matplotlib.pyplot: set distance for axis units - python

import numpy as np
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.plot(x,y)
plt.xticks(np.arange(min(x), max(x)+1, 1))
plt.show()
shows
But if I set unit to 0.5:
plt.xticks(np.arange(min(x), max(x)+1, 0.5)) shows
x-axis is hardly readable.
Is there a way to set distance for every x-axis unit so it could extend the plot automatically (on x direction)?

This works:
import numpy as np
import matplotlib.pyplot as plt
x = [0,5,9,10,15]
y = [0,1,2,3,4]
plt.figure(figsize=(20,10))
plt.plot(x,y)
plt.xticks(np.arange(min(x), max(x)+1, 0.5))
plt.show()
Operating on size of the figure does the job. Play with it, find your desired size/ratio etc.

Related

python, matplotlib.pyplot, draw graph without the curve

I am trying to draw a curve without a line (skeleton). I want the axis and grid lines only.
Here is the code.
++++++++++
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["figure.figsize"] = [10.00, 7.00]
plt.rcParams["figure.autolayout"] = True
x = [1.6,2,2.5,3.2,4,5,6.3,8,10,13,16,20,25,32,40,50,63,80,100,130,160,200,250,320,400,500,630,800,1000]
y = range(1,10000,350)#[1,10,100,1000,10000]
# Display grid
plt.grid(True, which="both")
default_x_ticks = range(len(x))
plt.plot(default_x_ticks, y)
plt.yscale('log')
plt.xticks(default_x_ticks, x, rotation=90)
plt.show()
+++++++
Kindly help draw without the curve.
By adding
print(plt.xlim())
print(plt.ylim())
to your code you get the exact axis limits.
These can be used in a second run to create the plot without actually plotting anything:
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams["figure.figsize"] = [10.00, 7.00]
plt.rcParams["figure.autolayout"] = True
x = [1.6,2,2.5,3.2,4,5,6.3,8,10,13,16,20,25,32,40,50,63,80,100,130,160,200,250,320,400,500,630,800,1000]
y = range(1,10000,350)#[1,10,100,1000,10000]
# Display grid
plt.grid(True, which="both")
default_x_ticks = range(len(x))
# plt.plot(default_x_ticks, y)
plt.yscale('log')
plt.xticks(default_x_ticks, x, rotation=90)
plt.xlim(-1.4, 29.4)
plt.ylim(0.6315917965717447, 15517.934294269562)
plt.show()

Matplotlib not plotting all points

I am trying to plot a 3D-Array in matplotlib, but I only see a linear output. The expected output was a 10x10x10 cube.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
points = np.zeros((10, 10, 10))
for x in range(10):
for y in range(10):
for z in range(10):
points[x][y][z] = z
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points[:,0],points[:,1],points[:,2])
plt.show()
OK, you were very, very close. I didn't realize how close until I tried it. The problem you had was that you made points a 3D array where each entry had a value. It needed to be a 2D array, 1000 x 3.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
points = []
for x in range(10):
for y in range(10):
for z in range(10):
points.append((x,y,z))
points = np.array(points)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points[:,0],points[:,1],points[:,2])
plt.show()
You've got a good answer by Tim. However, there are alternatives approaches. For example, there is np.meshgrid() that are often used in your situation to produce and manipulate data. Here is the code to generate array of data and produce sample plot.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
n1 = 10 #number of grid rows/columns
xg, yg = np.meshgrid(np.arange(n1),np.arange(n1))
for i in np.arange(n1):
zg = np.ones(xg.shape) * i
ax.scatter(xg, yg, zg, s=3, c='k')
lim = n1 + 0.1*n1
ax.set_xlim3d(-0.1*n1, lim)
ax.set_ylim3d(-0.1*n1, lim)
ax.set_zlim3d(-0.1*n1, lim)
# set viewing angle
ax.azim = 120 # z rotation (default=270); 160+112
ax.elev = 35 # x rotation (default=0)
ax.dist = 10 # zoom (define perspective)
plt.show()

increase space among number in X axis

I have the following plot:
How can I increase the space among values in X axis with matplotlib?
Thanks!
You can set a log scale and invert the x-axis:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
x = [round(28800 * 2 ** (-i)) for i in range(10)]
y = np.random.randint(0, 80, len(x))
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_xscale('log')
ax.set_xticks(x)
ax.xaxis.set_major_formatter(ScalarFormatter())
ax.invert_xaxis()
plt.show()

Matplotlib: transformation of variables for narrow orbit

I have an annoyingly narrow orbit in phase space that looks like this:
What kind of transformation of the variables can I do to get a nice circular orbit in this case?
My code is this:
import numpy as np
import matplotlib.pylab as plt
x,y = np.loadtxt("data.txt").T
plt.plot(x,y)
plt.show()
The data can be found here - link
I'm not sure if this is what you're after. What you can do is shift one of the two coordinates by the quarter of a circle and normalize to the other coordinate.
import numpy as np
import matplotlib.pylab as plt
x,y = np.loadtxt("data/orbit.txt").T
y = np.roll(y, len(y)//4)
y = (y-y.mean())*((x.max()-x.min())/(y.max()-y.min())) +y.mean()
fig, (ax, ax2) = plt.subplots(ncols=2)
ax.set_aspect("equal")
ax.plot(x,y)
t = np.linspace(0,2*np.pi, len(x))
ax2.plot(t,x-x.mean())
ax2.plot(t,y-y.mean())
plt.show()

Manipulate number of squares in a grid matplotlib

Right now I have a grid in my plots using the option
from matplotlib import pyplot as plt
plt.grid(True)
Because of the nature of my plot, the lines of the grid are at every 500 units in x and every 5 units in y. Is there a way where I can increment the number of horizontal lines (i.e. increment to a line per y unit)?
You can do this with which='minor', but you need to turn on minor ticks first. For example:
import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0,10,100)
y = x**2
plt.plot(x,y)
ax = plt.gca()
minor_ticks = np.arange(0,100,5)
ax.set_yticks(minor_ticks, minor=True)
ax.yaxis.grid(which='minor')
plt.show()

Categories