I run the SLIC (Simple Linear Iterative Clustering) superpixels algorithm from opencv and skimage on the same picture with, but got different results, the skimage slic result is better, Shown in the picture below.First one is opencv SLIC, the second one is skimage SLIC. I got several questions hope someonc can help.
Why opencv have the parameter 'region_size' while skimage is 'n_segments'?
Is convert to LAB and a guassian blur necessary?
Is there any trick to optimize the opecv SLIC result?
===================================
OpenCV SLIC
Skimage SLIC
# Opencv
src = cv2.imread('pic.jpg') #read image
# gaussian blur
src = cv2.GaussianBlur(src,(5,5),0)
# Convert to LAB
src_lab = cv.cvtColor(src,cv.COLOR_BGR2LAB) # convert to LAB
# SLIC
cv_slic = ximg.createSuperpixelSLIC(src_lab,algorithm = ximg.SLICO,
region_size = 32)
cv_slic.iterate()
# Skimage
src = io.imread('pic.jpg')
sk_slic = skimage.segmentation.slic(src,n_segments = 256, sigma = 5)
Image with superpixels centroid generated with the code below
# Measure properties of labeled image regions
regions = regionprops(labels)
# Scatter centroid of each superpixel
plt.scatter([x.centroid[1] for x in regions], [y.centroid[0] for y in regions],c = 'red')
but there is one superpixel less(top-left corner), and I found that
len(regions) is 64 while len(np.unique(labels)) is 65 , why?
I'm not sure why you think skimage slic is better (and I maintain skimage! 😂), but:
different parameterizations are common in mathematics and computer science. Whether you use region size or number of segments, you should get the same result. I expect the formula to convert between the two will be something like n_segments = image.size / region_size.
The original paper suggests that for natural images (meaning images of the real world like you showed, rather than e.g. images from a microscope or from astronomy), converting to Lab gives better results.
to me, based on your results, it looks like the gaussian blur used for scikit-image was higher than for openCV. So you could make the results more similar by playing with the sigma. I also think the compactness parameter is probably not identical between the two.
Related
i would like to ask you one question : wanted to implement a code which clarifies a picture done by hand ( by pen), let us consider such image
it is done by blue pen, which should be converted to the gray scale image using following code
from PIL import Image
user_test = filename
col = Image.open(user_test)
gray = col.convert('L')
bw = gray.point(lambda x: 0 if x<100 else 255, '1')
bw.save("bw_image.jpg")
bw
img_array = cv2.imread("bw_image.jpg", cv2.IMREAD_GRAYSCALE)
img_array = cv2.bitwise_not(img_array)
print(img_array.size)
plt.imshow(img_array, cmap = plt.cm.binary)
plt.show()
img_size = 28
new_array = cv2.resize(img_array, (img_size,img_size))
plt.imshow(new_array, cmap = plt.cm.binary)
plt.show()
idea is that i am taking image from camera directly, but it is losing structure of digit and comes only empty and black picture, like this
therefore computer can't understand which digit it is and neural networks fails to predict its label correctly, could you please tell me which transformation should i apply in order to detect this image much more precisely ?
edit :
i have apply following code
from PIL import Image
user_test = filename
col = Image.open(user_test)
gray = col.convert('L')
plt.hist(img_array)
plt.show()
and got
You have several issues here, and you can methodically address them.
First of all you're having an issue with thresholding properly.
As I suggested in earlier comments, you can easily see why your original thresholding was unsuccessful.
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from matplotlib import cm
im = Image.open('whatever_path_you_choose.jpg').convert("L")
im = np.asarray(im)
plt.hist(im.flatten(), bins=np.arange(255));
Looking at the image you gave:
Clearly the threshold should be somewhere between 100-200, not as in your original code. Also note that this distribution isn't very bimodal - so I'm not sure otsu's method would work well here.
If we eyeball it (this can be tuned), we can see that thresholding at 145-ish gives decent results in terms of segmentation.
im_thresh = (im >= 145)
plt.imshow(im_thresh, cmap=cm.gray)
Now you might have an additional issue that you have horizontal lines, you can address this by writing on blank paper as suggested. This wasn't exactly your question but I will try to address it anyways (in a naive fashion). You can try a naive solution of using a sobel filter (think of it as the derivative of the image to get the lines), followed by a median filter to get the approximately most common pixel intensity - the size of the filter might have to vary for different digits though. This should clear up some of the lines. For a more rigorous approach try reading up on hough line transform for detecting horizontal lines and try to whiten them out.
This is my very naive approach:
from skimage.filters import sobel
from scipy.ndimage import median_filter
#Sobel filter reverses intensities so subtracting the result from 1.0 turns it back to the original
plt.imshow(1.0 - median_filter(sobel(im_thresh), [10, 3]), cmap=cm.gray)
You can try cropping automatically afterwards. Honestly I think most neural networks that could recognize MNIST-like digits could recognize the result I posted at the end as well.
Try using skimage package like this. This has inbuilt functions for image processing:
from skimage import io
from skimage.restoration import denoise_tv_chambolle
from skimage.filters import threshold_otsu
image = io.imread('path/to/your/image', as_gray=True)
# Denoising
denoised_image = denoise_tv_chambolle(image, weight=0.1, multichannel=True)
# Thresholding
threshold = threshold_otsu(denoised_image)
thresholded_image = denoised_image > threshold
I am trying to detect ellipses in some images.
After some functions I got this edges map:
I tried using Hough transform to detect ellipses, but this transform has very high complexity, so my computer didn't finish running the transform command even after 5 hours(!).
I also tried doing connected components and got this:
In last case I also tried continue and binarized the image.
In all cases I am stuck in these steps, and have no idea how continue from here.
My mission is detect tomatoes in the image. I am approaching this by trying to detect circles and ellipses and find the radius (or average radius in ellipses case) for each one.
edited:
I add my code for the first method (the result is edge map from above):
img = cv2.imread(r'../images/assorted_tomatoes.jpg')
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
imgAfterLight=lightreduce(img)
imgAfterGamma=gamma_correctiom(imgAfterLight,0.8)
th2 = 255 - cv2.adaptiveThreshold(imgAfterGamma,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,3)
median2 = cv2.medianBlur(th2,3)
where median2 is the result of shown above in edge map
and the code for connected components:
import scipy
from scipy import ndimage
import matplotlib.pyplot as plt
import cv2
import numpy as np
fname=r'../images/assorted_tomatoes.jpg'
blur_radius = 1.0
threshold = 50
img = scipy.misc.imread(fname) # gray-scale image
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
print(img.shape)
# smooth the image (to remove small objects)
imgf = ndimage.gaussian_filter(gray_img, blur_radius)
threshold = 80
# find connected components
labeled, nr_objects = ndimage.label(imgf > threshold)
where labeled is the result above
another edit:
this is the input image:
Input
The problem is that after edge detection, there are a lot of unnecessary edges in sub regions that disturbing for make smooth edge map
To me this looks like a classic problem for the watershed algorithm. It is designed for segmenting out touching objects like the tomatoes. My example is in Matlab (I'm on the wrong computer today) but it should translate to python easily. First convert to greyscale as you do and then invert the images
I=rgb2gray(img)
I2=imcomplement(I)
The image as is will over segment, so we remove minima that are too shallow. This can be done with the h-minima transform
I3=imhmin(I2,50);
You might need to play with the 50 value which is the height threshold for suppressing shallow minima. Now run the watershed algorithm and we get the following result.
L=watershed(I3);
The results are not perfect. It needs additional logic to remove some of the small regions, but it will give a reasonable estimate. The watershed and h-minima are contained in the skimage.morphology package in python.
I have 10 greyscale brain MRI scans from BrainWeb. They are stored as a 4d numpy array, brains, with shape (10, 181, 217, 181). Each of the 10 brains is made up of 181 slices along the z-plane (going through the top of the head to the neck) where each slice is 181 pixels by 217 pixels in the x (ear to ear) and y (eyes to back of head) planes respectively.
All of the brains are type dtype('float64'). The maximum pixel intensity across all brains is ~1328 and the minimum is ~0. For example, for the first brain, I calculate this by brains[0].max() giving 1328.338086605072 and brains[0].min() giving 0.0003886114541273855. Below is a plot of a slice of a brain[0]:
I want to binarize all these brain images by rescaling the pixel intensities from [0, 1328] to {0, 1}. Is my method correct?
I do this by first normalising the pixel intensities to [0, 1]:
normalized_brains = brains/1328
And then by using the binomial distribution to binarize each pixel:
binarized_brains = np.random.binomial(1, (normalized_brains))
The plotted result looks correct:
A 0 pixel intensity represents black (background) and 1 pixel intensity represents white (brain).
I experimented by implementing another method to normalise an image from this post but it gave me just a black image. This is because np.finfo(np.float64) is 1.7976931348623157e+308, so the normalization step
normalized_brains = brains/1.7976931348623157e+308
just returned an array of zeros which in the binarizition step also led to an array of zeros.
Am I binarising my images using a correct method?
Your method of converting the image to a binary image basically amounts to random dithering, which is a poor method of creating the illusion of grey values on a binary medium. Old-fashioned print is a binary medium, they have fine-tuned the methods to represent grey-value photographs in print over centuries. This process is called halftoning, and is shaped in part by properties of ink on paper, that we do not have to deal with in binary images.
So what methods have people come up with outside of print? Ordered dithering (mostly Bayer matrix), and error diffusion dithering. Read more about dithering on Wikipedia. I wrote a blog post showing how to implement all of these methods in MATLAB some years ago.
I would recommend you use error diffusion dithering for your particular application. Here is some code in MATLAB (taken from my blog post liked above) for the Floyd-Steinberg algorithm, I hope that you can translate this to Python:
img = imread('https://i.stack.imgur.com/d5E9i.png');
img = img(:,:,1);
out = double(img);
sz = size(out);
for ii=1:sz(1)
for jj=1:sz(2)
old = out(ii,jj);
%new = 255*(old >= 128); % Original Floyd-Steinberg
new = 255*(old >= 128+(rand-0.5)*100); % Simple improvement
out(ii,jj) = new;
err = new-old;
if jj<sz(2)
% right
out(ii ,jj+1) = out(ii ,jj+1)-err*(7/16);
end
if ii<sz(1)
if jj<sz(2)
% right-down
out(ii+1,jj+1) = out(ii+1,jj+1)-err*(1/16);
end
% down
out(ii+1,jj ) = out(ii+1,jj )-err*(5/16);
if jj>1
% left-down
out(ii+1,jj-1) = out(ii+1,jj-1)-err*(3/16);
end
end
end
end
imshow(out)
Resampling the image before applying the dithering greatly improves the results:
img = imresize(img,4);
% (repeat code above)
imshow(out)
NOTE that the above process expects the input to be in the range [0,255]. It is easy to adapt to a different range, say [0,1328] or [0,1], but it is also easy to scale your images to the [0,255] range.
Have you tried a threshold on the image?
This is a common way to binarize images, rather than trying to apply a random binomial distribution. You could try something like:
binarized_brains = (brains > threshold_value).astype(int)
which returns an array of 0s and 1s according to whether the image value was less than or greater than your chosen threshold value.
You will have to experiment with the threshold value to find the best one for your images, but it does not need to be normalized first.
If this doesn't work well, you can also experiment with the thresholding options available in the skimage filters package.
IT is easy in OpenCV. as mentioned a very common way is defining a threshold, But your result looks like you are allocating random values to your intensities instead of thresholding it.
import cv2
im = cv2.imread('brain.png', cv2.CV_LOAD_IMAGE_GRAYSCALE)
(th, brain_bw) = cv2.threshold(imy, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
th = (DEFINE HERE)
im_bin = cv2.threshold(im, th, 255, cv
cv2.imwrite('binBrain.png', brain_bw)
brain
binBrain
For my project i'm trying to binarize an image with openCV in python. I used the adaptive gaussian thresholding from openCV to convert the image with the following result:
I want to use the binary image for OCR but it's too noisy. Is there any way to remove the noise from the binary image in python? I already tried fastNlMeansDenoising from openCV but it doesn't make a difference.
P.S better options for binarization are welcome as well
You should start by adjusting the parameters to the adaptive threshold so it uses a larger area. That way it won't be segmenting out noise. Whenever your output image has more noise than the input image, you know you're doing something wrong.
I suggest as an adaptive threshold to use a closing (on the input grey-value image) with a structuring element just large enough to remove all the text. The difference between this result and the input image is exactly all the text. You can then apply a regular threshold to this difference.
It is also possible using GraphCuts for this kind of task. You will need to install the maxflow library in order to run the code. I quickly copied the code from their tutorial and modified it, so you could run it more easily. Just play around with the smoothing parameter to increase or decrease the denoising of the image.
import cv2
import numpy as np
import matplotlib.pyplot as plt
import maxflow
# Important parameter
# Higher values means making the image smoother
smoothing = 110
# Load the image and convert it to grayscale image
image_path = 'your_image.png'
img = cv2.imread('image_path')
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = 255 * (img > 128).astype(np.uint8)
# Create the graph.
g = maxflow.Graph[int]()
# Add the nodes. nodeids has the identifiers of the nodes in the grid.
nodeids = g.add_grid_nodes(img.shape)
# Add non-terminal edges with the same capacity.
g.add_grid_edges(nodeids, smoothing)
# Add the terminal edges. The image pixels are the capacities
# of the edges from the source node. The inverted image pixels
# are the capacities of the edges to the sink node.
g.add_grid_tedges(nodeids, img, 255-img)
# Find the maximum flow.
g.maxflow()
# Get the segments of the nodes in the grid.
sgm = g.get_grid_segments(nodeids)
# The labels should be 1 where sgm is False and 0 otherwise.
img_denoised = np.logical_not(sgm).astype(np.uint8) * 255
# Show the result.
plt.subplot(121)
plt.imshow(img, cmap='gray')
plt.title('Binary image')
plt.subplot(122)
plt.title('Denoised binary image')
plt.imshow(img_denoised, cmap='gray')
plt.show()
# Save denoised image
cv2.imwrite('img_denoised.png', img_denoised)
Result
You could try the morphological transformation close to remove small "holes".
First define a kernel using numpy, you might need to play around with the size. Choose the size of the kernel as big as your noise.
kernel = np.ones((5,5),np.uint8)
Then run the morphologyEx using the kernel.
denoised = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
If text gets removed you can try to erode the image, this will "grow" the black pixels. If the noise is as big as the data, this method will not help.
erosion = cv2.erode(img,kernel,iterations = 1)
I can only ever find examples in C/C++ and they never seem to map well to the OpenCV API. I'm loading video frames (both from files and from a webcam) and want to reduce them to 16 color, but mapped to a 24-bit RGB color-space (this is what my output requires - a giant LED display).
I read the data like this:
ret, frame = self._vid.read()
image = cv2.cvtColor(frame, cv2.COLOR_RGB2BGRA)
I did find the below python example, but cannot figure out how to map that to the type of output data I need:
import numpy as np
import cv2
img = cv2.imread('home.jpg')
Z = img.reshape((-1,3))
# convert to np.float32
Z = np.float32(Z)
# define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 8
ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
# Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]
res2 = res.reshape((img.shape))
cv2.imshow('res2',res2)
cv2.waitKey(0)
cv2.destroyAllWindows()
That obviously works for the OpenCV image viewer but trying to do the same errors on my output code since I need an RGB or RGBA format. My output works like this:
for y in range(self.height):
for x in range(self.width):
self._led.set(x,y,tuple(image[y,x][0:3]))
Each color is represented as an (r,g,b) tuple.
Any thoughts on how to make this work?
I think the following could be faster than kmeans, specially with a k = 16.
Convert the color image to gray
Contrast stretch this gray image to so that resulting image gray levels are between 0 and 255 (use normalize with NORM_MINMAX)
Calculate the histogram of this stretched gray image using 16 as the number of bins (calcHist)
Now you can modify these 16 values of the histogram. For example you can sort and assign ranks (say 0 to 15), or assign 16 uniformly distributed values between 0 and 255 (I think these could give you a consistent output for a video)
Backproject this histogram onto the stretched gray image (calcBackProject)
Apply a color-map to this backprojected image (you might want to scale the backprojected image befor applying a colormap using applyColorMap)
Tip for kmeans:
If you are using kmeans for video, you can use the cluster centers from the previous frame as the initial positions in kmeans for the current frame. That way, it'll take less time to converge, so kmeans in the subsequent frames will most probably run faster.
You can speed up your processing by applying the k-means on a downscaled version of your image. This will give you the cluster centroids. You can then quantify each pixel of the original image by picking the closest centroid.