Two-dimensional interpolation out of projection - python

Let's say I have a 3d object on a grid V = V(a, b, c). I want to interpolate V(a, b + alpha*d, c+d).
In other words, define f(d) = V(a, b + alpha*d, c+d). I want to approximate f. Importantly, I want to then apply optimize.root to the approximation, so I appreciate efficient computation of f.
For example,
gamma = 0.5
aGrid = np.linspace(5, 10, 30)
bGrid = np.linspace(4, 7, 40)
cGrid = np.linspace(0.1, 0.5, 20)
A, B, C = np.meshgrid(aGrid, bGrid, cGrid, indexing='ij')
V = A**2 + B*C
# define initial a, b, c
idx = (7, 8, 9)
a, b, c = A[idx], B[idx], C[idx]
# so V(a, b, c) = V[idx]
A naive approach would be
g = scipy.interpolate.interp2d(bGrid, cGrid, V[7, ...])
f = lambda x: g(b + gamma*x, c + x)
and my ultimate goal:
constant = 10
err = lambda x: f(x) - constant
scipy.optimize.root(err, np.array([5]))
However, this all looks very messy and inefficient. Is there a more pythonic way of accomplishing this?

I have change the notations to help me in the understanding of the question (I am used to physics notations). There is a scalar field V(x, y, z) in the 3D space.
We define a parametric line in this 3D space:
f_{x0, y0, z0, v_x, v_y, v_z}(t) = (x0 + v_x*t, y0 + v_y*t, z0 + v_z*t)
It could be seen as the trajectory of a particule starting at the point (x0, y0, z0) and moving along a straight line with the velocity vector (v_x, v_y, v_z).
We are looking for the time t1 such that V( f(t1) ) is equal to a specific given value V0. Is this the asked question ?
import numpy as np
from scipy.interpolate import RegularGridInterpolator
from scipy.optimize import root_scalar
import matplotlib.pylab as plt
# build the field
aGrid = np.linspace(5, 10, 30)
bGrid = np.linspace(4, 7, 40)
cGrid = np.linspace(0.1, 0.5, 20)
A, B, C = np.meshgrid(aGrid, bGrid, cGrid, indexing='ij')
V = A**2 + B*C
# Build a continuous field by linear interpolation of the gridded data:
V_interpolated = RegularGridInterpolator((aGrid, bGrid, cGrid), V,
bounds_error=False, fill_value=None)
# define the parametric line
idx = (7, 8, 9)
x0, y0, z0 = A[idx], B[idx], C[idx]
alpha = 0.5
v_x, v_y, v_z = 0, alpha, 1
def line(t):
xyz = (x0 + v_x*t, y0 + v_y*t, z0 + v_z*t)
return xyz
# Plot V(x,y,z) along this line (to check, is there a unique solution?)
t_span = np.linspace(0, 10, 23)
V_along_the_line = V_interpolated( line(t_span) )
plt.plot(t_span, V_along_the_line);
plt.xlabel('t'); plt.ylabel('V');
# Find t such that V( f(t) ) == V1
V1 = 80
sol = root_scalar(lambda s: V_interpolated( line(s) ) - V1,
x0=.0, x1=10)
print(sol)
# converged: True
# flag: 'converged'
# function_calls: 8
# iterations: 7
# root: 5.385594973846983
# Get the coordinates of the solution point:
print("(x,y,z)_sol = ", line(sol.root))
# (6.206896551724138, 7.308182102308106, 5.675068658057509)

Related

Python given implicit equation, find points on that equation?

Context: Convert an .iges to .vtk.
I have the following equation Ax^2+Bxy+Cy^2+Dx+Ey+F=0 representing a conic section.
The parameters A~F are given. I want to find points on the conic section, so that I can connect them with lines, and make a mesh.
The reason I need the points instead of just using matplotlib Ellipse is because I'm creating a mesh not a plot.
It is in 3 dimension space, but I first get points on xy plane, and use affine transformation to send it to 3 dim.
Question: How do I find points given an implicit equation?
To avoid spending too much time on this, I wrote some code that seems to handle general ellipses. It can be expanded for other conics, depending on what is needed.
The code takes in the coefficients of a general quadratic equation of an ellipse and a number of desired points to be generated on the ellipse and generates a set of points on the ellipse.
import numpy as np
def equation(conic, points):
'''
equation of a conic with coefficients 'conic'
applied to a matrix number_of_points x 3 whose each row is the coordinates
of each point
'''
c = np.array(conic)
x = np.array([points[:,0]**2, points[:, 0]*points[:,1], points[:,1]**2, points[:,0], points[:,1], np.ones(points.shape[0])])
return c.dot(x)
def equation_to_matrix(eq):
'''
eq[0]*x**2 + eq[1]*x*y + eq[2]*y**2 + eq[3]*x + eq[4]*y + eq[5] = 0
'''
return np.array([[2*eq[0], eq[1], eq[3]],
[ eq[1], 2*eq[2], eq[4]],
[ eq[3], eq[4], 2*eq[5]]]) / 2
def solve_quadratic(a, b, c):
'''
solves
ax^2 + bx + c = 0
'''
D = b**2 - 4*a*c
D = np.sqrt(D)
return (-b-D)/(2*a), (-b+D)/(2*a)
def eigen2(S):
'''
solves the eigen-decomposition problem
for a 2x2 symmetric matrix
'''
k1, k2 = solve_quadratic(1, -S[0,0]-S[1,1], S[0,0]*S[1,1] - S[0,1]*S[1,0])
u1 = np.array([-S[0,1], S[0,0]-k1, 0])
u1 = u1 / np.sqrt(u1.dot(u1))
u2 = np.array([-u1[1], u1[0], 0])
return np.array([k1, k2]), np.array([u1, u2, np.array([0,0,1])]).T
def center(conic_matrix):
center = np.linalg.solve(conic_matrix, np.array([0,0,1]))
return center/center[2]
def find_rotation_and_translation(conic_matrix):
'''
conic = c[0]x^2 + c[1]*xy + c[2]*y^2 + c[3]*x + c[4]*y + c[5] = 0
the result is rotation U such that U.T C U = diag
'''
k, U = eigen2(conic_matrix)
U[:,2] = center(conic_matrix)
return U, k
def find_transform(conic):
C = equation_to_matrix(conic)
U, k = find_rotation_and_translation(C)
C = (U.T).dot(C.dot(U))
C = - C / C[2,2]
k = np.array([1/np.sqrt(C[0,0]), 1/np.sqrt(C[1,1]), 1])
return U.dot(np.diag(k))
def generate_points_on(conic, num_points):
'''
conic = [c[0], c[1], c[2], c[3], c[4], c[5]]
coefficients of the qudaratic equation:
conic: c[0]x^2 + c[1]*xy + c[2]*y^2 + c[3]*x + c[4]*y + c[5] = 0
result is the affine transformation (scaling, rotation, translation)
that maps the unit circle to the ellipse defined by the coefficients
'conic'
'''
cos_ = np.cos(2*np.pi* np.arange(0, num_points)/ num_points)
sin_ = np.sin(2*np.pi* np.arange(0, num_points)/ num_points)
U = find_transform(conic)
points = np.array([cos_, sin_, np.ones(num_points)])
return ((U.dot(points)).T)[:,[0,1]]
'''
Test:
'''
'''
Ellipse with equation whose coefficients are in the list E.
The ellipse has semi-major axes 2 and 1,
it is rotated 60 deg from the horizontal,
and its center is at (1, 4)
'''
E = [ 3.25, -2.59807621, 1.75, -23.40192379, 6.89230485, 39.35769515]
'''
U maps points from unit circle to points on E
'''
U = find_transform(E)
print(U)
'''
the set of points on the ellipse E
'''
p = generate_points_on(E, num_points = 20)
print(p)
'''
check that the points p lie on the ellipse E
'''
print(equation(E, p).round(10))
'''
plot
'''
fig = plt.figure()
ax = fig.add_subplot()
ax.plot(p[:,0], p[:,1], 'ro')
ax.set_aspect('equal')
plt.show()
The code below handles the case of a hyperbola. It largely adapts the code from here
import numpy as np
import matplotlib.pyplot as plt
def equation_to_matrix(eq):
'''
eq[0]*x**2 + eq[1]*x*y + eq[2]*y**2 + eq[3]*x + eq[4]*y + eq[5] = 0
'''
return np.array([[2*eq[0], eq[1], eq[3]],
[ eq[1], 2*eq[2], eq[4]],
[ eq[3], eq[4], 2*eq[5]]]) / 2
def hyp_params_from_general(coeffs):
# get the matrix of the quadratic equation
Aq = equation_to_matrix(coeffs)
# get the matrix of the quadratic form A33
A33 = Aq[:2, :2]
# determinant of A33
detA33 = np.linalg.det(A33)
if detA33 > 0:
raise ValueError('coeffs do not represent a hyperbola: det A33 must be negative!')
# get the center
x0 = -np.linalg.det(np.array([Aq[:2, 2], Aq[:2, 1]]).T) / detA33
y0 = -np.linalg.det(np.array([Aq[:2, 0], Aq[:2, 2]]).T) / detA33
# The semi-major and semi-minor axis lengths (these are not sorted).
# get discriminant of the conic section
delta = np.linalg.det(Aq)
# get the eigenvalues
k1, k2 = np.linalg.eigvals(A33)
k1isk2 = np.isclose(k1/k2, -1)
ap = np.sqrt(abs(delta/k1/detA33))
bp = np.sqrt(abs(delta/k2/detA33))
# Eccentricity.
fac = np.sqrt((Aq[0, 0] - Aq[1, 1])**2 + Aq[0, 1]**2)
if delta < 0:
nu = 1
else:
nu = -1
e = np.sqrt(2*fac/(nu*(Aq[0, 0] - Aq[1, 1]) + fac))
# slope of the asymptotes
if Aq[0, 0] == Aq[1, 1] and k1isk2:
m1 = 0.
m2 = np.nan
else:
m1 = Aq[0, 0]/(-Aq[0, 1] - np.sqrt(-detA33))
m2 = Aq[0, 0]/(-Aq[0, 1] + np.sqrt(-detA33))
# Sort the semi-major and semi-minor axis lengths but keep track of
# the original relative magnitudes of width and height.
width_gt_height = True
if ap < bp and not k1isk2:
width_gt_height = False
ap, bp = bp, ap
# The angle of anticlockwise rotation of the major-axis from x-axis.
if Aq[0, 1] == 0:
phi = 0 if Aq[0, 0] < Aq[1, 1] else np.pi/2
elif Aq[0, 0] == Aq[1, 1]:
phi = np.pi/4 # would divide by zero and arctan(inf) -> pi/4
if m1 > 0 and m2 > 0:
width_gt_height = True
else:# Aq[0, 0] > Aq[1, 1]:
phi = np.arctan(2*Aq[0, 1]/(Aq[0, 0] - Aq[1, 1])) / 2
if not width_gt_height:
# Ensure that phi is the angle to rotate to the semi-major axis.
phi += np.pi/2
phi = phi % np.pi
return x0, y0, ap, bp, phi, e, m1, m2, width_gt_height
def get_hyperbola_pts(params, npts=100, tmin=-1, tmax=1):
x0, y0, ap, bp, phi, m1, m2 = params
# A grid of the parametric variable, t.
t = np.linspace(tmin, tmax, npts)
# points
x = x0 + ap * np.cosh(t) * np.cos(phi) - bp * np.sinh(t) * np.sin(phi)
y = y0 + ap * np.cosh(t) * np.sin(phi) + bp * np.sinh(t) * np.cos(phi)
# asymptotes
ya1 = y0 + m1*(x - x0)
ya2 = y0 + m2*(x - x0)
return x, y, ya1, ya2
if __name__ == '__main__':
coeffs = [1., 6., -2., 3., 0., 0.]
x0, y0, ap, bp, phi, e, m1, m2, width_gt_height = hyp_params_from_general(coeffs)
print('x0, y0, ap, bp, phi, e, m1, m2, width_gt_height = ', x0, y0, ap, bp, phi, e, m1, m2)
x_, y_, ya1, ya2 = get_hyperbola_pts((x0, y0, ap, bp, phi, m1, m2), npts=250, tmin=-2, tmax=3)
fig, ax = plt.subplots(figsize=(16, 9))
ax.plot(x_, y_, marker='.', linewidth=0.5, c='r')
ax.plot(x_, ya1, marker='.', linewidth=0.2, c='b')
ax.plot(x_, ya2, marker='.', linewidth=0.2, c='b')
ax.grid(True, linestyle='--')

How can I make a 3D plot in matplotlib of an ellipsoid defined by a quadratic equation?

I have the general formula of an ellipsoid:
A*x**2 + C*y**2 + D*x + E*y + B*x*y + F + G*z**2 = 0
where A,B,C,D,E,F,G are constant factors.
How can I plot this equation as a 3D plot in matplotlib? (A wireframe would be best.)
I saw this example but it is in parametric form and I am not sure how to put the z-coordinates in this code. Is there a way to keep the general form to plot this without the parametric form?
I started to put this in some kind of code like this:
from mpl_toolkits import mplot3d
%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
def f(x, y):
return ((A*x**2 + C*y**2 + D*x + E*y + B*x*y + F))
def f(z):
return G*z**2
x = np.linspace(-2200, 1850, 30)
y = np.linspace(-100, 60, 30)
z = np.linspace(-100, 60, 30)
X, Y, Z = np.meshgrid(x, y, z)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z');
I got this error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-1-95b1296ae6a4> in <module>()
18 fig = plt.figure()
19 ax = fig.add_subplot(111, projection='3d')
---> 20 ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
21 ax.set_xlabel('x')
22 ax.set_ylabel('y')
C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-packages\mpl_toolkits\mplot3d\axes3d.py in plot_wireframe(self, X, Y, Z, *args, **kwargs)
1847 had_data = self.has_data()
1848 if Z.ndim != 2:
-> 1849 raise ValueError("Argument Z must be 2-dimensional.")
1850 # FIXME: Support masked arrays
1851 X, Y, Z = np.broadcast_arrays(X, Y, Z)
ValueError: Argument Z must be 2-dimensional.
Side note, but what you have is not the most general equation for a 3d ellipsoid. Your equation can be rewritten as
A*x**2 + C*y**2 + D*x + E*y + B*x*y = - G*z**2 - F,
which means that in effect for each value of z you get a different level of a 2d ellipse, and the slices are symmetric with respect to the z = 0 plane. This shows how your ellipsoid is not general, and it helps check the results to make sure that what we get makes sense.
Assuming we take a general point r0 = [x0, y0, z0], you have
r0 # M # r0 + b0 # r0 + c0 == 0
where
M = [ A B/2 0
B/2 C 0
0 0 G],
b0 = [D, E, 0],
c0 = F
where # stands for matrix-vector or vector-vector product.
You could take your function and plot its isosurface, but that would be suboptimal: you would need a gridded approximation for your function which is very expensive to do to sufficient resolution, and you'd have to choose the domain for this sampling wisely.
Instead you can perform a principal axis transformation on your data to generalize the parametric plot of a canonical ellipsoid that you yourself linked.
The first step is to diagonalize M as M = V # D # V.T, where D is diagonal. Since it's a real symmetric matrix this is always possible and V is orthogonal. Then we have
r0 # V # D # V.T # r0 + b0 # r0 + c0 == 0
which we can regroup as
(V.T # r0) # D # (V.T # r0) + b0 # V # (V.T # r0) + c0 == 0
which motivates the definition of the auxiliary coordinates r1 = V.T # r0 and vector b1 = b0 # V, for which we get
r1 # D # r1 + b1 # r1 + c0 == 0.
Since D is a symmetric matrix with the eigenvalues d1, d2, d3 in its diagonal, the above is the equation
d1 * x1**2 + d2 * x2**2 + d3 * x3**3 + b11 * x1 + b12 * x2 + b13 * x3 + c0 == 0
where r1 = [x1, x2, x3] and b1 = [b11, b12, b13].
What's left is to switch from r1 to r2 such that we remove the linear terms:
d1 * (x1 + b11/(2*d1))**2 + d2 * (x2 + b12/(2*d2))**2 + d3 * (x3 + b13/(2*d3))**2 - b11**2/(4*d1) - b12**2/(4*d2) - b13**2/(4*d3) + c0 == 0
So we define
r2 = [x2, y2, z2]
x2 = x1 + b11/(2*d1)
y2 = y1 + b12/(2*d2)
z2 = z1 + b13/(2*d3)
c2 = b11**2/(4*d1) b12**2/(4*d2) b13**2/(4*d3) - c0.
For these we finally have
d1 * x2**2 + d2 * y2**2 + d3 * z2**2 == c2,
d1/c2 * x2**2 + d2/c2 * y2**2 + d3/c2 * z2**2 == 1
which is the canonical form of a second-order surface. In order for this to meaningfully correspond to an ellipsoid we must ensure that d1, d2, d3 and c2 are all strictly positive. If this is guaranteed then the semi-major axes of the canonical form are sqrt(c2/d1), sqrt(c2/d2) and sqrt(c2/d3).
So here's what we do:
ensure that the parameters correspond to an ellipsoid
generate a theta and phi mesh for polar and azimuthal angles
compute the transformed coordinates [x2, y2, z2]
shift them back (by r2 - r1) to get [x1, y1, z1]
transform the coordinates back by V to get r0, the actual [x, y, z] coordinates we're interested in.
Here's how I'd implement this:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def get_transforms(A, B, C, D, E, F, G):
""" Get transformation matrix and shift for a 3d ellipsoid
Assume A*x**2 + C*y**2 + D*x + E*y + B*x*y + F + G*z**2 = 0,
use principal axis transformation and verify that the inputs
correspond to an ellipsoid.
Returns: (d, V, s) tuple of arrays
d: shape (3,) of semi-major axes in the canonical form
(X/d1)**2 + (Y/d2)**2 + (Z/d3)**2 = 1
V: shape (3,3) of the eigensystem
s: shape (3,) shift from the linear terms
"""
# construct original matrix
M = np.array([[A, B/2, 0],
[B/2, C, 0],
[0, 0, G]])
# construct original linear coefficient vector
b0 = np.array([D, E, 0])
# constant term
c0 = F
# compute eigensystem
D, V = np.linalg.eig(M)
if (D <= 0).any():
raise ValueError("Parameter matrix is not positive definite!")
# transform the shift
b1 = b0 # V
# compute the final shift vector
s = b1 / (2 * D)
# compute the final constant term, also has to be positive
c2 = (b1**2 / (4 * D)).sum() - c0
if c2 <= 0:
print(b1, D, c0, c2)
raise ValueError("Constant in the canonical form is not positive!")
# compute the semi-major axes
d = np.sqrt(c2 / D)
return d, V, s
def get_ellipsoid_coordinates(A, B, C, D, E, F, G, n_theta=20, n_phi=40):
"""Compute coordinates of an ellipsoid on an ellipsoidal grid
Returns: x, y, z arrays of shape (n_theta, n_phi)
"""
# get canonical grid
theta,phi = np.mgrid[0:np.pi:n_theta*1j, 0:2*np.pi:n_phi*1j]
r2 = np.array([np.sin(theta) * np.cos(phi),
np.sin(theta) * np.sin(phi),
np.cos(theta)]) # shape (3, n_theta, n_phi)
# get transformation data
d, V, s = get_transforms(A, B, C, D, E, F, G) # could be *args I guess
# shift and transform back the coordinates
r1 = d[:,None,None]*r2 - s[:,None,None] # broadcast along first of three axes
r0 = (V # r1.reshape(3, -1)).reshape(r1.shape) # shape (3, n_theta, n_phi)
return r0 # unpackable to x, y, z of shape (n_theta, n_phi)
Here's an example with an ellipsoid and proof that it works:
A,B,C,D,E,F,G = args = 2, -1, 2, 3, -4, -3, 4
x,y,z = get_ellipsoid_coordinates(*args)
print(np.allclose(A*x**2 + C*y**2 + D*x + E*y + B*x*y + F + G*z**2, 0)) # True
The actual plotting from here is trivial. Using the 3d scaling hack from this answer to preserve equal axes:
# create 3d axes
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# plot the data
ax.plot_wireframe(x, y, z)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
# scaling hack
bbox_min = np.min([x, y, z])
bbox_max = np.max([x, y, z])
ax.auto_scale_xyz([bbox_min, bbox_max], [bbox_min, bbox_max], [bbox_min, bbox_max])
plt.show()
Here's how the result looks:
Rotating it around it's nicely visible that the surface is indeed reflection symmetric with respect to the z = 0 plane, which was evident from the equation.
You can change the n_theta and n_phi keyword arguments to the function to generate a grid with a different mesh. The fun thing is that you can take any scattered points lying on the unit sphere and plug it into the definition of r2 in the function get_ellipsoid_coordinates (as long as this array has a first dimension of size 3), and the output coordinates will have the same shape, but they will be transformed onto the actual ellipsoid.
You can also use other libraries to visualize the surface, for instance mayavi where you can either plot the surface we just computed, or compare it with an isosurface which is built-in there.

Solve a nonlinear ODE system for the Frenet frame

I have checked python non linear ODE with 2 variables , which is not my case. Maybe my case is not called as nonlinear ODE, correct me please.
The question isFrenet Frame actually, in which there are 3 vectors T(s), N(s) and B(s); the parameter s>=0. And there are 2 scalar with known math formula expression t(s) and k(s). I have the initial value T(0), N(0) and B(0).
diff(T(s), s) = k(s)*N(s)
diff(N(s), s) = -k(s)*T(s) + t(s)*B(s)
diff(B(s), s) = -t(s)*N(s)
Then how can I get T(s), N(s) and B(s) numerically or symbolically?
I have checked scipy.integrate.ode but I don't know how to pass k(s)*N(s) into its first parameter at all
def model (z, tspan):
T = z[0]
N = z[1]
B = z[2]
dTds = k(s) * N # how to express function k(s)?
dNds = -k(s) * T + t(s) * B
dBds = -t(s)* N
return [dTds, dNds, dBds]
z = scipy.integrate.ode(model, [T0, N0, B0]
Here is a code using solve_ivp interface from Scipy (instead of odeint) to obtain a numerical solution:
import numpy as np
from scipy.integrate import solve_ivp
from scipy.integrate import cumtrapz
import matplotlib.pylab as plt
# Define the parameters as regular Python function:
def k(s):
return 1
def t(s):
return 0
# The equations: dz/dt = model(s, z):
def model(s, z):
T = z[:3] # z is a (9, ) shaped array, the concatenation of T, N and B
N = z[3:6]
B = z[6:]
dTds = k(s) * N
dNds = -k(s) * T + t(s) * B
dBds = -t(s)* N
return np.hstack([dTds, dNds, dBds])
T0, N0, B0 = [1, 0, 0], [0, 1, 0], [0, 0, 1]
z0 = np.hstack([T0, N0, B0])
s_span = (0, 6) # start and final "time"
t_eval = np.linspace(*s_span, 100) # define the number of point wanted in-between,
# It is not necessary as the solver automatically
# define the number of points.
# It is used here to obtain a relatively correct
# integration of the coordinates, see the graph
# Solve:
sol = solve_ivp(model, s_span, z0, t_eval=t_eval, method='RK45')
print(sol.message)
# >> The solver successfully reached the end of the integration interval.
# Unpack the solution:
T, N, B = np.split(sol.y, 3) # another way to unpack the z array
s = sol.t
# Bonus: integration of the normal vector in order to get the coordinates
# to plot the curve (there is certainly better way to do this)
coords = cumtrapz(T, x=s)
plt.plot(coords[0, :], coords[1, :]);
plt.axis('equal'); plt.xlabel('x'); plt.xlabel('y');
T, N and B are vectors. Therefore, there are 9 equations to solve: z is a (9,) array.
For constant curvature and no torsion, the result is a circle:
thanks for your example. And I thought it again, found that since there is formula for dZ where Z is matrix(T, N, B), we can calculate Z[i] = Z[i-1] + dZ[i-1]*deltaS according to the concept of derivative. Then I code and find this idea can solve the circle example. So
is Z[i] = Z[i-1] + dZ[i-1]*deltaS suitable for other ODE? will it fail in some situation, or does scipy.integrate.solve_ivp/scipy.integrate.ode supply advantage over the direct usage of Z[i] = Z[i-1] + dZ[i-1]*deltaS?
in my code, I have to normalize Z[i] because ||Z[i]|| is not always 1. Why does it happen? A float numerical calculation error?
my answer to my question, at least it works for the circle
import numpy as np
from scipy.integrate import cumtrapz
import matplotlib.pylab as plt
# Define the parameters as regular Python function:
def k(s):
return 1
def t(s):
return 0
def dZ(s, Z):
return np.array(
[k(s) * Z[1], -k(s) * Z[0] + t(s) * Z[2], -t(s)* Z[1]]
)
T0, N0, B0 = np.array([1, 0, 0]), np.array([0, 1, 0]), np.array([0, 0, 1])
deltaS = 0.1 # step to calculate dZ/ds
num = int(2*np.pi*1/deltaS) + 1 # how many points on the curve we have to calculate
T = np.zeros([num, ], dtype=object)
N = np.zeros([num, ], dtype=object)
B = np.zeros([num, ], dtype=object)
T[0] = T0
N[0] = N0
B[0] = B0
for i in range(num-1):
temp_dZ = dZ(i*deltaS, np.array([T[i], N[i], B[i]]))
T[i+1] = T[i] + temp_dZ[0]*deltaS
T[i+1] = T[i+1]/np.linalg.norm(T[i+1]) # have to do this
N[i+1] = N[i] + temp_dZ[1]*deltaS
N[i+1] = N[i+1]/np.linalg.norm(N[i+1])
B[i+1] = B[i] + temp_dZ[2]*deltaS
B[i+1] = B[i+1]/np.linalg.norm(B[i+1])
coords = cumtrapz(
[
[i[0] for i in T], [i[1] for i in T], [i[2] for i in T]
]
, x=np.arange(num)*deltaS
)
plt.figure()
plt.plot(coords[0, :], coords[1, :]);
plt.axis('equal'); plt.xlabel('x'); plt.xlabel('y');
plt.show()
I found that the equation I listed in the first post does not work for my curve. So I read Gray A., Abbena E., Salamon S-Modern Differential Geometry of Curves and Surfaces with Mathematica. 2006 and found that for arbitrary curve, Frenet equation should be written as
diff(T(s), s) = ||r'||* k(s)*N(s)
diff(N(s), s) = ||r'||*(-k(s)*T(s) + t(s)*B(s))
diff(B(s), s) = ||r'||* -t(s)*N(s)
where ||r'||(or ||r'(s)||) is diff([x(s), y(s), z(s)], s).norm()
now the problem has changed to be some different from that in the first post, because there is no r'(s) function or discrete data array. So I think this is suitable for a new reply other than comment.
I met 2 questions while trying to solve the new equation:
how can we program with r'(s) if scipy's solve_ivp is used?
I try to modify my gaussian solution, but the result is totally wrong.
thanks again
import numpy as np
from scipy.integrate import cumtrapz
import matplotlib.pylab as plt
# Define the parameters as regular Python function:
def k(s):
return 1
def t(s):
return 0
def dZ(s, Z, r_norm):
return np.array([
r_norm * k(s) * Z[1],
r_norm*(-k(s) * Z[0] + t(s) * Z[2]),
r_norm*(-t(s)* Z[1])
])
T0, N0, B0 = np.array([1, 0, 0]), np.array([0, 1, 0]), np.array([0, 0, 1])
deltaS = 0.1 # step to calculate dZ/ds
num = int(2*np.pi*1/deltaS) + 1 # how many points on the curve we have to calculate
T = np.zeros([num, ], dtype=object)
N = np.zeros([num, ], dtype=object)
B = np.zeros([num, ], dtype=object)
R0 = N0
T[0] = T0
N[0] = N0
B[0] = B0
for i in range(num-1):
r_norm = np.linalg.norm(R0)
temp_dZ = dZ(i*deltaS, np.array([T[i], N[i], B[i]]), r_norm)
T[i+1] = T[i] + temp_dZ[0]*deltaS
T[i+1] = T[i+1]/np.linalg.norm(T[i+1])
N[i+1] = N[i] + temp_dZ[1]*deltaS
N[i+1] = N[i+1]/np.linalg.norm(N[i+1])
B[i+1] = B[i] + temp_dZ[2]*deltaS
B[i+1] = B[i+1]/np.linalg.norm(B[i+1])
R0 = R0 + T[i]*deltaS
coords = cumtrapz(
[
[i[0] for i in T], [i[1] for i in T], [i[2] for i in T]
]
, x=np.arange(num)*deltaS
)
plt.figure()
plt.plot(coords[0, :], coords[1, :]);
plt.axis('equal'); plt.xlabel('x'); plt.xlabel('y');
plt.show()

Estimating parameter values using optimize.curve.fit

I am attempting to estimate the parameters of the non-linear equation:
y(x1, x2) = x1 / A + Bx1 + Cx2
using the method outlined in the answer to this question, but can find no documentation on how to pass multiple independent variables to the curve_fit function appropriately.
Specifically, I am attempting to estimate plant biomass (y) on the basis of the density of the plant (x1), and the density of a competitor (x2). I have three exponential equations (of the form y = a[1-exp(-b*x1)]) for the the relationship between plant density and plant biomass, with different parameter values for three competitor densities:
For x2 == 146: y = 1697 * [1 - exp(-0.010 * x1)]
For x2 == 112: y = 1994 * [1 - exp(-0.023 * x1)]
For x2 == 127: y = 1022 * [1 - exp(-0.008 * x1)]
I would therefore like to write code along the lines of:
def model_func(self, x_vals, A, B, C):
return x_vals[0] / (A + B * x_vals[0] + C * x_vals[1])
def fit_nonlinear(self, d, y):
opt_parms, parm_cov = sp.optimize.curve_fit(self.model_func, [x1, x2], y, p0 = (0.2, 0.004, 0.007), maxfev=10000)
A, B, C = opt_parms
return A, B, C
However I have not found any documentation on how to format the argument y (passed to fit_nonlinear) to capture to two-dimensional nature of the x_vals (the documentation for curve_fit states y should be an N-length sequence). Is what I am attempting possible with curve_fit?
Based on your comment above, you want to think of using the flat versions of the matrices. If you take the same element from both the X1 and X2 matrices, that pair of values has a corresponding y-value. Here's a minimal example
import numpy as np
import scipy as sp
import scipy.optimize
x1 = np.linspace(-1, 1)
x2 = np.linspace(-1, 1)
X1, X2 = np.meshgrid(x1, x2)
def func(X, A, B, C):
X1, X2 = X
return X1 / (A + B * X1 + C * X2)
# generate some noisy points corresponding to a set of parameter values
p_ref = [0.15, 0.001, 0.05]
Yref = func([X1, X2], *p_ref)
std = Yref.std()
Y = Yref + np.random.normal(scale=0.1 * std, size=Yref.shape)
# fit a curve to the noisy points
p0 = (0.2, 0.004, 0.007)
p, cov = sp.optimize.curve_fit(func, [X1.flat, X2.flat], Y.flat, p0=p0)
# if the parameters from the fit are close to the ones used
# to generate the noisy points, we succeeded
print p_ref
print p

Procrustes Analysis with NumPy?

Is there something like Matlab's procrustes function in NumPy/SciPy or related libraries?
For reference. Procrustes analysis aims to align 2 sets of points (in other words, 2 shapes) to minimize square distance between them by removing scale, translation and rotation warp components.
Example in Matlab:
X = [0 1; 2 3; 4 5; 6 7; 8 9]; % first shape
R = [1 2; 2 1]; % rotation matrix
t = [3 5]; % translation vector
Y = X * R + repmat(t, 5, 1); % warped shape, no scale and no distortion
[d Z] = procrustes(X, Y); % Z is Y aligned back to X
Z
Z =
0.0000 1.0000
2.0000 3.0000
4.0000 5.0000
6.0000 7.0000
8.0000 9.0000
Same task in NumPy:
X = arange(10).reshape((5, 2))
R = array([[1, 2], [2, 1]])
t = array([3, 5])
Y = dot(X, R) + t
Z = ???
Note: I'm only interested in aligned shape, since square error (variable d in Matlab code) is easily computed from 2 shapes.
I'm not aware of any pre-existing implementation in Python, but it's easy to take a look at the MATLAB code using edit procrustes.m and port it to Numpy:
def procrustes(X, Y, scaling=True, reflection='best'):
"""
A port of MATLAB's `procrustes` function to Numpy.
Procrustes analysis determines a linear transformation (translation,
reflection, orthogonal rotation and scaling) of the points in Y to best
conform them to the points in matrix X, using the sum of squared errors
as the goodness of fit criterion.
d, Z, [tform] = procrustes(X, Y)
Inputs:
------------
X, Y
matrices of target and input coordinates. they must have equal
numbers of points (rows), but Y may have fewer dimensions
(columns) than X.
scaling
if False, the scaling component of the transformation is forced
to 1
reflection
if 'best' (default), the transformation solution may or may not
include a reflection component, depending on which fits the data
best. setting reflection to True or False forces a solution with
reflection or no reflection respectively.
Outputs
------------
d
the residual sum of squared errors, normalized according to a
measure of the scale of X, ((X - X.mean(0))**2).sum()
Z
the matrix of transformed Y-values
tform
a dict specifying the rotation, translation and scaling that
maps X --> Y
"""
n,m = X.shape
ny,my = Y.shape
muX = X.mean(0)
muY = Y.mean(0)
X0 = X - muX
Y0 = Y - muY
ssX = (X0**2.).sum()
ssY = (Y0**2.).sum()
# centred Frobenius norm
normX = np.sqrt(ssX)
normY = np.sqrt(ssY)
# scale to equal (unit) norm
X0 /= normX
Y0 /= normY
if my < m:
Y0 = np.concatenate((Y0, np.zeros(n, m-my)),0)
# optimum rotation matrix of Y
A = np.dot(X0.T, Y0)
U,s,Vt = np.linalg.svd(A,full_matrices=False)
V = Vt.T
T = np.dot(V, U.T)
if reflection != 'best':
# does the current solution use a reflection?
have_reflection = np.linalg.det(T) < 0
# if that's not what was specified, force another reflection
if reflection != have_reflection:
V[:,-1] *= -1
s[-1] *= -1
T = np.dot(V, U.T)
traceTA = s.sum()
if scaling:
# optimum scaling of Y
b = traceTA * normX / normY
# standarised distance between X and b*Y*T + c
d = 1 - traceTA**2
# transformed coords
Z = normX*traceTA*np.dot(Y0, T) + muX
else:
b = 1
d = 1 + ssY/ssX - 2 * traceTA * normY / normX
Z = normY*np.dot(Y0, T) + muX
# transformation matrix
if my < m:
T = T[:my,:]
c = muX - b*np.dot(muY, T)
#transformation values
tform = {'rotation':T, 'scale':b, 'translation':c}
return d, Z, tform
There is a Scipy function for it: scipy.spatial.procrustes
I'm just posting its example here:
>>> import numpy as np
>>> from scipy.spatial import procrustes
>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
>>> mtx1, mtx2, disparity = procrustes(a, b)
>>> round(disparity)
0.0
You can have both Ordinary Procrustes Analysis and Generalized Procrustes Analysis in python with something like this:
import numpy as np
def opa(a, b):
aT = a.mean(0)
bT = b.mean(0)
A = a - aT
B = b - bT
aS = np.sum(A * A)**.5
bS = np.sum(B * B)**.5
A /= aS
B /= bS
U, _, V = np.linalg.svd(np.dot(B.T, A))
aR = np.dot(U, V)
if np.linalg.det(aR) < 0:
V[1] *= -1
aR = np.dot(U, V)
aS = aS / bS
aT-= (bT.dot(aR) * aS)
aD = (np.sum((A - B.dot(aR))**2) / len(a))**.5
return aR, aS, aT, aD
def gpa(v, n=-1):
if n < 0:
p = avg(v)
else:
p = v[n]
l = len(v)
r, s, t, d = np.ndarray((4, l), object)
for i in range(l):
r[i], s[i], t[i], d[i] = opa(p, v[i])
return r, s, t, d
def avg(v):
v_= np.copy(v)
l = len(v_)
R, S, T = [list(np.zeros(l)) for _ in range(3)]
for i, j in np.ndindex(l, l):
r, s, t, _ = opa(v_[i], v_[j])
R[j] += np.arccos(min(1, max(-1, np.trace(r[:1])))) * np.sign(r[1][0])
S[j] += s
T[j] += t
for i in range(l):
a = R[i] / l
r = [np.cos(a), -np.sin(a)], [np.sin(a), np.cos(a)]
v_[i] = v_[i].dot(r) * (S[i] / l) + (T[i] / l)
return v_.mean(0)
For testing purposes, the output of each algorithm can be visualized as follows:
import matplotlib.pyplot as p; p.rcParams['toolbar'] = 'None';
def plt(o, e, b):
p.figure(figsize=(10, 10), dpi=72, facecolor='w').add_axes([0.05, 0.05, 0.9, 0.9], aspect='equal')
p.plot(0, 0, marker='x', mew=1, ms=10, c='g', zorder=2, clip_on=False)
p.gcf().canvas.set_window_title('%f' % e)
x = np.ravel(o[0].T[0])
y = np.ravel(o[0].T[1])
p.xlim(min(x), max(x))
p.ylim(min(y), max(y))
a = []
for i, j in np.ndindex(len(o), 2):
a.append(o[i].T[j])
O = p.plot(*a, marker='x', mew=1, ms=10, lw=.25, c='b', zorder=0, clip_on=False)
O[0].set(c='r', zorder=1)
if not b:
O[2].set_color('b')
O[2].set_alpha(0.4)
p.axis('off')
p.show()
# Fly wings example (Klingenberg, 2015 | https://en.wikipedia.org/wiki/Procrustes_analysis)
arr1 = np.array([[588.0, 443.0], [178.0, 443.0], [56.0, 436.0], [50.0, 376.0], [129.0, 360.0], [15.0, 342.0], [92.0, 293.0], [79.0, 269.0], [276.0, 295.0], [281.0, 331.0], [785.0, 260.0], [754.0, 174.0], [405.0, 233.0], [386.0, 167.0], [466.0, 59.0]])
arr2 = np.array([[477.0, 557.0], [130.129, 374.307], [52.0, 334.0], [67.662, 306.953], [111.916, 323.0], [55.119, 275.854], [107.935, 277.723], [101.899, 259.73], [175.0, 329.0], [171.0, 345.0], [589.0, 527.0], [591.0, 468.0], [299.0, 363.0], [306.0, 317.0], [406.0, 288.0]])
def opa_out(a):
r, s, t, d = opa(a[0], a[1])
a[1] = a[1].dot(r) * s + t
return a, d, False
plt(*opa_out([arr1, arr2, np.matrix.copy(arr2)]))
def gpa_out(a):
g = gpa(a, -1)
D = [avg(a)]
for i in range(len(a)):
D.append(a[i].dot(g[0][i]) * g[1][i] + g[2][i])
return D, sum(g[3])/len(a), True
plt(*gpa_out([arr1, arr2]))
Probably you want to try this package with various flavors of different Procrustes methods, https://github.com/theochem/procrustes.

Categories