How to change specific pixel value in grayscale image? - python

I want to change the pixel value of a grayscale image using OpenCV.
Assume that I have a grayscale image and I want to convert all its pixel to 0 value one at a time. So that the resultant image is completely black. I tried this but there is no change in the image:
image = cv2.imread('test_image.png',0)
for i in range(image.shape[0]):
for j in range(image.shape[1]):
image[i, j] = 0
Result:
display the updated image

In most cases, you want to avoid using double for loops to modify pixel values since it is very slow. A better approach is to use Numpy for pixel modification since OpenCV uses Numpy arrays to display images. To achieve your desired result, you can use np.zeros to create a completely black image with the same shape as the original image.
import cv2
import numpy as np
image = cv2.imread("test_image.png", 0)
black = np.zeros(image.shape, np.uint8)
cv2.imshow('image', image)
cv2.imshow('black', black)
cv2.waitKey(0)
For example with a test image. Original (left), result (right)

I would suggest you to always try manipulating the copy of an image so that the image doesn't get affected in the wrong way. Coming to your question, you can do the following:
import cv2
image = cv2.imread('test_image.png',0)
#Creating a copy of the image to confirm right operation is performed on the image.
image_copy = image.copy()
image_copy[:,:] = [0] #Setting all values to 0.

Related

Keep track of reference pixel in PIL imgage while doing transformations

I want to keep track of a point/pixel for reference in a PIL image while I do a (perspective) transformation and cut off the transparent borders.
from PIL import Image
# load image
img = Image.open("img.png")
# do some perspective transformation
img.transform(new_size, Image.PERSPECTIVE, mapping_coeffs)
# cut the borders
img = img.crop(img.getbbox())
For the cropping I could keep track of a position by subtracting the size of the padding. But how can I do this for a perspective transformation, or even multiple transformations in a row?
For others with the same question, I made a black image with only the reference pixel in white using NumPy and transformed it in the same way as my image.
from PIL import Image
import numpy as np
# get black img with the same size
refArray = np.zeros(PILimg.size)
# make the reference pixel white
refArray[xRef, yRef] = 1e8
# to PIL image object
refImg = Image.fromarray(refArray.T)
Do the same transformations with the reference image, and then find the max value in the transformed reference image
ref = np.array(refImg).T
xRef, yRef = np.unravel_index(np.argmax(ref), ref.shape)
edit: For some transformations the pixel disappears, this is solved by using a small square of pixels (5x5) instead of a single pixel.

In pytyon is it possible to prevent the text's pixel while removing lines in image?

I'm working in text extraction process inside the table.But while removing the table lines it affecting the text's pixel.is is possible to keep the text pixel which is overlays on the table line pixel.
original image as RGB
this image is the cropped from original image for reference
output region
Use eroded (or dilated black objects) second image as mask for first image.
import cv2
import numpy as np
#images need equal size
original=cv2.imread('RdfpD.png')
mask = cv2.imread('zxLX4.png', cv2.IMREAD_GRAYSCALE)
se=cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,5))
ret,thresh = cv2.threshold(mask,60,255,cv2.THRESH_BINARY_INV)
dilate = cv2.dilate(thresh,se,iterations = 1)
dilate=cv2.bitwise_not(dilate)
dilate=cv2.cvtColor(dilate, cv2.COLOR_GRAY2BGR)
out=cv2.max(dilate, original)
cv2.imwrite('out_5.png', out)

How to analyze only a part of an image?

I want to analyse a specific part of an image, as an example I'd like to focus on the bottom right 200x200 section and count all the black pixels, so far I have:
im1 = Image.open(path)
rgb_im1 = im1.convert('RGB')
for pixel in rgb_im1.getdata():
Whilst you could do this with cropping and a pair of for loops, that is really slow and not ideal.
I would suggest you use Numpy as it is very commonly available, very powerful and very fast.
Here's a 400x300 black rectangle with a 1-pixel red border:
#!/usr/bin/env python3
import numpy as np
from PIL import Image
# Open the image and make into Numpy array
im = Image.open('image.png')
ni = np.array(im)
# Declare an ROI - Region of Interest as the bottom-right 200x200 pixels
# This is called "Numpy slicing" and is near-instantaneous https://www.tutorialspoint.com/numpy/numpy_indexing_and_slicing.htm
ROI = ni[-200:,-200:]
# Calculate total area of ROI and subtract non-zero pixels to get number of zero pixels
# Numpy.count_nonzero() is highly optimised and extremely fast
black = 200*200 - np.count_nonzero(ROI)
print(f'Black pixel total: {black}')
Sample Output
Black pixel total: 39601
Yes, you can make it shorter, for example:
h, w = 200,200
im = np.array(Image.open('image.png'))
black = h*w - np.count_nonzero(ni[-h:,-w:])
If you want to debug it, you can take the ROI and make it into a PIL Image which you can then display. So just use this line anywhere after you make the ROI:
# Display image to check
Image.fromarray(ROI).show()
You can try cropping the Image to the specific part that you want:-
img = Image.open(r"Image_location")
x,y = img.size
img = img.crop((x-200, y-200, x, y))
The above code takes an input image, and crops it to its bottom right 200x200 pixels. (make sure the image dimensions are more then 200x200, otherwise an error will occur)
Original Image:-
Image after Cropping:-
You can then use this cropped image, to count the number of black pixels, where it depends on your use case what you consider as a BLACK pixel (a discrete value like (0, 0, 0) or a range/threshold (0-15, 0-15, 0-15)).
P.S.:- The final Image will always have a dimension of 200x200 pixels.
from PIL import Image
img = Image.open("ImageName.jpg")
crop_area = (a,b,c,d)
cropped_img = img.crop(crop_area)

How to convert a Binary Image to Grayscale and RGB using python?

I am working on hair removal from skin lesion images. Is there any way to convert binary back to rgb?
Original Image:
Mask Image:
I just want to restore the black area with the original image.
As I know binary images are stored in grayscale in opencv values 1-->255.
To create „dummy“ RGB images you can do:
rgb_img = cv2.cvtColor(binary_img, cv.CV_GRAY2RGB)
I call them „dummy“ since in these images the red, green and blue values are just the same.
Something like this, but your mask is the wrong size (200x200 px) so it doesn't match your image (600x450 px):
#!/usr/local/bin/python3
from PIL import Image
import numpy as np
# Open the input image as numpy array
npImage=np.array(Image.open("image.jpg"))
# Open the mask image as numpy array
npMask=np.array(Image.open("mask2.jpg").convert("RGB"))
# Make a binary array identifying where the mask is black
cond = npMask<128
# Select image or mask according to condition array
pixels=np.where(cond, npImage, npMask)
# Save resulting image
result=Image.fromarray(pixels)
result.save('result.png')
I updated the Daniel Tremer's answer:
import cv2
opencv_rgb_img = cv2.cvtColor(opencv_image, cv2.COLOR_GRAY2RGB)
opencv_image would be two dimension matrix like [width, height] because of binary.
opencv_rgb_img would be three dimension matrix like [width, height, color channel] because of RGB.

PIL/Pillow convert Image to list and back again

I'm trying to open an RGB picture, convert it to grayscale, then represent it as a list of floats scaled from 0 to 1. At last, I want to convert it back again to an Image. However, in the code below, something in my conversion procedure fails, as img.show() (the original image) displays correctly while img2.show() display an all black picture. What am I missing?
import numpy as np
from PIL import Image
ocr_img_path = "./ocr-test.jpg"
# Open image, convert to grayscale
img = Image.open(ocr_img_path).convert("L")
# Convert to list
img_data = img.getdata()
img_as_list = np.asarray(img_data, dtype=float) / 255
img_as_list = img_as_list.reshape(img.size)
# Convert back to image
img_mul = img_as_list * 255
img_ints = np.rint(img_mul)
img2 = Image.new("L", img_as_list.shape)
img2.putdata(img_ints.astype(int))
img.show()
img2.show()
The image used
The solution is to flatten the array before putting it into the image. I think PIL interprets multidimensional arrays as different color bands.
img2.putdata(img_ints.astype(int).flatten())
For a more efficient way of loading images, check out
https://blog.eduardovalle.com/2015/08/25/input-images-theano/
but use image.tobytes() (Pillow) instead of image.tostring() (PIL).
.

Categories