I have a byte array, which originally was converted from a float array in Scala. I need to convert it back to a float array in Python.
This is the code I used to convert the float array in Scala:
val float_ary_len = float_ary.size
val bb = java.nio.ByteBuffer.allocate(float_ary_len * 4)
for(each_float <- float_ary){
bb.putFloat(each_folat)
}
val bytes_ary = bb.array()
Then in Python, I can get this byte array and I need to convert it back to a float array.
I have tried the following code in Python, but it didn't give me the right float.
print(list(bytes_ary[0:4]))
#['\xc2', '\xda', 't', 'Z']
struct.unpack('f', bytes_ary[0:4])
# it gave me 1.7230105268977664e+16, but it should be -109.22725
Please let me know how should I get the right float?
Apparently the Scala code that encodes the value uses a different byte order than the Python code that decodes it.
Make sure you use the same byte order (endianness) in both programs.
In Python, you can change the byte order used to decode the value by using >f or <f instead of f. See https://docs.python.org/3/library/struct.html#struct-alignment.
>>> b = b'\xc2\xdatZ'
>>> struct.unpack('f', b) # native byte order (little-endian on my machine)
(1.7230105268977664e+16,)
>>> struct.unpack('>f', b) # big-endian
(-109.22724914550781,)
It could be because of the endian encoding.
You should try big endian:
struct.unpack('>f', bytes_ary[0:4])
or little endian:
struct.unpack('<f', bytes_ary[0:4])
Depends on your byte array.
if
print(byte_array_of_old_float)
returns
bytearray(b'684210')
then this should work:
floatvar=float(byte_array_of_old_float)
In my case the byte array came from a MariaDB select call, and I did the conversion like that.
Related
I have a long Hex string that represents a series of values of different types. I need to convert this Hex String into bytes or bytearray so that I can extract each value from the raw data. How can I do this?
For example, the string "ab" should convert to the bytes b"\xab" or equivalent byte array. Longer example:
>>> # what to use in place of `convert` here?
>>> convert("8e71c61de6a2321336184f813379ec6bf4a3fb79e63cd12b")
b'\x8eq\xc6\x1d\xe6\xa22\x136\x18O\x813y\xeck\xf4\xa3\xfby\xe6<\xd1+'
Suppose your hex string is something like
>>> hex_string = "deadbeef"
Convert it to a bytearray (Python 3 and 2.7):
>>> bytearray.fromhex(hex_string)
bytearray(b'\xde\xad\xbe\xef')
Convert it to a bytes object (Python 3):
>>> bytes.fromhex(hex_string)
b'\xde\xad\xbe\xef'
Note that bytes is an immutable version of bytearray.
Convert it to a string (Python ≤ 2.7):
>>> hex_data = hex_string.decode("hex")
>>> hex_data
"\xde\xad\xbe\xef"
There is a built-in function in bytearray that does what you intend.
bytearray.fromhex("de ad be ef 00")
It returns a bytearray and it reads hex strings with or without space separator.
provided I understood correctly, you should look for binascii.unhexlify
import binascii
a='45222e'
s=binascii.unhexlify(a)
b=[ord(x) for x in s]
Assuming you have a byte string like so
"\x12\x45\x00\xAB"
and you know the amount of bytes and their type you can also use this approach
import struct
bytes = '\x12\x45\x00\xAB'
val = struct.unpack('<BBH', bytes)
#val = (18, 69, 43776)
As I specified little endian (using the '<' char) at the start of the format string the function returned the decimal equivalent.
0x12 = 18
0x45 = 69
0xAB00 = 43776
B is equal to one byte (8 bit) unsigned
H is equal to two bytes (16 bit) unsigned
More available characters and byte sizes can be found here
The advantages are..
You can specify more than one byte and the endian of the values
Disadvantages..
You really need to know the type and length of data your dealing with
You can use the Codecs module in the Python Standard Library, i.e.
import codecs
codecs.decode(hexstring, 'hex_codec')
You should be able to build a string holding the binary data using something like:
data = "fef0babe"
bits = ""
for x in xrange(0, len(data), 2)
bits += chr(int(data[x:x+2], 16))
This is probably not the fastest way (many string appends), but quite simple using only core Python.
A good one liner is:
byte_list = map(ord, hex_string)
This will iterate over each char in the string and run it through the ord() function. Only tested on python 2.6, not too sure about 3.0+.
-Josh
Trying to a convert a binary list into a signed 16bit little endian integer
input_data = [['1100110111111011','1101111011111111','0010101000000011'],['1100111111111011','1101100111111111','0010110100000011']]
Desired Output =[[-1074, -34, 810],[-1703, -39, 813]]
This is what I've got so far. It's been adapted from: Hex string to signed int in Python 3.2?,
Conversion from HEX to SIGNED DEC in python
results = []
for i in input_data:
hex_convert = [hex(int(x,2)) for x in i]
convert = [int(y[4:6] + y[2:4], 16) for y in hex_convert]
results.append(convert)
print (results)
output: [[64461, 65502, 810], [64463, 65497, 813]]
This is works fine, but the above are unsigned integers. I need signed integers capable of handling negative values. I then tried a different approach:
results_2 = []
for i in input_data:
hex_convert = [hex(int(x,2)) for x in i]
to_bytes = [bytes(j, 'utf-8') for j in hex_convert]
split_bits = [int(k, 16) for k in to_bytes]
convert_2 = [int.from_bytes(b, byteorder = 'little', signed = True) for b in to_bytes]
results_2.append(convert_2)
print (results_2)
Output: [[108191910426672, 112589973780528, 56282882144304], [108191943981104, 112589235583024, 56282932475952]]
This result is even more wild than the first. I know my approach is wrong, and it doesn't help that i've never been able to get my head around binary conversion etc, but I feel i'm on the right path with:
(b, byteorder = 'little', signed = True)
but can't work out where i'm wrong. Any help explaining this concept would be greatly appreciated.
This result is even more wild than the first. I know my approach is wrong... but can't work out where i'm wrong.
The problem is in the conversion to bytes. Let's look at it a step at a time:
int(x, 2)
Fine; we treat the string as a base-2 representation of the integer value, and get that integer. Only problem is it's a) unsigned and b) big-endian.
hex(int(x,2))
What this does is create a string representation of the integer, in base 16, with a 0x prefix. Notably, there are two text characters per byte that we want. This is already heading is down the wrong path.
You might have thought of using hexadecimal because you've seen \xAB style escapes inside string representations. This is a completely different thing. The string '\xAB' contains one character. The string '0xAB' contains four.
From there, everything else is still nonsense. Converting to bytes with a text encoding just means that the text character 0 for example is replaced with the byte value 48 (since in UTF-8 it's encoded with a single byte with that value). For this data we get the same results with UTF-8 that we would by assuming plain ASCII (since UTF-8 is "ASCII transparent" and there are no non-ASCII characters in the text).
So how do we do it?
We want to convert the integer from the first step into the bytes used to represent it. Just as there is a .from_bytes class method allowing us to create an integer from underlying bytes, there is an instance method allowing us to get the bytes that would represent the integer.
So, we use .to_bytes, specifying the length, signedness and endianness that was assumed when we created the int from the binary string - that gives us bytes that correspond to that string. Then, we re-create the integer from those bytes, except now specifying the proper signedness and endianness. The reason that .to_bytes makes us specify a length is because the integer doesn't have a particular length - there are a minimum number of bytes required to represent it, but you could use as many more as you like. (This is especially important if you want to handle signed values, since it will do sign-extension automatically.)
Thus:
for i in input_data:
values = [int(x,2) for x in i]
as_bytes = [x.to_bytes(2, byteorder='big', signed=False) for x in values]
reinterpreted = [int.from_bytes(x, byteorder='little', signed=True) for x in as_bytes]
results_2.append(reinterpreted)
But let's improve the organization of the code a bit. I will first make a function to handle a single integer value, and then we can use comprehensions to process the list. In fact, we can use nested comprehensions for the nested list.
def as_signed_little(binary_str):
# This time, taking advantage of positional args and default values.
as_bytes = int(binary_str, 2).to_bytes(2, 'big')
return int.from_bytes(as_bytes, 'little', signed=True)
# And now we can do:
results_2 = [[as_signed_little(x) for x in i] for i in input_data]
I have a long Hex string that represents a series of values of different types. I need to convert this Hex String into bytes or bytearray so that I can extract each value from the raw data. How can I do this?
For example, the string "ab" should convert to the bytes b"\xab" or equivalent byte array. Longer example:
>>> # what to use in place of `convert` here?
>>> convert("8e71c61de6a2321336184f813379ec6bf4a3fb79e63cd12b")
b'\x8eq\xc6\x1d\xe6\xa22\x136\x18O\x813y\xeck\xf4\xa3\xfby\xe6<\xd1+'
Suppose your hex string is something like
>>> hex_string = "deadbeef"
Convert it to a bytearray (Python 3 and 2.7):
>>> bytearray.fromhex(hex_string)
bytearray(b'\xde\xad\xbe\xef')
Convert it to a bytes object (Python 3):
>>> bytes.fromhex(hex_string)
b'\xde\xad\xbe\xef'
Note that bytes is an immutable version of bytearray.
Convert it to a string (Python ≤ 2.7):
>>> hex_data = hex_string.decode("hex")
>>> hex_data
"\xde\xad\xbe\xef"
There is a built-in function in bytearray that does what you intend.
bytearray.fromhex("de ad be ef 00")
It returns a bytearray and it reads hex strings with or without space separator.
provided I understood correctly, you should look for binascii.unhexlify
import binascii
a='45222e'
s=binascii.unhexlify(a)
b=[ord(x) for x in s]
Assuming you have a byte string like so
"\x12\x45\x00\xAB"
and you know the amount of bytes and their type you can also use this approach
import struct
bytes = '\x12\x45\x00\xAB'
val = struct.unpack('<BBH', bytes)
#val = (18, 69, 43776)
As I specified little endian (using the '<' char) at the start of the format string the function returned the decimal equivalent.
0x12 = 18
0x45 = 69
0xAB00 = 43776
B is equal to one byte (8 bit) unsigned
H is equal to two bytes (16 bit) unsigned
More available characters and byte sizes can be found here
The advantages are..
You can specify more than one byte and the endian of the values
Disadvantages..
You really need to know the type and length of data your dealing with
You can use the Codecs module in the Python Standard Library, i.e.
import codecs
codecs.decode(hexstring, 'hex_codec')
You should be able to build a string holding the binary data using something like:
data = "fef0babe"
bits = ""
for x in xrange(0, len(data), 2)
bits += chr(int(data[x:x+2], 16))
This is probably not the fastest way (many string appends), but quite simple using only core Python.
A good one liner is:
byte_list = map(ord, hex_string)
This will iterate over each char in the string and run it through the ord() function. Only tested on python 2.6, not too sure about 3.0+.
-Josh
I have a long Hex string that represents a series of values of different types. I need to convert this Hex String into bytes or bytearray so that I can extract each value from the raw data. How can I do this?
For example, the string "ab" should convert to the bytes b"\xab" or equivalent byte array. Longer example:
>>> # what to use in place of `convert` here?
>>> convert("8e71c61de6a2321336184f813379ec6bf4a3fb79e63cd12b")
b'\x8eq\xc6\x1d\xe6\xa22\x136\x18O\x813y\xeck\xf4\xa3\xfby\xe6<\xd1+'
Suppose your hex string is something like
>>> hex_string = "deadbeef"
Convert it to a bytearray (Python 3 and 2.7):
>>> bytearray.fromhex(hex_string)
bytearray(b'\xde\xad\xbe\xef')
Convert it to a bytes object (Python 3):
>>> bytes.fromhex(hex_string)
b'\xde\xad\xbe\xef'
Note that bytes is an immutable version of bytearray.
Convert it to a string (Python ≤ 2.7):
>>> hex_data = hex_string.decode("hex")
>>> hex_data
"\xde\xad\xbe\xef"
There is a built-in function in bytearray that does what you intend.
bytearray.fromhex("de ad be ef 00")
It returns a bytearray and it reads hex strings with or without space separator.
provided I understood correctly, you should look for binascii.unhexlify
import binascii
a='45222e'
s=binascii.unhexlify(a)
b=[ord(x) for x in s]
Assuming you have a byte string like so
"\x12\x45\x00\xAB"
and you know the amount of bytes and their type you can also use this approach
import struct
bytes = '\x12\x45\x00\xAB'
val = struct.unpack('<BBH', bytes)
#val = (18, 69, 43776)
As I specified little endian (using the '<' char) at the start of the format string the function returned the decimal equivalent.
0x12 = 18
0x45 = 69
0xAB00 = 43776
B is equal to one byte (8 bit) unsigned
H is equal to two bytes (16 bit) unsigned
More available characters and byte sizes can be found here
The advantages are..
You can specify more than one byte and the endian of the values
Disadvantages..
You really need to know the type and length of data your dealing with
You can use the Codecs module in the Python Standard Library, i.e.
import codecs
codecs.decode(hexstring, 'hex_codec')
You should be able to build a string holding the binary data using something like:
data = "fef0babe"
bits = ""
for x in xrange(0, len(data), 2)
bits += chr(int(data[x:x+2], 16))
This is probably not the fastest way (many string appends), but quite simple using only core Python.
A good one liner is:
byte_list = map(ord, hex_string)
This will iterate over each char in the string and run it through the ord() function. Only tested on python 2.6, not too sure about 3.0+.
-Josh
I am currently using an Arduino that's outputting some integers (int) through Serial (using pySerial) to a Python script that I'm writing for the Arduino to communicate with X-Plane, a flight simulation program.
I managed to separate the original into two bytes so that I could send it over to the script, but I'm having a little trouble reconstructing the original integer.
I tried using basic bitwise operators (<<, >> etc.) as I would have done in a C++like program, but it does not seem to be working.
I suspect it has to do with data types. I may be using integers with bytes in the same operations, but I can't really tell which type each variable holds, since you don't really declare variables in Python, as far as I know (I'm very new to Python).
self.pot=self.myline[2]<<8
self.pot|=self.myline[3]
You can use the struct module to convert between integers and representation as bytes. In your case, to convert from a Python integer to two bytes and back, you'd use:
>>> import struct
>>> struct.pack('>H', 12345)
'09'
>>> struct.unpack('>H', '09')
(12345,)
The first argument to struct.pack and struct.unpack represent how you want you data to be formatted. Here, I ask for it to be in big-ending mode by using the > prefix (you can use < for little-endian, or = for native) and then I say there is a single unsigned short (16-bits integer) represented by the H.
Other possibilities are b for a signed byte, B for an unsigned byte, h for a signed short (16-bits), i for a signed 32-bits integer, I for an unsigned 32-bits integer. You can get the complete list by looking at the documentation of the struct module.
For example, using Big Endian encoding:
int.from_bytes(my_bytes, byteorder='big')
What you have seems basically like it should work, assuming the data stored in myline has the high byte first:
myline = [0, 1, 2, 3]
pot = myline[2]<<8 | myline[3]
print 'pot: {:d}, 0x{:04x}'.format(pot, pot) # outputs "pot: 515, 0x0203"
Otherwise, if it's low-byte first you'd need to do the opposite way:
myline = [0, 1, 2, 3]
pot = myline[3]<<8 | myline[2]
print 'pot: {:d}, 0x{:04x}'.format(pot, pot) # outputs "pot: 770, 0x0302"
This totally works:
long = 500
first = long & 0xff #244
second = long >> 8 #1
result = (second << 8) + first #500
If you are not sure of types in 'myline' please check Stack Overflow question How to determine the variable type in Python?.
To convert a byte or char to the number it represents, use ord(). Here's a simple round trip from an int to bytes and back:
>>> number = 3**9
>>> hibyte = chr(number / 256)
>>> lobyte = chr(number % 256)
>>> hibyte, lobyte
('L', '\xe3')
>>> print number == (ord(hibyte) << 8) + ord(lobyte)
True
If your myline variable is string or bytestring, you can use the formula in the last line above. If it somehow is a list of integers, then of course you don't need ord.