Related
I need to put multiple matrices together into a single matrix, like so:
I have the values for the matrix, but I can't get it to appear like how it does in the image- instead, my values end up stacked on top of each other in an array. How can I go about getting my matrices to look like the image above?
My code:
import numpy as np
w_estimate = [0.656540, 7.192304, 2.749036]
F = [np.identity(3) * -w_estimate[1:4], -np.identity(3)], [np.identity(3)*0, np.identity(3)*0]
It's supposed to look like:
F = [[np.identity(3) * -w_estimate[1:4], -np.identity(3)]
[np.identity(3) * 0, np.identity(3) * 0]]
but instead it looks like:
[[np.identity(3) * -w_estimate[1:4]],
[-np.identity(3)],
[np.identity(3) * 0],
[np.identity(3) * 0]]
Help is very much appreciated.
The first correction to your code pertains to -w_estimate[1:4].
Since w_estimate is a plain pythonic list, you can not apply
minus operator to it.
You can however apply minus operator to a Numpy array.
Another correction is to avoid -0 in the result.
To get an array with diagonal elements filled from some other array,
and all other zeroes, you can use np.diagonal_fill, which fills
in-place diagonal elements of some (earlier) created array
(using np.zeros).
So to construct 2 "upper" blocks of your result, you can write:
a1 = np.zeros((3,3))
a2 = a1.copy()
np.fill_diagonal(a1, -np.array(w_estimate)[1:4])
np.fill_diagonal(a2, -1)
Note that -np.array(w_estimate)[1:4] returns last 2 elements of
w_estimate them, i.e. [7.192304, 2.749036]. Since the target array
is "3 by 3", the source sequence is repeated (in this case, for the
last diagonal element only).
If your intention is different, change -np.array(w_estimate)[1:4]
accordingly.
And to construct the whole intended array, run:
F = np.vstack((np.hstack((a1, a2)), np.zeros((3,6))))
The result is:
array([[-7.192304, 0. , 0. , -1. , 0. , 0. ],
[ 0. , -2.749036, 0. , 0. , -1. , 0. ],
[ 0. , 0. , -7.192304, 0. , 0. , -1. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ]])
You shoud definitely take a look at numpy.block method.
>>> A = np.eye(2) * 2
>>> B = np.eye(3) * 3
>>> np.block([
... [A, np.zeros((2, 3))],
... [np.ones((3, 2)), B ]
... ])
array([[2., 0., 0., 0., 0.],
[0., 2., 0., 0., 0.],
[1., 1., 3., 0., 0.],
[1., 1., 0., 3., 0.],
[1., 1., 0., 0., 3.]])
I have a 2d array, and I have some numbers to add to some cells. I want to vectorize the operation in order to save time. The problem is when I need to add several numbers to the same cell. In this case, the vectorized code only adds the last.
'a' is my array, 'x' and 'y' are the coordinates of the cells I want to increment, and 'z' contains the numbers I want to add.
import numpy as np
a=np.zeros((4,4))
x=[1,2,1]
y=[0,1,0]
z=[2,3,1]
a[x,y]+=z
print(a)
As you see, a[1,0] should be incremented twice: one by 2, one by 1. So the expected array should be:
[[0. 0. 0. 0.]
[3. 0. 0. 0.]
[0. 3. 0. 0.]
[0. 0. 0. 0.]]
but instead I get:
[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 3. 0. 0.]
[0. 0. 0. 0.]]
The problem would be easy to solve with a for loop, but I wonder if I can correctly vectorize this operation.
Use np.add.at for that:
import numpy as np
a = np.zeros((4,4))
x = [1, 2, 1]
y = [0, 1, 0]
z = [2, 3, 1]
np.add.at(a, (x, y), z)
print(a)
# [[0. 0. 0. 0.]
# [3. 0. 0. 0.]
# [0. 3. 0. 0.]
# [0. 0. 0. 0.]]
When you're doing a[x,y]+=z, we can decompose the operations as :
a[1, 0], a[2, 1], a[1, 0] = [a[1, 0] + 2, a[2, 1] + 3, a[1, 0] + 1]
# Equivalent to :
a[1, 0] = 2
a[2, 1] = 3
a[1, 0] = 1
That's why it doesn't works.
But if you're incrementing your array with a loop for each dimention, it should work
You could create a multi-dimensional array of size 3x4x4, then add up z to all the 3 different dimensions and them sum them all
import numpy as np
x = [1,2,1]
y = [0,1,0]
z = [2,3,1]
a = np.zeros((3,4,4))
n = range(a.shape[0])
a[n,x,y] += z
print(sum(a))
which will result in
[[0. 0. 0. 0.]
[3. 0. 0. 0.]
[0. 3. 0. 0.]
[0. 0. 0. 0.]]
Approach #1: Bincount-based method for performance
We can use np.bincount for efficient bin-based summation and basically inspired by this post -
def accumulate_arr(x, y, z, out):
# Get output array shape
shp = out.shape
# Get linear indices to be used as IDs with bincount
lidx = np.ravel_multi_index((x,y),shp)
# Or lidx = coords[0]*(coords[1].max()+1) + coords[1]
# Accumulate arr with IDs from lidx
out += np.bincount(lidx,z,minlength=out.size).reshape(out.shape)
return out
If you are working with a zeros-initialized output array, feed in the output shape directly into the function and get the bincount output as the final one.
Output on given sample -
In [48]: accumulate_arr(x,y,z,a)
Out[48]:
array([[0., 0., 0., 0.],
[3., 0., 0., 0.],
[0., 3., 0., 0.],
[0., 0., 0., 0.]])
Approach #2: Using sparse-matrix for memory-efficiency
In [54]: from scipy.sparse import coo_matrix
In [56]: coo_matrix((z,(x,y)), shape=(4,4)).toarray()
Out[56]:
array([[0, 0, 0, 0],
[3, 0, 0, 0],
[0, 3, 0, 0],
[0, 0, 0, 0]])
If you are okay with a sparse-matrix, skip the .toarray() part for a memory-efficient solution.
Summary of the question, Is this kind of slicing and then assignment supported in tensorflow?
out[tf_a2[y],x[:,None]] = tf_a1[tf_a2[y],x[:,None]]
final = out[:-1]
Lets give the example, I have a tensor like this:
tf_a1 = tf.Variable([ [9.968594, 8.655439, 0., 0. ],
[0., 8.3356, 0., 8.8974 ],
[0., 0., 6.103182, 7.330564 ],
[6.609862, 0., 3.0614321, 0. ],
[9.497023, 0., 3.8914037, 0. ],
[0., 8.457685, 8.602337, 0. ],
[0., 0., 5.826657, 8.283971 ],
[0., 0., 0., 0. ]])
and I have this one:
tf_a2 = tf.constant([[1, 2, 5],
[1, 4, 6],
[0, 7, 7],
[2, 3, 6],
[2, 4, 7]])
Now I want to keep the elements in tf_a1 in which the combination of n (here n is 2) of them (index of them) is in the value of tf_a2. What does it mean?
For example, in tf_a1, in the first column, indexes which has value are: (0,3,4). Is there any row in tf_a2 which contains any combination of these two indexes: (0,3), (0,4) or (3,4). Actually, there is no such row. So all the elements in that column became zero.
Indexes for the second column in tf_a1 is (0,1) (0,5) (1,5). As you see the record (1,5) is available in the tf_a2 in the first row. That's why we keep those in the tf_a1.
This is the correct numpy code:
y,x = np.where(np.count_nonzero(a1p[a2], axis=1) >= n)
out = np.zeros_like(tf_a1)
out[tf_a2[y],x[:,None]] = tf_a1[tf_a2[y],x[:,None]]
final = out[:-1]
This is the expected output of this numpy code (but I need this in tensorflow):
[[0. 0. 0. 0. ]
[0. 8.3356 0. 8.8974 ]
[0. 0. 6.103182 7.330564 ]
[0. 0. 3.0614321 0. ]
[0. 0. 3.8914037 0. ]
[0. 8.457685 8.602337 0. ]
[0. 0. 5.826657 8.283971 ]]
The tensorflow code should be something like this:
y, x = tf.where(tf.count_nonzero(tf.gather(tf_a1, tf_a2, axis=0), axis=1) >= n)
out = tf.zeros_like(tf_a1)
out[tf_a2[y],x[:,None]] = tf_a1[tf_a2[y],x[:,None]]
final = out[:-1]
This part of the code tf.gather(tf_a1, tf_a2, axis=0), axis=1) is doing the numpy like slicing tf_a1[tf_a2]
Update 1
The only line which does not work its:
out[tf_a2[y],x[:,None]] = tf_a1[tf_a2[y],x[:,None]]
final = out[:-1]
Any idea how can I accomplish this in tensorflow, is this kind of slicing is supported in tensor object at all?
Any help is appreciated:)
I'm trying to recreate a numpy code snippet I wrote in tensorflow, but I'm struggling to find the correct/best tensorflow operations.
Consider the following numpy solution:
import numpy as np
# Initialize a random numpy array:
my_dummy = np.random.random((6, 2, 2, 10))
print(my_dummy)
> [[[[0.6715164 0.58915908 0.36607568 0.73404715 0.69455375 0.52177771
0.91810873 0.85010461 0.37485212 0.35634401]
[0.55885052 0.13041019 0.89774818 0.3363019 0.66634638 0.32054576
0.46174629 0.59975141 0.02283781 0.02997967]]
....
]]]]
# Create random floats, based on channel 0 of my dummy:
random_floats = np.random.random(my_dummy.shape[0])
print(random_floats)
> [0.89351759 0.76734892 0.36810602 0.08513434 0.65511941 0.61297472]
# Create a mask with ones and a shape based on my_dummy:
my_mask = np.ones((my_dummy.shape[0], 1, 1, my_dummy.shape[-1]))
print(my_mask)
> [[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]]
# Initialize a rate parameter:
my_rate = 0.5
# Based on my_rate, change the array accordingly:
my_mask[my_rate > random_floats] = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0]
print(my_mask)
[[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]
[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 0. 1. 0. 1. 0. 1. 0. 1. 0.]]]
[[[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]]]]
# Multiply my_dummy with the new mask:
np.multiply(my_dummy, my_mask)
array([[[[0.6715164 , 0.58915908, 0.36607568, 0.73404715, 0.69455375,
0.52177771, 0.91810873, 0.85010461, 0.37485212, 0.35634401],
[0.55885052, 0.13041019, 0.89774818, 0.3363019 , 0.66634638,
0.32054576, 0.46174629, 0.59975141, 0.02283781, 0.02997967]],
[[0.22358676, 0.74959561, 0.11109368, 0.56021714, 0.2767754 ,
0.55156506, 0.15488703, 0.25738564, 0.18588607, 0.57593545],
[0.15804289, 0.87858207, 0.12890992, 0.78828551, 0.52467083,
0.45117698, 0.2605117 , 0.46659721, 0.855278 , 0.29630581]]],
[[[0.381445 , 0. , 0.48308211, 0. , 0.5136352 ,
0. , 0.84428703, 0. , 0.20532641, 0. ],
[0.696645 , 0. , 0.84184568, 0. , 0.01369105,
0. , 0.27683334, 0. , 0.59356542, 0. ]],
[[0.5281193 , 0. , 0.82336821, 0. , 0.63435181,
0. , 0.12824084, 0. , 0.35045286, 0. ],
[0.02205884, 0. , 0.22927706, 0. , 0.45538199,
0. , 0.81220918, 0. , 0.46427429, 0. ]]],
.....
]]]])
In tensorflow, I did this (warning, many imports, I tried a lot of things and no longer sure whether all of them are necessary, just want to ensure you can reproduce immediately):
from keras.engine.base_layer import InputSpec
from tensorflow.python.util import deprecation
from tensorflow.python.framework import ops
from tensorflow.python.eager import context
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import tf_logging as logging
import numbers
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import math_ops
from keras import backend as K
# Create my_dummy and convert to tensor object:
my_dummy = np.random.random((6, 2, 2, 4))
my_dummy = ops.convert_to_tensor(my_dummy)
my_dummy.get_shape()
> TensorShape([Dimension(6), Dimension(2), Dimension(2), Dimension(4)])
# Create random floats, like before and inspect tensor with Keras (instead of running a tf session):
random_floats = random_ops.random_uniform([my_dummy.get_shape().as_list()[0]], dtype=my_dummy.dtype)
K.eval(random_floats)
> array([0.74018297, 0.76996447, 0.52047441, 0.28215968, 0.91457724,
0.64637448])
# Like before, create a mask with ones, like before shape (almost completely) based on my_dummy:
my_mask = tf.ones([my_dummy.get_shape()[0], 1, 1, my_dummy.get_shape()[-1]], dtype=x.dtype)
K.eval(my_mask)
> array([[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]],
[[[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]]])
Unfortunately, this where I'm stuck. I did not find a way to alter the entries in the my_mask Tensor object, based on a rate value. One thing I tried was tf.where:
tf.where(rate > random_floats, my_mask, tf.constant([1, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype = my_dummy.dtype))
but get the error:
ValueError: Shapes must be equal rank, but are 4 and 1 for 'Select_1' (op: 'Select') with input shapes: [6], [6,1,1,10], [10].
Thankful for any advice/help :)
It is basically more or less the same in tensorflow. Showing with smaller shaped data for convenience:
import tensorflow as tf
value_to_assign = tf.constant([[1., 0., 1., 0., 1.]])
rate = tf.constant(.5)
dummy = tf.random_normal(shape=(4, 1, 1, 5))
# random_floats = tf.random_normal(shape=(tf.shape(dummy)[0], ))
random_floats = tf.constant([0.4, 0.6, .7, .2]) # <--using const values to illustrate
init_val = tf.ones((tf.shape(dummy)[0], 1, 1, tf.shape(dummy)[-1]))
mask = tf.Variable(init_val,
trainable=False)
indices = tf.where(tf.equal(True, rate > random_floats))
tiled = tf.tile(value_to_assign,
multiples=[tf.shape(indices)[0], 1])[:, tf.newaxis, tf.newaxis, :]
mask = tf.scatter_nd_update(mask,
indices=indices,
updates=tiled)
res = mask * dummy
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print('MASK')
print(sess.run(mask))
print('DUMMY')
print(sess.run(dummy))
print('RESULT')
print(sess.run(res))
MASK
[[[[1. 0. 1. 0. 1.]]]
[[[1. 1. 1. 1. 1.]]]
[[[1. 1. 1. 1. 1.]]]
[[[1. 0. 1. 0. 1.]]]]
DUMMY
[[[[-1.2031308 -1.6657363 -1.5552464 0.8540495 0.37618718]]]
[[[-0.4468031 0.46417323 -0.3764856 1.1906835 -1.4670093 ]]]
[[[ 1.2066191 -1.4767337 -0.9487017 -0.49180242 -0.33098853]]]
[[[-0.1621628 0.61168176 0.10006899 0.7585997 -0.23903783]]]]
RESULT
[[[[ 1.7753109 0. -0.5451439 -0. -0.53782284]]]
[[[ 0.08024058 -1.8178499 1.183356 1.0895957 -0.9272436 ]]]
[[[-0.5266396 -2.0316153 -1.0043124 -1.1657876 0.6106227 ]]]
[[[-0.46503183 0. 0.01983969 -0. 0.58563703]]]]
In this question I asked the community about how scipy.interpolate.splev calculates a spline basis.. My goal was to compute a spline faster then splev by pre-calculating a bspline basis and generate a curve by doing a basis to control point dot product.
Since then a new scipy.interpolate.BSpline interpolator was added to scipy. It comes with a basis_element function, which I presume could be used to return the basis used to calculate a spline.
So for example using the code from here with the inputs below:
import numpy as np
# Control points
cv = np.array([[ 50., 25., 0.],
[ 59., 12., 0.],
[ 50., 10., 0.],
[ 57., 2., 0.],
[ 40., 4., 0.],
[ 40., 14., 0.]])
kv = [0, 0, 0, 0, 1, 2, 3, 3, 3, 3] # knot vector
n = 10 # 10 samples (keeping it simple)
degree = 3 # Curve degree
I can compute the following bspline basis:
[[ 1. 0. 0. 0. 0. 0. ]
[ 0.2962963 0.56481481 0.13271605 0.00617284 0. 0. ]
[ 0.03703704 0.51851852 0.39506173 0.04938272 0. 0. ]
[ 0. 0.25 0.58333333 0.16666667 0. 0. ]
[ 0. 0.07407407 0.54938272 0.36728395 0.00925926 0. ]
[ 0. 0.00925926 0.36728395 0.54938272 0.07407407 0. ]
[ 0. 0. 0.16666667 0.58333333 0.25 0. ]
[ 0. 0. 0.04938272 0.39506173 0.51851852 0.03703704]
[ 0. 0. 0.00617284 0.13271605 0.56481481 0.2962963 ]
[ 0. 0. 0. 0. 0. 1. ]]
Using np.dot with basis and control points returns 10 samples on curve:
[[ 50. 25. 0. ]
[ 55.12654321 15.52469136 0. ]
[ 55.01234568 11.19753086 0. ]
[ 53.41666667 9.16666667 0. ]
[ 53.14506173 7.15432099 0. ]
[ 53.1882716 5.17901235 0. ]
[ 51.58333333 3.83333333 0. ]
[ 47.20987654 3.87654321 0. ]
[ 42.31790123 6.7345679 0. ]
[ 40. 14. 0. ]]
Question : is it possible to extract the basis as described above out of scipy.interpolate.BSpline?
Obviously I must be using it wrong, because when I try I get something like this:
from scipy.interpolate import BSpline
b = BSpline.basis_element(kv)
print b(np.linspace(kv[0],kv[-1],n)) # i'm not sure what these values represent
[ 0. 0.00256299 0.04495618 0.16555213 0.28691315 0.28691315
0.16555213 0.04495618 0.00256299 0. ]
BSpline.basis_element takes as its arguments the internal knots.
In your example, you padded the knots, and that did not do what you thought it would:
In [3]: t = [0, 0, 0, 0, 1, 2, 3, 3, 3, 3]
In [4]: b = BSpline.basis_element(t)
In [5]: b.k
Out[5]: 8
So it's an 8th order spline.
If you wanted a quadratic spline, you would do
In [7]: b1 = BSpline.basis_element([0, 1, 2, 3])
In [8]: b1.k
Out[8]: 2
In [9]: b1.t
Out[9]: array([-1., -1., 0., 1., 2., 3., 4., 4.])
Confused? The method is quite simple: https://github.com/scipy/scipy/blob/v0.19.1/scipy/interpolate/_bsplines.py#L243-L302
The callable returned by BSpline.basis_element is really a b-spline function. The result of calling it with an array argument is then equivalent to directly running the example code in the BSpline docstring in a loop for each element of your array, https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.BSpline.html
EDIT: if you're after a variant of Cox-de Boor algorithm of calculating all non-zero splines at a given point, then you can look at a _bspl.evaluate_all_bsplines function, https://github.com/scipy/scipy/blob/v0.19.1/scipy/interpolate/_bspl.pyx#L161
(which itself is just a wrapper over a C routine which does all the heavy lifting; note that it's hard to beat that latter one performance wise.)
However, it's not a public function, so it's not guaranteed to be available in future versions. If you have a good use for it, and a suggestion for a user-facing API, bring the discussion over to the scipy bug tracker.