Numpy's dtype documentation only shows "x bits exponent, y bits mantissa" for each float type, but I couldn't translate that to exactly how many digits before/after the decimal point. Is there any simple formula/table to look this up in?
This is not as simple as usually expected. For accuracy of mantissa, there generally are two values:
Given a value in decimal representation, how many decimal digits can be guaranteedly preserved if converted from decimal to a selected binary format and back (with default rounding).
Given a value in binary format, how many decimal digits are needed if value is converted to decimal format and back to original binary format (again, with default rounding) to get the original value unchanged.
In both cases, decimal representation is treated as independent of used exponent, without leading and trailing zeros (for example, all of 0.0123e4, 1.23e2, 1.2300e2, 123, 123.0, 123000.000e-3 are 3 digits).
For 32-bit binary float, these two sizes are 6 and 9 decimal digits, respectively. In C <float.h>, these are FLT_DIG and FLT_DECIMAL_DIG. (This is weird that 32-bit float keeps 7 decimal digits for total most of all numbers, but there are exceptions.)
In C++, look at std::numeric_limits<float>::digits10 and std::numeric_limits<float>::max_digits10, respectively.
For 64-bit binary float, these are 15 and 17 (DBL_DIG and DBL_DECIMAL_DIG, respectively; and std::numeric_limits<double>::{digits10, max_digits10}).
General formulas for them (thx2 #MarkDickinson)
${format}_DIG (digits10): floor((p-1)*log10(2))
${format}_DECIMAL_DIG (max_digits10): ceil(1+p*log10(2))
where p is number of digits in mantissa (including hidden one for normalized IEEE754 case).
Also, comments with some mathematical explanation at C++ numeric limits page:
The standard 32-bit IEEE 754 floating-point type has a 24 bit fractional part (23 bits written, one implied), which may suggest that it can represent 7 digit decimals (24 * std::log10(2) is 7.22), but relative rounding errors are non-uniform and some floating-point values with 7 decimal digits do not survive conversion to 32-bit float and back: the smallest positive example is 8.589973e9, which becomes 8.589974e9 after the roundtrip. These rounding errors cannot exceed one bit in the representation, and digits10 is calculated as (24-1)*std::log10(2), which is 6.92. Rounding down results in the value 6.
Look for values for 16- and 128-bit floats in comments (but see below for what is 128-bit float in real).
For exponent, this is simpler because each of the border values (minimum normalized, minimum denormalized, maximum represented) are exact and can be easily obtained and printed.
#PaulPanzer suggested numpy.finfo. It gives first of these values ({format}_DIG); maybe it is the thing you search:
>>> numpy.finfo(numpy.float16).precision
3
>>> numpy.finfo(numpy.float32).precision
6
>>> numpy.finfo(numpy.float64).precision
15
>>> numpy.finfo(numpy.float128).precision
18
but, on most systems (my one was Ubuntu 18.04 on x86-84) the value is confusing for float128; it is really for 80-bit x86 "extended" float with 64 bits significand; real IEEE754 float128 has 112 significand bits and so real value shall be around 33, but numpy presents another type under this name. See here for details: in general, float128 is a delusion in numpy.
UPD3: you mentioned float8 - there is no such type in IEEE754 set. One could imagine such type for some utterly specific purposes, but its range will bee too narrow for any universal usage.
To keep it simple, generally
Data-Type | Precision
----------------------
float16 | 3
float32 | 7
float64 | 15
float128 | 18
Related
This question already has answers here:
Float to Int type conversion in Python for large integers/numbers
(2 answers)
Closed 22 days ago.
Why is the result of below code 0 in python3?
a = "4.15129406851375e+17"
a = float(a)
b = "415129406851375001"
b = float(b)
a-b
This happens because both 415129406851375001 and 4.15129406851375e+17 are greater than the integer representational limits of a C double (which is what a Python float is implemented in terms of).
Typically, C doubles are IEEE 754 64 bit binary floating point values, which means they have 53 bits of integer precision (the last consecutive integer values float can represent are 2 ** 53 - 1 followed by 2 ** 53; it can't represent 2 ** 53 + 1). Problem is, 415129406851375001 requires 59 bits of integer precision to store ((415129406851375001).bit_length() will provide this information). When a value is too large for the significand (the integer component) alone, the exponent component of the floating point value is used to scale a smaller integer value by powers of 2 to be roughly in the ballpark of the original value, but this means that the representable integers start to skip, first by 2 (as you require >53 bits), then by 4 (for >54 bits), then 8 (>55 bits), then 16 (>56 bits), etc., skipping twice as far between representable values for each bit of magnitude you have that can't be represented in 53 bits.
In your case, both numbers, converted to float, have an integer value of 415129406851374976 (print(int(a), int(b)) will show you the true integer value; they're too large to have any fractional component), having lost precision in the low digits.
If you need arbitrarily precise base-10 floating point math, replace your use of float with decimal.Decimal (conveniently, your values are already strings, so you don't risk loss of precision between how you type a float and the actual value stored); the default precision will handle these values, and you can increase it if you need larger values. If you do that, you get the behavior you expected:
from decimal import Decimal as Dec # Import class with shorter name
a = "4.15129406851375e+17"
a = Dec(a) # Convert to Decimal instead of float
b = "415129406851375001"
b = Dec(b) # Ditto
print(a-b)
which outputs -1. If you echoed it in an interactive interpreter instead of using print, you'd see Decimal('-1'), which is the repr form of Decimals, but it's numerically -1, and if converted to int, or stringified via any method that doesn't use the repr, e.g. print, it displays as just -1.
Try it online!
I'm pretty new to python, and I've made a table which calculates T=1+2^-n-1 and C=2^n, which both give the same values from n=40 to n=52, but for n=52 to n=61 I get 0.0 for T, whereas C gives me progressively smaller decimals each time - why is this?
I think I understand why T becomes 0.0, because of python using binary floating point and because of the machine epsilon value - but I'm slightly confused as to why C doesn't also become 0.0.
import numpy as np
import math
t=np.zeros(21)
c=np.zeros(21)
for n in range(40,61):
m=n-40
t[m]=1+2**(-n)-1
c[m]=2**(-n)
print (n,t[m],c[m])
The "floating" in floating point means that values are represented by storing a fixed number of leading digits and a scale factor, rather than assuming a fixed scale (which would be fixed point).
2**-53 only takes one (binary) digit to represent (not including the scale), but 1+2**-53 would take 54 to represent exactly. Python floats only have 53 binary digits of precision; 2**-53 can be represented exactly, but 1+2**-53 gets rounded to exactly 1, and subtracting 1 from that gives exactly 0. Thus, we have
>>> 2**-53
1.1102230246251565e-16
>>> 1+(2**-53)-1
0.0
Postscript: you might wonder why 2**-53 displays as a value not equal to the exact mathematical value when I said it was exact. That's due to the float->string conversion logic, which only keeps enough decimal digits to reconstruct the original float (instead of printing a bunch of digits at the end that are usually just noise).
The difference between both is indeed due to floating-point representation. Indeed, if you perform 1 + X where X is a very very small number, then the floating-point representation sets its exponent value to 0 and the precision is ensured by the mantissa, which is 52-bit on a 64-bit computer. Therefore, 1 + 2^(-X) if X > 52 is equal to 1. However, even 2^-100 can be represented in double-precision floating-point, so you can see C decrease for a larger number of samples.
Why do some numbers lose accuracy when stored as floating point numbers?
For example, the decimal number 9.2 can be expressed exactly as a ratio of two decimal integers (92/10), both of which can be expressed exactly in binary (0b1011100/0b1010). However, the same ratio stored as a floating point number is never exactly equal to 9.2:
32-bit "single precision" float: 9.19999980926513671875
64-bit "double precision" float: 9.199999999999999289457264239899814128875732421875
How can such an apparently simple number be "too big" to express in 64 bits of memory?
In most programming languages, floating point numbers are represented a lot like scientific notation: with an exponent and a mantissa (also called the significand). A very simple number, say 9.2, is actually this fraction:
5179139571476070 * 2 -49
Where the exponent is -49 and the mantissa is 5179139571476070. The reason it is impossible to represent some decimal numbers this way is that both the exponent and the mantissa must be integers. In other words, all floats must be an integer multiplied by an integer power of 2.
9.2 may be simply 92/10, but 10 cannot be expressed as 2n if n is limited to integer values.
Seeing the Data
First, a few functions to see the components that make a 32- and 64-bit float. Gloss over these if you only care about the output (example in Python):
def float_to_bin_parts(number, bits=64):
if bits == 32: # single precision
int_pack = 'I'
float_pack = 'f'
exponent_bits = 8
mantissa_bits = 23
exponent_bias = 127
elif bits == 64: # double precision. all python floats are this
int_pack = 'Q'
float_pack = 'd'
exponent_bits = 11
mantissa_bits = 52
exponent_bias = 1023
else:
raise ValueError, 'bits argument must be 32 or 64'
bin_iter = iter(bin(struct.unpack(int_pack, struct.pack(float_pack, number))[0])[2:].rjust(bits, '0'))
return [''.join(islice(bin_iter, x)) for x in (1, exponent_bits, mantissa_bits)]
There's a lot of complexity behind that function, and it'd be quite the tangent to explain, but if you're interested, the important resource for our purposes is the struct module.
Python's float is a 64-bit, double-precision number. In other languages such as C, C++, Java and C#, double-precision has a separate type double, which is often implemented as 64 bits.
When we call that function with our example, 9.2, here's what we get:
>>> float_to_bin_parts(9.2)
['0', '10000000010', '0010011001100110011001100110011001100110011001100110']
Interpreting the Data
You'll see I've split the return value into three components. These components are:
Sign
Exponent
Mantissa (also called Significand, or Fraction)
Sign
The sign is stored in the first component as a single bit. It's easy to explain: 0 means the float is a positive number; 1 means it's negative. Because 9.2 is positive, our sign value is 0.
Exponent
The exponent is stored in the middle component as 11 bits. In our case, 0b10000000010. In decimal, that represents the value 1026. A quirk of this component is that you must subtract a number equal to 2(# of bits) - 1 - 1 to get the true exponent; in our case, that means subtracting 0b1111111111 (decimal number 1023) to get the true exponent, 0b00000000011 (decimal number 3).
Mantissa
The mantissa is stored in the third component as 52 bits. However, there's a quirk to this component as well. To understand this quirk, consider a number in scientific notation, like this:
6.0221413x1023
The mantissa would be the 6.0221413. Recall that the mantissa in scientific notation always begins with a single non-zero digit. The same holds true for binary, except that binary only has two digits: 0 and 1. So the binary mantissa always starts with 1! When a float is stored, the 1 at the front of the binary mantissa is omitted to save space; we have to place it back at the front of our third element to get the true mantissa:
1.0010011001100110011001100110011001100110011001100110
This involves more than just a simple addition, because the bits stored in our third component actually represent the fractional part of the mantissa, to the right of the radix point.
When dealing with decimal numbers, we "move the decimal point" by multiplying or dividing by powers of 10. In binary, we can do the same thing by multiplying or dividing by powers of 2. Since our third element has 52 bits, we divide it by 252 to move it 52 places to the right:
0.0010011001100110011001100110011001100110011001100110
In decimal notation, that's the same as dividing 675539944105574 by 4503599627370496 to get 0.1499999999999999. (This is one example of a ratio that can be expressed exactly in binary, but only approximately in decimal; for more detail, see: 675539944105574 / 4503599627370496.)
Now that we've transformed the third component into a fractional number, adding 1 gives the true mantissa.
Recapping the Components
Sign (first component): 0 for positive, 1 for negative
Exponent (middle component): Subtract 2(# of bits) - 1 - 1 to get the true exponent
Mantissa (last component): Divide by 2(# of bits) and add 1 to get the true mantissa
Calculating the Number
Putting all three parts together, we're given this binary number:
1.0010011001100110011001100110011001100110011001100110 x 1011
Which we can then convert from binary to decimal:
1.1499999999999999 x 23 (inexact!)
And multiply to reveal the final representation of the number we started with (9.2) after being stored as a floating point value:
9.1999999999999993
Representing as a Fraction
9.2
Now that we've built the number, it's possible to reconstruct it into a simple fraction:
1.0010011001100110011001100110011001100110011001100110 x 1011
Shift mantissa to a whole number:
10010011001100110011001100110011001100110011001100110 x 1011-110100
Convert to decimal:
5179139571476070 x 23-52
Subtract the exponent:
5179139571476070 x 2-49
Turn negative exponent into division:
5179139571476070 / 249
Multiply exponent:
5179139571476070 / 562949953421312
Which equals:
9.1999999999999993
9.5
>>> float_to_bin_parts(9.5)
['0', '10000000010', '0011000000000000000000000000000000000000000000000000']
Already you can see the mantissa is only 4 digits followed by a whole lot of zeroes. But let's go through the paces.
Assemble the binary scientific notation:
1.0011 x 1011
Shift the decimal point:
10011 x 1011-100
Subtract the exponent:
10011 x 10-1
Binary to decimal:
19 x 2-1
Negative exponent to division:
19 / 21
Multiply exponent:
19 / 2
Equals:
9.5
Further reading
The Floating-Point Guide: What Every Programmer Should Know About Floating-Point Arithmetic, or, Why don’t my numbers add up? (floating-point-gui.de)
What Every Computer Scientist Should Know About Floating-Point Arithmetic (Goldberg 1991)
IEEE Double-precision floating-point format (Wikipedia)
Floating Point Arithmetic: Issues and Limitations (docs.python.org)
Floating Point Binary
This isn't a full answer (mhlester already covered a lot of good ground I won't duplicate), but I would like to stress how much the representation of a number depends on the base you are working in.
Consider the fraction 2/3
In good-ol' base 10, we typically write it out as something like
0.666...
0.666
0.667
When we look at those representations, we tend to associate each of them with the fraction 2/3, even though only the first representation is mathematically equal to the fraction. The second and third representations/approximations have an error on the order of 0.001, which is actually much worse than the error between 9.2 and 9.1999999999999993. In fact, the second representation isn't even rounded correctly! Nevertheless, we don't have a problem with 0.666 as an approximation of the number 2/3, so we shouldn't really have a problem with how 9.2 is approximated in most programs. (Yes, in some programs it matters.)
Number bases
So here's where number bases are crucial. If we were trying to represent 2/3 in base 3, then
(2/3)10 = 0.23
In other words, we have an exact, finite representation for the same number by switching bases! The take-away is that even though you can convert any number to any base, all rational numbers have exact finite representations in some bases but not in others.
To drive this point home, let's look at 1/2. It might surprise you that even though this perfectly simple number has an exact representation in base 10 and 2, it requires a repeating representation in base 3.
(1/2)10 = 0.510 = 0.12 = 0.1111...3
Why are floating point numbers inaccurate?
Because often-times, they are approximating rationals that cannot be represented finitely in base 2 (the digits repeat), and in general they are approximating real (possibly irrational) numbers which may not be representable in finitely many digits in any base.
While all of the other answers are good there is still one thing missing:
It is impossible to represent irrational numbers (e.g. π, sqrt(2), log(3), etc.) precisely!
And that actually is why they are called irrational. No amount of bit storage in the world would be enough to hold even one of them. Only symbolic arithmetic is able to preserve their precision.
Although if you would limit your math needs to rational numbers only the problem of precision becomes manageable. You would need to store a pair of (possibly very big) integers a and b to hold the number represented by the fraction a/b. All your arithmetic would have to be done on fractions just like in highschool math (e.g. a/b * c/d = ac/bd).
But of course you would still run into the same kind of trouble when pi, sqrt, log, sin, etc. are involved.
TL;DR
For hardware accelerated arithmetic only a limited amount of rational numbers can be represented. Every not-representable number is approximated. Some numbers (i.e. irrational) can never be represented no matter the system.
There are infinitely many real numbers (so many that you can't enumerate them), and there are infinitely many rational numbers (it is possible to enumerate them).
The floating-point representation is a finite one (like anything in a computer) so unavoidably many many many numbers are impossible to represent. In particular, 64 bits only allow you to distinguish among only 18,446,744,073,709,551,616 different values (which is nothing compared to infinity). With the standard convention, 9.2 is not one of them. Those that can are of the form m.2^e for some integers m and e.
You might come up with a different numeration system, 10 based for instance, where 9.2 would have an exact representation. But other numbers, say 1/3, would still be impossible to represent.
Also note that double-precision floating-points numbers are extremely accurate. They can represent any number in a very wide range with as much as 15 exact digits. For daily life computations, 4 or 5 digits are more than enough. You will never really need those 15, unless you want to count every millisecond of your lifetime.
Why can we not represent 9.2 in binary floating point?
Floating point numbers are (simplifying slightly) a positional numbering system with a restricted number of digits and a movable radix point.
A fraction can only be expressed exactly using a finite number of digits in a positional numbering system if the prime factors of the denominator (when the fraction is expressed in it's lowest terms) are factors of the base.
The prime factors of 10 are 5 and 2, so in base 10 we can represent any fraction of the form a/(2b5c).
On the other hand the only prime factor of 2 is 2, so in base 2 we can only represent fractions of the form a/(2b)
Why do computers use this representation?
Because it's a simple format to work with and it is sufficiently accurate for most purposes. Basically the same reason scientists use "scientific notation" and round their results to a reasonable number of digits at each step.
It would certainly be possible to define a fraction format, with (for example) a 32-bit numerator and a 32-bit denominator. It would be able to represent numbers that IEEE double precision floating point could not, but equally there would be many numbers that can be represented in double precision floating point that could not be represented in such a fixed-size fraction format.
However the big problem is that such a format is a pain to do calculations on. For two reasons.
If you want to have exactly one representation of each number then after each calculation you need to reduce the fraction to it's lowest terms. That means that for every operation you basically need to do a greatest common divisor calculation.
If after your calculation you end up with an unrepresentable result because the numerator or denominator you need to find the closest representable result. This is non-trivil.
Some Languages do offer fraction types, but usually they do it in combination with arbitary precision, this avoids needing to worry about approximating fractions but it creates it's own problem, when a number passes through a large number of calculation steps the size of the denominator and hence the storage needed for the fraction can explode.
Some languages also offer decimal floating point types, these are mainly used in scenarios where it is imporant that the results the computer gets match pre-existing rounding rules that were written with humans in mind (chiefly financial calculations). These are slightly more difficult to work with than binary floating point, but the biggest problem is that most computers don't offer hardware support for them.
The built-in Python str() function outputs some weird results when passing in floats with many decimals. This is what happens:
>>> str(19.9999999999999999)
>>> '20.0'
I'm expecting to get:
>>> '19.9999999999999999'
Does anyone know why? and maybe workaround it?
Thanks!
It's not str() that rounds, it's the fact that you're using floats in the first place. Float types are fast, but have limited precision; in other words, they are imprecise by design. This applies to all programming languages. For more details on float quirks, please read "What Every Programmer Should Know About Floating-Point Arithmetic"
If you want to store and operate on precise numbers, use the decimal module:
>>> from decimal import Decimal
>>> str(Decimal('19.9999999999999999'))
'19.9999999999999999'
A float has 32 bits (in C at least). One of those bits is allocated for the sign, a few allocated for the mantissa, and a few allocated for the exponent. You can't fit every single decimal to an infinite number of digits into 32 bits. Therefore floating point numbers are heavily based on rounding.
If you try str(19.998), it will probably give you something at least close to 19.998 because 32 bits have enough precision to estimate that, but something like 19.999999999999999 is too precise to estimate in 32 bits, so it rounds to the nearest possible value, which happens to be 20.
Please note that this is a problem of understanding floating point (fixed-length) numbers. Most languages do exactly (or very similar to) what Python does.
Python float is IEEE 754 64-bit binary floating point. It is limited to 53 bits of precision i.e. slightly less than 16 decimal digits of precision. 19.9999999999999999 contains 18 decimal digits; it cannot be represented exactly as a float. float("19.9999999999999999") produces the nearest floating point value, which happens to be the same as float("20.0").
>>> float("19.9999999999999999") == float("20.0")
True
If by "many decimals" you mean "many digits after the decimal point", please be aware that the same "weird" results happen when there are many decimal digits before the decimal point:
>>> float("199999999999999999")
2e+17
If you want the full float precision, don't use str(), use repr():
>>> x = 1. / 3.
>>> str(x)
'0.333333333333'
>>> str(x).count('3')
12
>>> repr(x)
'0.3333333333333333'
>>> repr(x).count('3')
16
>>>
Update It's interesting how often decimal is prescribed as a cure-all for float-induced astonishment. This is often accompanied by simple examples like 0.1 + 0.1 + 0.1 != 0.3. Nobody stops to point out that decimal has its share of deficiencies e.g.
>>> (1.0 / 3.0) * 3.0
1.0
>>> (Decimal('1.0') / Decimal('3.0')) * Decimal('3.0')
Decimal('0.9999999999999999999999999999')
>>>
True, float is limited to 53 binary digits of precision. By default, decimal is limited to 28 decimal digits of precision.
>>> Decimal(2) / Decimal(3)
Decimal('0.6666666666666666666666666667')
>>>
You can change the limit, but it's still limited precision. You still need to know the characteristics of the number format to use it effectively without "astonishing" results, and the extra precision is bought by slower operation (unless you use the 3rd-party cdecimal module).
For any given binary floating point number, there is an infinite set of decimal fractions that, on input, round to that number. Python's str goes to some trouble to produce the shortest decimal fraction from this set; see GLS's paper http://kurtstephens.com/files/p372-steele.pdf for the general algorithm (IIRC they use a refinement that avoids arbitrary-precision math in most cases). You happened to input a decimal fraction that rounds to a float (IEEE double) whose shortest possible decimal fraction is not the same as the one you entered.
Python's math module contain handy functions like floor & ceil. These functions take a floating point number and return the nearest integer below or above it. However these functions return the answer as a floating point number. For example:
import math
f=math.floor(2.3)
Now f returns:
2.0
What is the safest way to get an integer out of this float, without running the risk of rounding errors (for example if the float is the equivalent of 1.99999) or perhaps I should use another function altogether?
All integers that can be represented by floating point numbers have an exact representation. So you can safely use int on the result. Inexact representations occur only if you are trying to represent a rational number with a denominator that is not a power of two.
That this works is not trivial at all! It's a property of the IEEE floating point representation that int∘floor = ⌊⋅⌋ if the magnitude of the numbers in question is small enough, but different representations are possible where int(floor(2.3)) might be 1.
To quote from Wikipedia,
Any integer with absolute value less than or equal to 224 can be exactly represented in the single precision format, and any integer with absolute value less than or equal to 253 can be exactly represented in the double precision format.
Use int(your non integer number) will nail it.
print int(2.3) # "2"
print int(math.sqrt(5)) # "2"
You could use the round function. If you use no second parameter (# of significant digits) then I think you will get the behavior you want.
IDLE output.
>>> round(2.99999999999)
3
>>> round(2.6)
3
>>> round(2.5)
3
>>> round(2.4)
2
Combining two of the previous results, we have:
int(round(some_float))
This converts a float to an integer fairly dependably.
That this works is not trivial at all! It's a property of the IEEE floating point representation that int∘floor = ⌊⋅⌋ if the magnitude of the numbers in question is small enough, but different representations are possible where int(floor(2.3)) might be 1.
This post explains why it works in that range.
In a double, you can represent 32bit integers without any problems. There cannot be any rounding issues. More precisely, doubles can represent all integers between and including 253 and -253.
Short explanation: A double can store up to 53 binary digits. When you require more, the number is padded with zeroes on the right.
It follows that 53 ones is the largest number that can be stored without padding. Naturally, all (integer) numbers requiring less digits can be stored accurately.
Adding one to 111(omitted)111 (53 ones) yields 100...000, (53 zeroes). As we know, we can store 53 digits, that makes the rightmost zero padding.
This is where 253 comes from.
More detail: We need to consider how IEEE-754 floating point works.
1 bit 11 / 8 52 / 23 # bits double/single precision
[ sign | exponent | mantissa ]
The number is then calculated as follows (excluding special cases that are irrelevant here):
-1sign × 1.mantissa ×2exponent - bias
where bias = 2exponent - 1 - 1, i.e. 1023 and 127 for double/single precision respectively.
Knowing that multiplying by 2X simply shifts all bits X places to the left, it's easy to see that any integer must have all bits in the mantissa that end up right of the decimal point to zero.
Any integer except zero has the following form in binary:
1x...x where the x-es represent the bits to the right of the MSB (most significant bit).
Because we excluded zero, there will always be a MSB that is one—which is why it's not stored. To store the integer, we must bring it into the aforementioned form: -1sign × 1.mantissa ×2exponent - bias.
That's saying the same as shifting the bits over the decimal point until there's only the MSB towards the left of the MSB. All the bits right of the decimal point are then stored in the mantissa.
From this, we can see that we can store at most 52 binary digits apart from the MSB.
It follows that the highest number where all bits are explicitly stored is
111(omitted)111. that's 53 ones (52 + implicit 1) in the case of doubles.
For this, we need to set the exponent, such that the decimal point will be shifted 52 places. If we were to increase the exponent by one, we cannot know the digit right to the left after the decimal point.
111(omitted)111x.
By convention, it's 0. Setting the entire mantissa to zero, we receive the following number:
100(omitted)00x. = 100(omitted)000.
That's a 1 followed by 53 zeroes, 52 stored and 1 added due to the exponent.
It represents 253, which marks the boundary (both negative and positive) between which we can accurately represent all integers. If we wanted to add one to 253, we would have to set the implicit zero (denoted by the x) to one, but that's impossible.
If you need to convert a string float to an int you can use this method.
Example: '38.0' to 38
In order to convert this to an int you can cast it as a float then an int. This will also work for float strings or integer strings.
>>> int(float('38.0'))
38
>>> int(float('38'))
38
Note: This will strip any numbers after the decimal.
>>> int(float('38.2'))
38
math.floor will always return an integer number and thus int(math.floor(some_float)) will never introduce rounding errors.
The rounding error might already be introduced in math.floor(some_large_float), though, or even when storing a large number in a float in the first place. (Large numbers may lose precision when stored in floats.)
Another code sample to convert a real/float to an integer using variables.
"vel" is a real/float number and converted to the next highest INTEGER, "newvel".
import arcpy.math, os, sys, arcpy.da
.
.
with arcpy.da.SearchCursor(densifybkp,[floseg,vel,Length]) as cursor:
for row in cursor:
curvel = float(row[1])
newvel = int(math.ceil(curvel))
Since you're asking for the 'safest' way, I'll provide another answer other than the top answer.
An easy way to make sure you don't lose any precision is to check if the values would be equal after you convert them.
if int(some_value) == some_value:
some_value = int(some_value)
If the float is 1.0 for example, 1.0 is equal to 1. So the conversion to int will execute. And if the float is 1.1, int(1.1) equates to 1, and 1.1 != 1. So the value will remain a float and you won't lose any precision.