Related
This question already has answers here:
Getting the name of a variable as a string
(32 answers)
Closed 4 months ago.
Is it possible to get the original variable name of a variable passed to a function? E.g.
foobar = "foo"
def func(var):
print var.origname
So that:
func(foobar)
Returns:
>>foobar
EDIT:
All I was trying to do was make a function like:
def log(soup):
f = open(varname+'.html', 'w')
print >>f, soup.prettify()
f.close()
.. and have the function generate the filename from the name of the variable passed to it.
I suppose if it's not possible I'll just have to pass the variable and the variable's name as a string each time.
EDIT: To make it clear, I don't recommend using this AT ALL, it will break, it's a mess, it won't help you in any way, but it's doable for entertainment/education purposes.
You can hack around with the inspect module, I don't recommend that, but you can do it...
import inspect
def foo(a, f, b):
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
string = inspect.getframeinfo(frame[0]).code_context[0].strip()
args = string[string.find('(') + 1:-1].split(',')
names = []
for i in args:
if i.find('=') != -1:
names.append(i.split('=')[1].strip())
else:
names.append(i)
print names
def main():
e = 1
c = 2
foo(e, 1000, b = c)
main()
Output:
['e', '1000', 'c']
To add to Michael Mrozek's answer, you can extract the exact parameters versus the full code by:
import re
import traceback
def func(var):
stack = traceback.extract_stack()
filename, lineno, function_name, code = stack[-2]
vars_name = re.compile(r'\((.*?)\).*$').search(code).groups()[0]
print vars_name
return
foobar = "foo"
func(foobar)
# PRINTS: foobar
Looks like Ivo beat me to inspect, but here's another implementation:
import inspect
def varName(var):
lcls = inspect.stack()[2][0].f_locals
for name in lcls:
if id(var) == id(lcls[name]):
return name
return None
def foo(x=None):
lcl='not me'
return varName(x)
def bar():
lcl = 'hi'
return foo(lcl)
bar()
# 'lcl'
Of course, it can be fooled:
def baz():
lcl = 'hi'
x='hi'
return foo(lcl)
baz()
# 'x'
Moral: don't do it.
Another way you can try if you know what the calling code will look like is to use traceback:
def func(var):
stack = traceback.extract_stack()
filename, lineno, function_name, code = stack[-2]
code will contain the line of code that was used to call func (in your example, it would be the string func(foobar)). You can parse that to pull out the argument
You can't. It's evaluated before being passed to the function. All you can do is pass it as a string.
#Ivo Wetzel's answer works in the case of function call are made in one line, like
e = 1 + 7
c = 3
foo(e, 100, b=c)
In case that function call is not in one line, like:
e = 1 + 7
c = 3
foo(e,
1000,
b = c)
below code works:
import inspect, ast
def foo(a, f, b):
frame = inspect.currentframe()
frame = inspect.getouterframes(frame)[1]
string = inspect.findsource(frame[0])[0]
nodes = ast.parse(''.join(string))
i_expr = -1
for (i, node) in enumerate(nodes.body):
if hasattr(node, 'value') and isinstance(node.value, ast.Call)
and hasattr(node.value.func, 'id') and node.value.func.id == 'foo' # Here goes name of the function:
i_expr = i
break
i_expr_next = min(i_expr + 1, len(nodes.body)-1)
lineno_start = nodes.body[i_expr].lineno
lineno_end = nodes.body[i_expr_next].lineno if i_expr_next != i_expr else len(string)
str_func_call = ''.join([i.strip() for i in string[lineno_start - 1: lineno_end]])
params = str_func_call[str_func_call.find('(') + 1:-1].split(',')
print(params)
You will get:
[u'e', u'1000', u'b = c']
But still, this might break.
You can use python-varname package
from varname import nameof
s = 'Hey!'
print (nameof(s))
Output:
s
Package below:
https://github.com/pwwang/python-varname
For posterity, here's some code I wrote for this task, in general I think there is a missing module in Python to give everyone nice and robust inspection of the caller environment. Similar to what rlang eval framework provides for R.
import re, inspect, ast
#Convoluted frame stack walk and source scrape to get what the calling statement to a function looked like.
#Specifically return the name of the variable passed as parameter found at position pos in the parameter list.
def _caller_param_name(pos):
#The parameter name to return
param = None
#Get the frame object for this function call
thisframe = inspect.currentframe()
try:
#Get the parent calling frames details
frames = inspect.getouterframes(thisframe)
#Function this function was just called from that we wish to find the calling parameter name for
function = frames[1][3]
#Get all the details of where the calling statement was
frame,filename,line_number,function_name,source,source_index = frames[2]
#Read in the source file in the parent calling frame upto where the call was made
with open(filename) as source_file:
head=[source_file.next() for x in xrange(line_number)]
source_file.close()
#Build all lines of the calling statement, this deals with when a function is called with parameters listed on each line
lines = []
#Compile a regex for matching the start of the function being called
regex = re.compile(r'\.?\s*%s\s*\(' % (function))
#Work backwards from the parent calling frame line number until we see the start of the calling statement (usually the same line!!!)
for line in reversed(head):
lines.append(line.strip())
if re.search(regex, line):
break
#Put the lines we have groked back into sourcefile order rather than reverse order
lines.reverse()
#Join all the lines that were part of the calling statement
call = "".join(lines)
#Grab the parameter list from the calling statement for the function we were called from
match = re.search('\.?\s*%s\s*\((.*)\)' % (function), call)
paramlist = match.group(1)
#If the function was called with no parameters raise an exception
if paramlist == "":
raise LookupError("Function called with no parameters.")
#Use the Python abstract syntax tree parser to create a parsed form of the function parameter list 'Name' nodes are variable names
parameter = ast.parse(paramlist).body[0].value
#If there were multiple parameters get the positional requested
if type(parameter).__name__ == 'Tuple':
#If we asked for a parameter outside of what was passed complain
if pos >= len(parameter.elts):
raise LookupError("The function call did not have a parameter at postion %s" % pos)
parameter = parameter.elts[pos]
#If there was only a single parameter and another was requested raise an exception
elif pos != 0:
raise LookupError("There was only a single calling parameter found. Parameter indices start at 0.")
#If the parameter was the name of a variable we can use it otherwise pass back None
if type(parameter).__name__ == 'Name':
param = parameter.id
finally:
#Remove the frame reference to prevent cyclic references screwing the garbage collector
del thisframe
#Return the parameter name we found
return param
If you want a Key Value Pair relationship, maybe using a Dictionary would be better?
...or if you're trying to create some auto-documentation from your code, perhaps something like Doxygen (http://www.doxygen.nl/) could do the job for you?
I wondered how IceCream solves this problem. So I looked into the source code and came up with the following (slightly simplified) solution. It might not be 100% bullet-proof (e.g. I dropped get_text_with_indentation and I assume exactly one function argument), but it works well for different test cases. It does not need to parse source code itself, so it should be more robust and simpler than previous solutions.
#!/usr/bin/env python3
import inspect
from executing import Source
def func(var):
callFrame = inspect.currentframe().f_back
callNode = Source.executing(callFrame).node
source = Source.for_frame(callFrame)
expression = source.asttokens().get_text(callNode.args[0])
print(expression, '=', var)
i = 1
f = 2.0
dct = {'key': 'value'}
obj = type('', (), {'value': 42})
func(i)
func(f)
func(s)
func(dct['key'])
func(obj.value)
Output:
i = 1
f = 2.0
s = string
dct['key'] = value
obj.value = 42
Update: If you want to move the "magic" into a separate function, you simply have to go one frame further back with an additional f_back.
def get_name_of_argument():
callFrame = inspect.currentframe().f_back.f_back
callNode = Source.executing(callFrame).node
source = Source.for_frame(callFrame)
return source.asttokens().get_text(callNode.args[0])
def func(var):
print(get_name_of_argument(), '=', var)
If you want to get the caller params as in #Matt Oates answer answer without using the source file (ie from Jupyter Notebook), this code (combined from #Aeon answer) will do the trick (at least in some simple cases):
def get_caller_params():
# get the frame object for this function call
thisframe = inspect.currentframe()
# get the parent calling frames details
frames = inspect.getouterframes(thisframe)
# frame 0 is the frame of this function
# frame 1 is the frame of the caller function (the one we want to inspect)
# frame 2 is the frame of the code that calls the caller
caller_function_name = frames[1][3]
code_that_calls_caller = inspect.findsource(frames[2][0])[0]
# parse code to get nodes of abstract syntact tree of the call
nodes = ast.parse(''.join(code_that_calls_caller))
# find the node that calls the function
i_expr = -1
for (i, node) in enumerate(nodes.body):
if _node_is_our_function_call(node, caller_function_name):
i_expr = i
break
# line with the call start
idx_start = nodes.body[i_expr].lineno - 1
# line with the end of the call
if i_expr < len(nodes.body) - 1:
# next expression marks the end of the call
idx_end = nodes.body[i_expr + 1].lineno - 1
else:
# end of the source marks the end of the call
idx_end = len(code_that_calls_caller)
call_lines = code_that_calls_caller[idx_start:idx_end]
str_func_call = ''.join([line.strip() for line in call_lines])
str_call_params = str_func_call[str_func_call.find('(') + 1:-1]
params = [p.strip() for p in str_call_params.split(',')]
return params
def _node_is_our_function_call(node, our_function_name):
node_is_call = hasattr(node, 'value') and isinstance(node.value, ast.Call)
if not node_is_call:
return False
function_name_correct = hasattr(node.value.func, 'id') and node.value.func.id == our_function_name
return function_name_correct
You can then run it as this:
def test(*par_values):
par_names = get_caller_params()
for name, val in zip(par_names, par_values):
print(name, val)
a = 1
b = 2
string = 'text'
test(a, b,
string
)
to get the desired output:
a 1
b 2
string text
Since you can have multiple variables with the same content, instead of passing the variable (content), it might be safer (and will be simpler) to pass it's name in a string and get the variable content from the locals dictionary in the callers stack frame. :
def displayvar(name):
import sys
return name+" = "+repr(sys._getframe(1).f_locals[name])
If it just so happens that the variable is a callable (function), it will have a __name__ property.
E.g. a wrapper to log the execution time of a function:
def time_it(func, *args, **kwargs):
start = perf_counter()
result = func(*args, **kwargs)
duration = perf_counter() - start
print(f'{func.__name__} ran in {duration * 1000}ms')
return result
This is a continuation of the SO question asked here but with a more complicated pattern than originally requested. My main intention is to try to mock an API call based on values passed to its caller. The API call has no idea of the values passed to its caller but needs to provide the correct behavior so that the caller can be tested fully. I am using time to determine which behavior I want when I want it.
Given a an object:
# some_object.py
from some_import import someApiCall
class SomeObject():
def someFunction(time, a, b, c):
apiReturnA = someApiCall(a)
returnB = b + 1
apiReturnC = someApiCall(c)
return [apiReturnA, returnB, apiReturnC]
that is created by another object with entry point code:
# some_main.py
import some_object
class myMainObject():
def entry_point(self, time):
someObj = some_object.SomeObject()
if 'yesterday' == time:
(a, b, c) = (1, 1, 1)
elif 'today' == time:
(a, b, c) = (2, 2, 2)
elif 'later' == time:
(a, b, c) = (3, 3, 3)
elif 'tomorrow' == time:
(a, b, c) = (4, 4, 4)
else:
return "ERROR"
return someObj.someFunction(time, a, b, c)
how can I get someApiCall to change based on the time argument?
# some_import.py
def someApiCall(var):
print("I'm not mocked! I'm slow, random and hard to test")
return var + 2
Here is an example test case
# test_example.py
import some_main
def amend_someApiCall_yesterday(var):
# Reimplement api.someApiCall
return var * 2
def amend_someApiCall_today(var):
# Reimplement api.someApiCall
return var * 3
def amend_someApiCall_later(var):
# Just wrap around api.someApiCall. Call the original function afterwards. Here we can also put
# some conditionals e.g. only call the original someApiCall if the var is an even number.
import some_import
var *= 4
return some_import.someApiCall(var)
def someObject_decorator_patch(someFunction, mocker, *args):
def wrapper(time, a, b, c):
# If x imports y.z and we want to patch the calls to z, then we have to patch x.z. Patching
# y.z would still retain the original value of x.z thus still calling the original
# functionality. Thus here, we would be patching src.someApiCall and not api.someApiCall.
if time == "yesterday":
mocker.patch("some_object.someApiCall", side_effect=amend_someApiCall_yesterday)
elif time == "today":
mocker.patch("some_object.someApiCall", side_effect=amend_someApiCall_today)
elif time == "later":
mocker.patch("some_object.someApiCall", side_effect=amend_someApiCall_later)
elif time == "tomorrow":
mocker.patch("src.someApiCall", return_value=0)
else:
# Use the original api.someApiCall
pass
return someFunction(time, a, b, c)
return wrapper
def test_some_main(mocker):
results = 0
uut = some_main.myMainObject()
times = ['yesterday', 'today', 'later', 'tomorrow']
mocker.patch.object(some_main.some_object.SomeObject, 'someFunction', someObject_decorator_patch)
for time in times:
results = uut.entry_point(time)
print(results)
assert 0 != results
The test case doesn't get the result I want (it returns a function pointer).
Here is an improvised solution of https://stackoverflow.com/a/67498948/11043825 without using decorators.
As already pointed out, we still need to intercept the calls to the function that accepts the time argument which indicates how someApiCall would behave, which is either entry_point or someFunction. Here we would intercept someFunction.
Instead of implementing python decorator on someFunction which then needs to call that explicitly created decorated function, here we would amend (well this still follows the decorator design pattern) the someFunction in-place and make it available to the rest of the source code calls without explicitly changing the call to the decorated function. This is like an in-place replacement of the original functionalities, where we would replace (or rather wrap around) the original functionality with an updated one which would perform an assessment of the time before calling the original functionality.
Also for your reference, I solved it for 2 types of functions, a class method src.SomeClass.someFunction and a global function src.someFunction2.
./_main.py
import src
class MyMainClass:
def __init__(self):
self.var = 0
def entry_point(self, time):
someObj = src.SomeClass()
self.var += 1
if self.var >= 10:
self.var = 0
ret = f'\n[1]entry_point({time})-->{someObj.someFunction(time, self.var)}'
self.var += 1
ret += f'\n[2]entry_point({time})-->{src.someFunction2(time, self.var)}'
return ret
./src.py
class SomeClass:
def someFunction(self, time, var):
return f'someFunction({time},{var})-->{someSloowApiCall(var)}'
def someFunction2(time, var):
return f'someFunction2({time},{var})-->{someSloowApiCall2(var)}'
./api.py
def someSloowApiCall(var):
return f'someSloowApiCall({var})-->{special_message(var)}'
def someSloowApiCall2(var):
return f'someSloowApiCall2({var})-->{special_message(var)}'
def special_message(var):
special_message = "I'm not mocked! I'm slow, random and hard to test"
if var > 10:
special_message = "I'm mocked! I'm not slow, random or hard to test"
return special_message
./test_main.py
import _main, pytest, api
def amend_someApiCall_yesterday(var):
# Reimplement api.someSloowApiCall
return f'amend_someApiCall_yesterday({var})'
def amend_someApiCall_today(var):
# Reimplement api.someSloowApiCall
return f'amend_someApiCall_today({var})'
def amend_someApiCall_later(var):
# Just wrap around api.someSloowApiCall. Call the original function afterwards. Here we can also put
# some conditionals e.g. only call the original someSloowApiCall if the var is an even number.
return f'amend_someApiCall_later({var})-->{api.someSloowApiCall(var+10)}'
def amend_someApiCall_later2(var):
# Just wrap around api.someSloowApiCall2. Call the original function afterwards. Here we can also put
# some conditionals e.g. only call the original someSloowApiCall2 if the var is an even number.
return f'amend_someApiCall_later2({var})-->{api.someSloowApiCall2(var+10)}'
def get_amended_someFunction(mocker, original_func):
def amend_someFunction(self, time, var):
if time == "yesterday":
mocker.patch("_main.src.someSloowApiCall", amend_someApiCall_yesterday)
# or
# src.someSloowApiCall = amend_someApiCall_yesterday
elif time == "today":
mocker.patch("_main.src.someSloowApiCall", amend_someApiCall_today)
# or
# src.someSloowApiCall = amend_someApiCall_today
elif time == "later":
mocker.patch("_main.src.someSloowApiCall", amend_someApiCall_later)
# or
# src.someSloowApiCall = amend_someApiCall_later
elif time == "tomorrow":
mocker.patch("_main.src.someSloowApiCall", lambda var: f'lambda({var})')
# or
# src.someSloowApiCall = lambda var: 0
else:
pass
# or
# src.someSloowApiCall = someSloowApiCall
return original_func(self, time, var)
return amend_someFunction
def get_amended_someFunction2(mocker, original_func):
def amend_someFunction2(time, var):
if time == "yesterday":
mocker.patch("_main.src.someSloowApiCall2", amend_someApiCall_yesterday)
# or
# src.someSloowApiCall2 = amend_someApiCall_yesterday
elif time == "today":
mocker.patch("_main.src.someSloowApiCall2", amend_someApiCall_today)
# or
# src.someSloowApiCall2 = amend_someApiCall_today
elif time == "later":
mocker.patch("_main.src.someSloowApiCall2", amend_someApiCall_later2)
# or
# src.someSloowApiCall2 = amend_someApiCall_later
elif time == "tomorrow":
mocker.patch("_main.src.someSloowApiCall2", lambda var : f'lambda2({var})')
# or
# src.someSloowApiCall2 = lambda var: 0
else:
pass
# or
# src.someSloowApiCall2 = someSloowApiCall2
return original_func(time, var)
return amend_someFunction2
#pytest.mark.parametrize(
'time',
[
'yesterday',
'today',
'later',
'tomorrow',
'whenever',
],
)
def test_entrypointFunction(time, mocker):
mocker.patch.object(
_main.src.SomeClass,
"someFunction",
side_effect=get_amended_someFunction(mocker, _main.src.SomeClass.someFunction),
autospec=True, # Needed for the self argument
)
# or
# src.SomeClass.someFunction = get_amended_someFunction(mocker, src.SomeClass.someFunction)
mocker.patch(
"_main.src.someFunction2",
side_effect=get_amended_someFunction2(mocker, _main.src.someFunction2),
)
# or
# src.someFunction2 = get_amended_someFunction2(mocker, src.someFunction2)
uut = _main.MyMainClass()
print(f'\nuut.entry_point({time})-->{uut.entry_point(time)}')
Output:
$ pytest -rP
=================================== PASSES ====================================
_____________________ test_entrypointFunction[yesterday] ______________________
---------------------------- Captured stdout call -----------------------------
uut.entry_point(yesterday)-->
[1]entry_point(yesterday)-->someFunction(yesterday,1)-->amend_someApiCall_yesterday(1)
[2]entry_point(yesterday)-->someFunction2(yesterday,2)-->amend_someApiCall_yesterday(2)
_______________________ test_entrypointFunction[today] ________________________
---------------------------- Captured stdout call -----------------------------
uut.entry_point(today)-->
[1]entry_point(today)-->someFunction(today,1)-->amend_someApiCall_today(1)
[2]entry_point(today)-->someFunction2(today,2)-->amend_someApiCall_today(2)
_______________________ test_entrypointFunction[later] ________________________
---------------------------- Captured stdout call -----------------------------
uut.entry_point(later)-->
[1]entry_point(later)-->someFunction(later,1)-->amend_someApiCall_later(1)-->someSloowApiCall(11)-->I'm mocked! I'm not slow, random or hard to test
[2]entry_point(later)-->someFunction2(later,2)-->amend_someApiCall_later2(2)-->someSloowApiCall2(12)-->I'm mocked! I'm not slow, random or hard to test
______________________ test_entrypointFunction[tomorrow] ______________________
---------------------------- Captured stdout call -----------------------------
uut.entry_point(tomorrow)-->
[1]entry_point(tomorrow)-->someFunction(tomorrow,1)-->lambda(1)
[2]entry_point(tomorrow)-->someFunction2(tomorrow,2)-->lambda2(2)
______________________ test_entrypointFunction[whenever] ______________________
---------------------------- Captured stdout call -----------------------------
uut.entry_point(whenever)-->
[1]entry_point(whenever)-->someFunction(whenever,1)-->someSloowApiCall(1)-->I'm not mocked! I'm slow, random and hard to test
[2]entry_point(whenever)-->someFunction2(whenever,2)-->someSloowApiCall2(2)-->I'm not mocked! I'm slow, random and hard to test
============================== 5 passed in 0.07s ==============================
I'm making a decorator that allows me to make functions run as if their lines of code are written in main. To achieve this, I'm using globals().update(vars()) inside the function (works), but now inside the decorator it fails.
class Debugger:
#staticmethod
def in_main(func): # a decorator
def wrapper(): # a wrapper that remembers the function func because it was in the closure when construced.
exec(Debugger.convert_to_global(func)) # run the function here.
globals().update(vars()) # update the global variables with whatever was defined as a result of the above.
return wrapper
#staticmethod
def convert_to_global(name):
"""Takes in a function name, reads it source code and returns a new version of it that can be run in the main.
"""
import inspect
import textwrap
codelines = inspect.getsource(name)
# remove def func_name() line from the list
idx = codelines.find("):\n")
header = codelines[:idx]
codelines = codelines[idx + 3:]
# remove any indentation (4 for funcs and 8 for classes methods, etc)
codelines = textwrap.dedent(codelines)
# remove return statements
codelines = codelines.split("\n")
codelines = [code + "\n" for code in codelines if not code.startswith("return ")]
code_string = ''.join(codelines) # convert list to string.
temp = inspect.getfullargspec(name)
arg_string = """"""
# if isinstance(type(name), types.MethodType) else tmp.args
if temp.defaults: # not None
for key, val in zip(temp.args[1:], temp.defaults):
arg_string += f"{key} = {val}\n"
if "*args" in header:
arg_string += "args = (,)\n"
if "**kwargs" in header:
arg_string += "kwargs = {}\n"
result = arg_string + code_string
return result # ready to be run with exec()
example of reproducible failure:
#Debugger.in_main
def func():
a = 2
b = 22
func()
print(a)
Gives
NameError: name 'a' is not defined
I am not sure what you are trying to do. But messing with variables scope and encapsulation may yield very bad and unpredictable and undebuggable behavior.
I STRINGLY NOT RECOMMNED IT.
Now to your problem:
globals() is a tricky one as there is no one globals() dictionary.
You can verify it easily by print(id(globals()) and see.
What is working for your example is mutating the __main__ module __dict__ with the exec results.
This is done by exec(the_code_you_want_to_run, sys.modules['__main__'].__dict__.
The globals().update(vars()) is not needed.
Here is the code:
import sys
class Debugger:
#staticmethod
def in_main(func): # a decorator
def wrapper(): # a wrapper that remembers the function func because it was in the closure when construced.
exec(Debugger.convert_to_global(func), sys.modules['__main__'].__dict__) # run the function here on the scope of __main__ __dict__
# globals().update(vars()) # NOT NEEDED
return wrapper
#staticmethod
def convert_to_global(name):
"""Takes in a function name, reads it source code and returns a new version of it that can be run in the main.
"""
import inspect
import textwrap
codelines = inspect.getsource(name)
# remove def func_name() line from the list
idx = codelines.find("):\n")
header = codelines[:idx]
codelines = codelines[idx + 3:]
# remove any indentation (4 for funcs and 8 for classes methods, etc)
codelines = textwrap.dedent(codelines)
# remove return statements
codelines = codelines.split("\n")
codelines = [code + "\n" for code in codelines if not code.startswith("return ")]
code_string = ''.join(codelines) # convert list to string.
temp = inspect.getfullargspec(name)
arg_string = """"""
# if isinstance(type(name), types.MethodType) else tmp.args
if temp.defaults: # not None
for key, val in zip(temp.args[1:], temp.defaults):
arg_string += f"{key} = {val}\n"
if "*args" in header:
arg_string += "args = (,)\n"
if "**kwargs" in header:
arg_string += "kwargs = {}\n"
result = arg_string + code_string
return result # ready to be run with exec()
Suppose I have a function like f(a, b, c=None). The aim is to call the function like f(*args, **kwargs), and then construct a new set of args and kwargs such that:
If the function had default values, I should be able to acquire their values. For example, if I call it like f(1, 2), I should be able to get the tuple (1, 2, None) and/or the dictionary {'c': None}.
If the value of any of the arguments was modified inside the function, get the new value. For example, if I call it like f(1, 100000, 3) and the function does if b > 500: b = 5 modifying the local variable, I should be able to get the the tuple (1, 5, 3).
The aim here is to create a a decorator that finishes the job of a function. The original function acts as a preamble setting up the data for the actual execution, and the decorator finishes the job.
Edit: I'm adding an example of what I'm trying to do. It's a module for making proxies for other classes.
class Spam(object):
"""A fictional class that we'll make a proxy for"""
def eggs(self, start, stop, step):
"""A fictional method"""
return range(start, stop, step)
class ProxyForSpam(clsproxy.Proxy):
proxy_for = Spam
#clsproxy.signature_preamble
def eggs(self, start, stop, step=1):
start = max(0, start)
stop = min(100, stop)
And then, we'll have that:
ProxyForSpam().eggs(-10, 200) -> Spam().eggs(0, 100, 1)
ProxyForSpam().eggs(3, 4) -> Spam().eggs(3, 4, 1)
There are two recipes available here, one which requires an external library and another that uses only the standard library. They don't quite do what you want, in that they actually modify the function being executed to obtain its locals() rather than obtain the locals() after function execution, which is impossible, since the local stack no longer exists after the function finishes execution.
Another option is to see what debuggers, such as WinPDB or even the pdb module do. I suspect they use the inspect module (possibly along with others), to get the frame inside which a function is executing and retrieve locals() that way.
EDIT: After reading some code in the standard library, the file you want to look at is probably bdb.py, which should be wherever the rest of your Python standard library is. Specifically, look at set_trace() and related functions. This will give you an idea of how the Python debugger breaks into the class. You might even be able to use it directly. To get the frame to pass to set_trace() look at the inspect module.
I've stumbled upon this very need today and wanted to share my solution.
import sys
def call_function_get_frame(func, *args, **kwargs):
"""
Calls the function *func* with the specified arguments and keyword
arguments and snatches its local frame before it actually executes.
"""
frame = None
trace = sys.gettrace()
def snatch_locals(_frame, name, arg):
nonlocal frame
if frame is None and name == 'call':
frame = _frame
sys.settrace(trace)
return trace
sys.settrace(snatch_locals)
try:
result = func(*args, **kwargs)
finally:
sys.settrace(trace)
return frame, result
The idea is to use sys.trace() to catch the frame of the next 'call'. Tested on CPython 3.6.
Example usage
import types
def namespace_decorator(func):
frame, result = call_function_get_frame(func)
try:
module = types.ModuleType(func.__name__)
module.__dict__.update(frame.f_locals)
return module
finally:
del frame
#namespace_decorator
def mynamespace():
eggs = 'spam'
class Bar:
def hello(self):
print("Hello, World!")
assert mynamespace.eggs == 'spam'
mynamespace.Bar().hello()
I don't see how you could do this non-intrusively -- after the function is done executing, it doesn't exist any more -- there's no way you can reach inside something that doesn't exist.
If you can control the functions that are being used, you can do an intrusive approach like
def fn(x, y, z, vars):
'''
vars is an empty dict that we use to pass things back to the caller
'''
x += 1
y -= 1
z *= 2
vars.update(locals())
>>> updated = {}
>>> fn(1, 2, 3, updated)
>>> print updated
{'y': 1, 'x': 2, 'z': 6, 'vars': {...}}
>>>
...or you can just require that those functions return locals() -- as #Thomas K asks above, what are you really trying to do here?
Witchcraft below read on your OWN danger(!)
I have no clue what you want to do with this, it's possible but it's an awful hack...
Anyways, I HAVE WARNED YOU(!), be lucky if such things don't work in your favorite language...
from inspect import getargspec, ismethod
import inspect
def main():
#get_modified_values
def foo(a, f, b):
print a, f, b
a = 10
if a == 2:
return a
f = 'Hello World'
b = 1223
e = 1
c = 2
foo(e, 1000, b = c)
# intercept a function and retrieve the modifed values
def get_modified_values(target):
def wrapper(*args, **kwargs):
# get the applied args
kargs = getcallargs(target, *args, **kwargs)
# get the source code
src = inspect.getsource(target)
lines = src.split('\n')
# oh noes string patching of the function
unindent = len(lines[0]) - len(lines[0].lstrip())
indent = lines[0][:len(lines[0]) - len(lines[0].lstrip())]
lines[0] = ''
lines[1] = indent + 'def _temp(_args, ' + lines[1].split('(')[1]
setter = []
for k in kargs.keys():
setter.append('_args["%s"] = %s' % (k, k))
i = 0
while i < len(lines):
indent = lines[i][:len(lines[i]) - len(lines[i].lstrip())]
if lines[i].find('return ') != -1 or lines[i].find('return\n') != -1:
for e in setter:
lines.insert(i, indent + e)
i += len(setter)
elif i == len(lines) - 2:
for e in setter:
lines.insert(i + 1, indent + e)
break
i += 1
for i in range(0, len(lines)):
lines[i] = lines[i][unindent:]
data = '\n'.join(lines) + "\n"
# setup variables
frame = inspect.currentframe()
loc = inspect.getouterframes(frame)[1][0].f_locals
glob = inspect.getouterframes(frame)[1][0].f_globals
loc['_temp'] = None
# compile patched function and call it
func = compile(data, '<witchstuff>', 'exec')
eval(func, glob, loc)
loc['_temp'](kargs, *args, **kwargs)
# there you go....
print kargs
# >> {'a': 10, 'b': 1223, 'f': 'Hello World'}
return wrapper
# from python 2.7 inspect module
def getcallargs(func, *positional, **named):
"""Get the mapping of arguments to values.
A dict is returned, with keys the function argument names (including the
names of the * and ** arguments, if any), and values the respective bound
values from 'positional' and 'named'."""
args, varargs, varkw, defaults = getargspec(func)
f_name = func.__name__
arg2value = {}
# The following closures are basically because of tuple parameter unpacking.
assigned_tuple_params = []
def assign(arg, value):
if isinstance(arg, str):
arg2value[arg] = value
else:
assigned_tuple_params.append(arg)
value = iter(value)
for i, subarg in enumerate(arg):
try:
subvalue = next(value)
except StopIteration:
raise ValueError('need more than %d %s to unpack' %
(i, 'values' if i > 1 else 'value'))
assign(subarg,subvalue)
try:
next(value)
except StopIteration:
pass
else:
raise ValueError('too many values to unpack')
def is_assigned(arg):
if isinstance(arg,str):
return arg in arg2value
return arg in assigned_tuple_params
if ismethod(func) and func.im_self is not None:
# implicit 'self' (or 'cls' for classmethods) argument
positional = (func.im_self,) + positional
num_pos = len(positional)
num_total = num_pos + len(named)
num_args = len(args)
num_defaults = len(defaults) if defaults else 0
for arg, value in zip(args, positional):
assign(arg, value)
if varargs:
if num_pos > num_args:
assign(varargs, positional[-(num_pos-num_args):])
else:
assign(varargs, ())
elif 0 < num_args < num_pos:
raise TypeError('%s() takes %s %d %s (%d given)' % (
f_name, 'at most' if defaults else 'exactly', num_args,
'arguments' if num_args > 1 else 'argument', num_total))
elif num_args == 0 and num_total:
raise TypeError('%s() takes no arguments (%d given)' %
(f_name, num_total))
for arg in args:
if isinstance(arg, str) and arg in named:
if is_assigned(arg):
raise TypeError("%s() got multiple values for keyword "
"argument '%s'" % (f_name, arg))
else:
assign(arg, named.pop(arg))
if defaults: # fill in any missing values with the defaults
for arg, value in zip(args[-num_defaults:], defaults):
if not is_assigned(arg):
assign(arg, value)
if varkw:
assign(varkw, named)
elif named:
unexpected = next(iter(named))
if isinstance(unexpected, unicode):
unexpected = unexpected.encode(sys.getdefaultencoding(), 'replace')
raise TypeError("%s() got an unexpected keyword argument '%s'" %
(f_name, unexpected))
unassigned = num_args - len([arg for arg in args if is_assigned(arg)])
if unassigned:
num_required = num_args - num_defaults
raise TypeError('%s() takes %s %d %s (%d given)' % (
f_name, 'at least' if defaults else 'exactly', num_required,
'arguments' if num_required > 1 else 'argument', num_total))
return arg2value
main()
Output:
1 1000 2
{'a': 10, 'b': 1223, 'f': 'Hello World'}
There you go... I'm not responsible for any small children that get eaten by demons or something the like (or if it breaks on complicated functions).
PS: The inspect module is the pure EVIL.
Since you are trying to manipulate variables in one function, and do some job based on those variables on another function, the cleanest way to do it is having these variables to be an object's attributes.
It could be a dictionary - that could be defined inside the decorator - therefore access to it inside the decorated function would be as a "nonlocal" variable. That cleans up the default parameter tuple of this dictionary, that #bgporter proposed.:
def eggs(self, a, b, c=None):
# nonlocal parms ## uncomment in Python 3
parms["a"] = a
...
To be even more clean, you probably should have all these parameters as attributes of the instance (self) - so that no "magical" variable has to be used inside the decorated function.
As for doing it "magically" without having the parameters set as attributes of certain object explicitly, nor having the decorated function to return the parameters themselves (which is also an option) - that is, to have it to work transparently with any decorated function - I can't think of a way that does not involve manipulating the bytecode of the function itself.
If you can think of a way to make the wrapped function raise an exception at return time, you could trap the exception and check the execution trace.
If it is so important to do it automatically that you consider altering the function bytecode an option, feel free to ask me further.
I am writing a small app that has to perform some 'sanity checks' before entering execution. (eg. of a sanity check: test if a certain path is readable / writable / exists)
The code:
import logging
import os
import shutil
import sys
from paths import PATH
logging.basicConfig(level=logging.DEBUG)
log = logging.getLogger('sf.core.sanity')
def sanity_access(path, mode):
ret = os.access(path, mode)
logfunc = log.debug if ret else log.warning
loginfo = (os.access.__name__, path, mode, ret)
logfunc('%s(\'%s\', %s)==%s' % loginfo)
return ret
def sanity_check(bool_func, true_func, false_func):
ret = bool_func()
(logfunc, execfunc) = (log.debug, true_func) if ret else \
(log.warning, false_func)
logfunc('exec: %s', execfunc.__name__)
execfunc()
def sanity_checks():
sanity_check(lambda: sanity_access(PATH['userhome'], os.F_OK), \
lambda: None, sys.exit)
My question is related to the sanity_check function.
This function takes 3 parameters (bool_func, true_func, false_func). If the bool_func (which is the test function, returning a boolean value) fails, true_func gets executed, else the false_func gets executed.
1) lambda: None is a little lame , because for example if the sanity_access returns True, lambda: None gets executed, and the output printed will be:
DEBUG:sf.core.sanity:access('/home/nomemory', 0)==True
DEBUG:sf.core.sanity:exec: <lambda>
So it won't be very clear in the logs what function got executed. The log will only contain <lambda> . Is there a default function that does nothing and can be passed as a parameter ? Is it a way to return the name of the first function that is being executed inside a lambda ?
Or a way not to log that "exec" if 'nothing' is sent as a paramter ?
What's the none / do-nothing equivalent for functions ?
sanity_check(lambda: sanity_access(PATH['userhome'], os.F_OK), \
<do nothing, but show something more useful than <lambda>>, sys.exit)
Additional question, why is lambda: pass instead of lambda: None not working ?
What's with all the lambdas that serve no purpose? Well, maybe optional arguments will help you a bit:
def sanity_check( test, name='undefined', ontrue=None, onfalse=None ):
if test:
log.debug(name)
if ontrue is not None:
ontrue()
else:
log.warn( name )
if onfalse is not None:
onfalse()
def sanity_checks():
sanity_check(sanity_access(PATH['userhome'], os.F_OK), 'test home',
onfalse=sys.exit)
But you are really overcomplicating things.
update
I would normally delete this post because THC4k saw through all the complexity and rewrote your function correctly. However in a different context, the K combinator trick might come in handy, so I'll leave it up.
There is no builtin that does what you want AFIK. I believe that you want the K combinator (the link came up on another question) which can be encoded as
def K_combinator(x, name):
def f():
return x
f.__name__ = name
return f
none_function = K_combinator(None, 'none_function')
print none_function()
of course if this is just a one off then you could just do
def none_function():
return None
But then you don't get to say "K combinator". Another advantage of the 'K_combinator' approach is that you can pass it to functions, for example,
foo(call_back1, K_combinator(None, 'name_for_logging'))
as for your second statement, only expressions are allowed in lambda. pass is a statement. Hence, lambda: pass fails.
You can slightly simplify your call to sanity check by removing the lambda around the first argument.
def sanity_check(b, true_func, false_func):
if b:
logfunc = log.debug
execfunc = true_func
else:
logfunc = log.warning
execfunc = false_func
logfunc('exec: %s', execfunc.__name__)
execfunc()
def sanity_checks():
sanity_check(sanity_access(PATH['userhome'], os.F_OK),
K_combinator(None, 'none_func'), sys.exit)
This is more readable (largely from expanding the ternary operator into an if). the boolfunc wasn't doing anything because sanity_check wasn't adding any arguments to the call. Might as well just call instead of wrapping it in a lambda.
You might want to rethink this.
class SanityCheck( object ):
def __call__( self ):
if self.check():
logger.debug(...)
self.ok()
else:
logger.warning(...)
self.not_ok()
def check( self ):
return True
def ok( self ):
pass
def not_ok( self ):
sys.exit(1)
class PathSanityCheck(SanityCheck):
path = "/path/to/resource"
def check( self ):
return os.access( path, os.F_OK )
class AnotherPathSanityCheck(SanityCheck):
path = "/another/path"
def startup():
checks = ( PathSanityCheck(), AnotherPathSanityCheck() )
for c in checks:
c()
Callable objects can simplify your life.
>>> import dis
>>> f = lambda: None
>>> dis.dis(f)
1 0 LOAD_CONST 0 (None)
3 RETURN_VALUE
>>> g = lambda: Pass
>>>
>>>
>>> dis.dis(g)
1 0 LOAD_GLOBAL 0 (Pass)
3 RETURN_VALUE
>>> g = lambda: pass
File "<stdin>", line 1
g = lambda: pass
^
SyntaxError: invalid syntax
Actually, what you want is a function which does nothing, but has a __name__ which is useful to the log. The lambda function is doing exactly what you want, but execfunc.__name__ is giving "<lambda>". Try one of these:
def nothing_func():
return
def ThisAppearsInTheLog():
return
You can also put your own attributes on functions:
def log_nothing():
return
log_nothing.log_info = "nothing interesting"
Then change execfunc.__name__ to getattr(execfunc,'log_info', '')