_shape)):
split_list[i] = tf.keras.layers.GlobalMaxPooling2D()(split_list[i])
avg_pool = tf.concat(split_list, axis=1)
Average the last channel. [-1, 128, 1, 32] --> [-1, 128], didn't work.
^
Use a conv. layer with 1 kernel. In this way, the output shape is [-1, 128, 1, 1]. but didn't work, 25% or so.
I am pretty confused why global average pooling can work that well?
And is there any other way to replace it?
Global Average Pooling has the following advantages over the fully connected final layers paradigm:
The removal of a large number of trainable parameters from the model. Fully connected or dense layers have lots of parameters. A 7 x 7 x 64 CNN output being flattened and fed into a 500 node dense layer yields 1.56 million weights which need to be trained. Removing these layers speeds up the training of your model.
The elimination of all these trainable parameters also reduces the tendency of over-fitting, which needs to be managed in fully connected layers by the use of dropout.
The authors argue in the original paper that removing the fully connected classification layers forces the feature maps to be more closely related to the classification categories – so that each feature map becomes a kind of “category confidence map”.
Finally, the authors also argue that, due to the averaging operation over the feature maps, this makes the model more robust to spatial translations in the data. In other words, as long as the requisite feature is included / or activated in the feature map somewhere, it will still be “picked up” by the averaging operation.
I'm learning Residual Networks (ResNet50) from Andrew Ng coursera lectures. I understand that one of the main reasons why ResNets work is that they can learn identity function and that's why adding more and more layers in network does not hurt the performance of the network.
Now as described in lectures, there are two type of blocks are used in ResNets: 1) Identity block and Convolutional block.
Identity Block is used when there is no change in input and output dimensions. Convolutional block is almost same as identity block but there is a convolutional layer in short-cut path to just change the dimension such that the dimension of input and output matches.
Here is identity block:
and here is convolutional block:
Now in implementation of convolutional block (2nd image), First block (i.e. conv2d --> BatchNorm --> ReLu is implemented with 1x1 convolution and stride > 1.
# First component of main path
X = Conv2D(F1, (1, 1), strides = (s,s), name = conv_name_base + '2a', padding = 'valid', kernel_initializer = glorot_uniform(seed=0))(X)
X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X)
X = Activation('relu')(X)
I don't understand the reason behind keeping stride > 1 with window size 1. Isn't it just data loss? We are just considering alternate pixels in this case.
What should be the possible reason for such hyperparameter selection? Any intuitive explanation will help! Thanks.
I don't understand the reason behind keeping stride > 1 with window
size 1. Isn't it just data loss?
Please refer the section on Deeper Bottleneck Architectures in the resnet paper. Also, Figure 5.
https://arxiv.org/pdf/1512.03385.pdf
1 x 1 convolutions are typically used to increase or decrease the dimensionality along the filter dimension. So, in the bottleneck architecture the first 1 x 1 layer reduces the dimensions so that the 3 x 3 layer needs to handle smaller input/output dimensions. Then the final 1 x 1 layer increases the filter dimensions again.
It's done to save on computation/training time.
From the paper,
"Because of concerns on the training time that we can afford, we modify the building block as a bottleneck design".
I believe you might have answered your own question. The convolutional block is used whenever you need to change the dimension in order for the output and input dimensions to match. That being said, how do you change the dimension of a certain volume using convolutions? Well, you change the stride.
For any given convolution operation, assuming a square input, the dimension of the output volume can be obtained through the formula (n+2p-f)/s +1, where n is the input dimension, p is your zero-padding, f the filter dimension and s is the stride. By increasing the stride you're effectively reducing the dimension of your shortcut's output volume, and thus, it can be used in such a way as to make sure that the dimensions of your shortcut and lower paths will match in order for the final sum to be performed.
Why is it >1 then? Well, if you didn't need a stride larger than one, you wouldn't be needing a dimension alteration in the first place and therefore would be using the identity block instead.
I have been working on creating a convolutional neural network from scratch, and am a little confused on how to treat kernel size for hidden convolutional layers. For example, say I have an MNIST image as input (28 x 28) and put it through the following layers.
Convolutional layer with kernel_size = (5,5) with 32 output channels
new dimension of throughput = (32, 28, 28)
Max Pooling layer with pool_size (2,2) and step (2,2)
new dimension of throughput = (32, 14, 14)
If I now want to create a second convolutional layer with kernel size = (5x5) and 64 output channels, how do I proceed? Does this mean that I only need two new filters (2 x 32 existing channels) or does the kernel size change to be (32 x 5 x 5) since there are already 32 input channels?
Since the initial input was a 2D image, I do not know how to conduct convolution for the hidden layer since the input is now 3 dimensional (32 x 14 x 14).
you need 64 kernel, each with the size of (32,5,5) .
depth(#channels) of kernels, 32 in this case, or 3 for a RGB image, 1 for gray scale etc, should always match the input depth, but values are all the same.
e.g. if you have a 3x3 kernel like this : [-1 0 1; -2 0 2; -1 0 1] and now you want to convolve it with an input with N as depth or say channel, you just copy this 3x3 kernel N times in 3rd dimension, the following math is just like the 1 channel case, you sum all values in all N channels which your kernel window is currently on them after multiplying the kernel values with them and get the value of just 1 entry or pixel. so what you get as output in the end is a matrix with 1 channel:) how much depth you want your matrix for next layer to have? that's the number of kernels you should apply. hence in your case it would be a kernel with this size (64 x 32 x 5 x 5) which is actually 64 kernels with 32 channels for each and same 5x5 values in all cahnnels.
("I am not a very confident english speaker hope you get what I said, it would be nice if someone edit this :)")
You essentially answered your own question. YOU are building the network solver. It seems like your convolutional layer output is [channels out] = [channels in] * [number of kernels]. I had to infer this from the wording of your question. In general, this is how it works: you specify the kernel size of the layer and how many kernels to use. Since you have one input channel you are essentially saying that there are 32 kernels in your first convolution layer. That is 32 unique 5x5 kernels. Each of these kernels will be applied to the one input channel. More in general, each of the layer kernels (32 in your example) is applied to each of the input channels. And that is the key. If you build code to implement the convolution layer according to these generalities, then your subsequent convolution layers are done. In the next layer you specify two kernels per channel. In your example there would be 32 input channels, the hidden layer has 2 kernels per channel, and the output would be 64 channels.
You could then down sample by applying a pooling layer, then flatten the 64 channels [turn a matrix into a vector by stacking the columns or rows], and pass it as a column vector into a fully connected network. That is the basic scheme of convolutional networks.
The work comes when you try to code up backpropagation through the convolutional layers. But the OP didn’t ask about that. I’ll just say this, you will come to a place where you have the stored input matrix (one channel), you have a gradient from a lower layer in the form of a matrix and is the size of the layer kernel, and you need to backpropagate it up to the next convolutional layer.
The simple approach is to rotate your stored channel matrix by 180 degrees and then convolve it with the gradient. The explanation for this is long and tedious, too much to write here, and not a lot on the internet explains it well.
A more sophisticated approach is to apply “correlation” between the input gradient and the stored channel matrix. Note I specifically said “correlation” as opposed to “convolution” and that is key. If you think they “almost” the same thing, then I recommend you take some time and learn about the differences.
If you would like to have a look at my CNN solver here's a link to the project. It's C++ and no documentation, sorry :) It's all in a header file called layer.h, find the class FilterLayer2D. I think the code is pretty readable (what programmer doesn't think his code is readable :) )
https://github.com/sraber/simplenet.git
I also wrote a paper on basic fully connected networks. I wrote it so that I would forget what I learned in my self study. Maybe you'll get something out of it. It's at this link:
http://www.raberfamily.com/scottblog/scottblog.htm
I am wondering how LSTM work in Keras. In this tutorial for example, as in many others, you can find something like this :
model.add(LSTM(4, input_shape=(1, look_back)))
What does the "4" mean. Is it the number of neuron in the layer. By neuron, I mean something that for each instance gives a single output ?
Actually, I found this brillant discussion but wasn't really convinced by the explanation mentioned in the reference given.
On the scheme, one can see the num_unitsillustrated and I think I am not wrong in saying that each of this unit is a very atomic LSTM unit (i.e. the 4 gates). However, how these units are connected ? If I am right (but not sure), x_(t-1)is of size nb_features, so each feature would be an input of a unit and num_unit must be equal to nb_features right ?
Now, let's talk about keras. I have read this post and the accepted answer and get trouble. Indeed, the answer says :
Basically, the shape is like (batch_size, timespan, input_dim), where input_dim can be different from the unit
In which case ? I am in trouble with the previous reference...
Moreover, it says,
LSTM in Keras only define exactly one LSTM block, whose cells is of unit-length.
Okay, but how do I define a full LSTM layer ? Is it the input_shape that implicitely create as many blocks as the number of time_steps (which, according to me is the first parameter of input_shape parameter in my piece of code ?
Thanks for lighting me
EDIT : would it also be possible to detail clearly how to reshape data of, say, size (n_samples, n_features) for a stateful LSTM model ? How to deal with time_steps and batch_size ?
First, units in LSTM is NOT the number of time_steps.
Each LSTM cell(present at a given time_step) takes in input x and forms a hidden state vector a, the length of this hidden unit vector is what is called the units in LSTM(Keras).
You should keep in mind that there is only one RNN cell created by the code
keras.layers.LSTM(units, activation='tanh', …… )
and RNN operations are repeated by Tx times by the class itself.
I've linked this to help you understand it better in with a very simple code.
You can (sort of) think of it exactly as you think of fully connected layers. Units are neurons.
The dimension of the output is the number of neurons, as with most of the well known layer types.
The difference is that in LSTMs, these neurons will not be completely independent of each other, they will intercommunicate due to the mathematical operations lying under the cover.
Before going further, it might be interesting to take a look at this very complete explanation about LSTMs, its inputs/outputs and the usage of stative = true/false: Understanding Keras LSTMs. Notice that your input shape should be input_shape=(look_back, 1). The input shape goes for (time_steps, features).
While this is a series of fully connected layers:
hidden layer 1: 4 units
hidden layer 2: 4 units
output layer: 1 unit
This is a series of LSTM layers:
Where input_shape = (batch_size, arbitrary_steps, 3)
Each LSTM layer will keep reusing the same units/neurons over and over until all the arbitrary timesteps in the input are processed.
The output will have shape:
(batch, arbitrary_steps, units) if return_sequences=True.
(batch, units) if return_sequences=False.
The memory states will have a size of units.
The inputs processed from the last step will have size of units.
To be really precise, there will be two groups of units, one working on the raw inputs, the other working on already processed inputs coming from the last step. Due to the internal structure, each group will have a number of parameters 4 times bigger than the number of units (this 4 is not related to the image, it's fixed).
Flow:
Takes an input with n steps and 3 features
Layer 1:
For each time step in the inputs:
Uses 4 units on the inputs to get a size 4 result
Uses 4 recurrent units on the outputs of the previous step
Outputs the last (return_sequences=False) or all (return_sequences = True) steps
output features = 4
Layer 2:
Same as layer 1
Layer 3:
For each time step in the inputs:
Uses 1 unit on the inputs to get a size 1 result
Uses 1 unit on the outputs of the previous step
Outputs the last (return_sequences=False) or all (return_sequences = True) steps
The number of units is the size (length) of the internal vector states, h and c of the LSTM. That is no matter the shape of the input, it is upscaled (by a dense transformation) by the various kernels for the i, f, and o gates. The details of how the resulting latent features are transformed into h and c are described in the linked post. In your example, the input shape of data
(batch_size, timesteps, input_dim)
will be transformed to
(batch_size, timesteps, 4)
if return_sequences is true, otherwise only the last h will be emmited making it (batch_size, 4). I would recommend using a much higher latent dimension, perhaps 128 or 256 for most problems.
I would put it this way - there are 4 LSTM "neurons" or "units", each with 1 Cell State and 1 Hidden State for each timestep they process. So for an input of 1 timestep processing , you will have 4 Cell States, and 4 Hidden States and 4 Outputs.
Actually the correct way to say this is - for one timestep sized input you 1 Cell State (a vector of size 4) and 1 Hidden State (a vector of size 4) and 1 Output (a vector of size 4).
So if you feed in a timeseries with 20 steps, you will have 20 (intermediate) Cell States, each of size 4. That is because the inputs in LSTM are processed sequentially, 1 after the other. Similarly you will have 20 Hidden States, each of size 4.
Usually, your output will be the output of the LAST step (a vector of size 4). However in case you want the outputs of each intermediate step(remember you have 20 timesteps to process), you can make return_sequences = TRUE. In which case you will have 20 , 4 sized vectors each telling you what was the output when each of those steps got processed as those 20 inputs came one after the other.
In case when you put return_states = TRUE , you get the last Hidden State of size = 4 and last Cell State of size 4.