Related
I would like to replace an object instance by another instance inside a method like this:
class A:
def method1(self):
self = func(self)
The object is retrieved from a database.
It is unlikely that replacing the 'self' variable will accomplish whatever you're trying to do, that couldn't just be accomplished by storing the result of func(self) in a different variable. 'self' is effectively a local variable only defined for the duration of the method call, used to pass in the instance of the class which is being operated upon. Replacing self will not actually replace references to the original instance of the class held by other objects, nor will it create a lasting reference to the new instance which was assigned to it.
As far as I understand, If you are trying to replace the current object with another object of same type (assuming func won't change the object type) from an member function. I think this will achieve that:
class A:
def method1(self):
newObj = func(self)
self.__dict__.update(newObj.__dict__)
It is not a direct answer to the question, but in the posts below there's a solution for what amirouche tried to do:
Python object conversion
Can I dynamically convert an instance of one class to another?
And here's working code sample (Python 3.2.5).
class Men:
def __init__(self, name):
self.name = name
def who_are_you(self):
print("I'm a men! My name is " + self.name)
def cast_to(self, sex, name):
self.__class__ = sex
self.name = name
def method_unique_to_men(self):
print('I made The Matrix')
class Women:
def __init__(self, name):
self.name = name
def who_are_you(self):
print("I'm a women! My name is " + self.name)
def cast_to(self, sex, name):
self.__class__ = sex
self.name = name
def method_unique_to_women(self):
print('I made Cloud Atlas')
men = Men('Larry')
men.who_are_you()
#>>> I'm a men! My name is Larry
men.method_unique_to_men()
#>>> I made The Matrix
men.cast_to(Women, 'Lana')
men.who_are_you()
#>>> I'm a women! My name is Lana
men.method_unique_to_women()
#>>> I made Cloud Atlas
Note the self.__class__ and not self.__class__.__name__. I.e. this technique not only replaces class name, but actually converts an instance of a class (at least both of them have same id()). Also, 1) I don't know whether it is "safe to replace a self object by another object of the same type in [an object own] method"; 2) it works with different types of objects, not only with ones that are of the same type; 3) it works not exactly like amirouche wanted: you can't init class like Class(args), only Class() (I'm not a pro and can't answer why it's like this).
Yes, all that will happen is that you won't be able to reference the current instance of your class A (unless you set another variable to self before you change it.) I wouldn't recommend it though, it makes for less readable code.
Note that you're only changing a variable, just like any other. Doing self = 123 is the same as doing abc = 123. self is only a reference to the current instance within the method. You can't change your instance by setting self.
What func(self) should do is to change the variables of your instance:
def func(obj):
obj.var_a = 123
obj.var_b = 'abc'
Then do this:
class A:
def method1(self):
func(self) # No need to assign self here
In many cases, a good way to achieve what you want is to call __init__ again. For example:
class MyList(list):
def trim(self,n):
self.__init__(self[:-n])
x = MyList([1,2,3,4])
x.trim(2)
assert type(x) == MyList
assert x == [1,2]
Note that this comes with a few assumptions such as the all that you want to change about the object being set in __init__. Also beware that this could cause problems with inheriting classes that redefine __init__ in an incompatible manner.
Yes, there is nothing wrong with this. Haters gonna hate. (Looking at you Pycharm with your in most cases imaginable, there's no point in such reassignment and it indicates an error).
A situation where you could do this is:
some_method(self, ...):
...
if(some_condition):
self = self.some_other_method()
...
return ...
Sure, you could start the method body by reassigning self to some other variable, but if you wouldn't normally do that with other parametres, why do it with self?
One can use the self assignment in a method, to change the class of instance to a derived class.
Of course one could assign it to a new object, but then the use of the new object ripples through the rest of code in the method. Reassiging it to self, leaves the rest of the method untouched.
class aclass:
def methodA(self):
...
if condition:
self = replace_by_derived(self)
# self is now referencing to an instance of a derived class
# with probably the same values for its data attributes
# all code here remains untouched
...
self.methodB() # calls the methodB of derivedclass is condition is True
...
def methodB(self):
# methodB of class aclass
...
class derivedclass(aclass):
def methodB(self):
#methodB of class derivedclass
...
But apart from such a special use case, I don't see any advantages to replace self.
You can make the instance a singleton element of the class
and mark the methods with #classmethod.
from enum import IntEnum
from collections import namedtuple
class kind(IntEnum):
circle = 1
square = 2
def attr(y): return [getattr(y, x) for x in 'k l b u r'.split()]
class Shape(namedtuple('Shape', 'k,l,b,u,r')):
self = None
#classmethod
def __repr__(cls):
return "<Shape({},{},{},{},{}) object at {}>".format(
*(attr(cls.self)+[id(cls.self)]))
#classmethod
def transform(cls, func):
cls.self = cls.self._replace(**func(cls.self))
Shape.self = Shape(k=1, l=2, b=3, u=4, r=5)
s = Shape.self
def nextkind(self):
return {'k': self.k+1}
print(repr(s)) # <Shape(1,2,3,4,5) object at 139766656561792>
s.transform(nextkind)
print(repr(s)) # <Shape(2,2,3,4,5) object at 139766656561888>
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
Newcomer to Python, I had this issue when I was using the Python's ** feature in a wrong way. Trying to call this definition from somewhere:
def create_properties_frame(self, parent, **kwargs):
using a call without a double star was causing the problem:
self.create_properties_frame(frame, kw_gsp)
TypeError: create_properties_frame() takes 2 positional arguments but 3 were given
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()
If I have a class ...
class MyClass:
def method(arg):
print(arg)
... which I use to create an object ...
my_object = MyClass()
... on which I call method("foo") like so ...
>>> my_object.method("foo")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method() takes exactly 1 positional argument (2 given)
... why does Python tell me I gave it two arguments, when I only gave one?
In Python, this:
my_object.method("foo")
... is syntactic sugar, which the interpreter translates behind the scenes into:
MyClass.method(my_object, "foo")
... which, as you can see, does indeed have two arguments - it's just that the first one is implicit, from the point of view of the caller.
This is because most methods do some work with the object they're called on, so there needs to be some way for that object to be referred to inside the method. By convention, this first argument is called self inside the method definition:
class MyNewClass:
def method(self, arg):
print(self)
print(arg)
If you call method("foo") on an instance of MyNewClass, it works as expected:
>>> my_new_object = MyNewClass()
>>> my_new_object.method("foo")
<__main__.MyNewClass object at 0x29045d0>
foo
Occasionally (but not often), you really don't care about the object that your method is bound to, and in that circumstance, you can decorate the method with the builtin staticmethod() function to say so:
class MyOtherClass:
#staticmethod
def method(arg):
print(arg)
... in which case you don't need to add a self argument to the method definition, and it still works:
>>> my_other_object = MyOtherClass()
>>> my_other_object.method("foo")
foo
In simple words
In Python you should add self as the first parameter to all defined methods in classes:
class MyClass:
def method(self, arg):
print(arg)
Then you can use your method according to your intuition:
>>> my_object = MyClass()
>>> my_object.method("foo")
foo
For a better understanding, you can also read the answers to this question: What is the purpose of self?
Something else to consider when this type of error is encountered:
I was running into this error message and found this post helpful. Turns out in my case I had overridden an __init__() where there was object inheritance.
The inherited example is rather long, so I'll skip to a more simple example that doesn't use inheritance:
class MyBadInitClass:
def ___init__(self, name):
self.name = name
def name_foo(self, arg):
print(self)
print(arg)
print("My name is", self.name)
class MyNewClass:
def new_foo(self, arg):
print(self)
print(arg)
my_new_object = MyNewClass()
my_new_object.new_foo("NewFoo")
my_bad_init_object = MyBadInitClass(name="Test Name")
my_bad_init_object.name_foo("name foo")
Result is:
<__main__.MyNewClass object at 0x033C48D0>
NewFoo
Traceback (most recent call last):
File "C:/Users/Orange/PycharmProjects/Chapter9/bad_init_example.py", line 41, in <module>
my_bad_init_object = MyBadInitClass(name="Test Name")
TypeError: object() takes no parameters
PyCharm didn't catch this typo. Nor did Notepad++ (other editors/IDE's might).
Granted, this is a "takes no parameters" TypeError, it isn't much different than "got two" when expecting one, in terms of object initialization in Python.
Addressing the topic: An overloading initializer will be used if syntactically correct, but if not it will be ignored and the built-in used instead. The object won't expect/handle this and the error is thrown.
In the case of the sytax error: The fix is simple, just edit the custom init statement:
def __init__(self, name):
self.name = name
Newcomer to Python, I had this issue when I was using the Python's ** feature in a wrong way. Trying to call this definition from somewhere:
def create_properties_frame(self, parent, **kwargs):
using a call without a double star was causing the problem:
self.create_properties_frame(frame, kw_gsp)
TypeError: create_properties_frame() takes 2 positional arguments but 3 were given
The solution is to add ** to the argument:
self.create_properties_frame(frame, **kw_gsp)
As mentioned in other answers - when you use an instance method you need to pass self as the first argument - this is the source of the error.
With addition to that,it is important to understand that only instance methods take self as the first argument in order to refer to the instance.
In case the method is Static you don't pass self, but a cls argument instead (or class_).
Please see an example below.
class City:
country = "USA" # This is a class level attribute which will be shared across all instances (and not created PER instance)
def __init__(self, name, location, population):
self.name = name
self.location = location
self.population = population
# This is an instance method which takes self as the first argument to refer to the instance
def print_population(self, some_nice_sentence_prefix):
print(some_nice_sentence_prefix +" In " +self.name + " lives " +self.population + " people!")
# This is a static (class) method which is marked with the #classmethod attribute
# All class methods must take a class argument as first param. The convention is to name is "cls" but class_ is also ok
#classmethod
def change_country(cls, new_country):
cls.country = new_country
Some tests just to make things more clear:
# Populate objects
city1 = City("New York", "East", "18,804,000")
city2 = City("Los Angeles", "West", "10,118,800")
#1) Use the instance method: No need to pass "self" - it is passed as the city1 instance
city1.print_population("Did You Know?") # Prints: Did You Know? In New York lives 18,804,000 people!
#2.A) Use the static method in the object
city2.change_country("Canada")
#2.B) Will be reflected in all objects
print("city1.country=",city1.country) # Prints Canada
print("city2.country=",city2.country) # Prints Canada
It occurs when you don't specify the no of parameters the __init__() or any other method looking for.
For example:
class Dog:
def __init__(self):
print("IN INIT METHOD")
def __unicode__(self,):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
When you run the above programme, it gives you an error like that:
TypeError: __init__() takes 1 positional argument but 6 were given
How we can get rid of this thing?
Just pass the parameters, what __init__() method looking for
class Dog:
def __init__(self, dogname, dob_d, dob_m, dob_y, dogSpeakText):
self.name_of_dog = dogname
self.date_of_birth = dob_d
self.month_of_birth = dob_m
self.year_of_birth = dob_y
self.sound_it_make = dogSpeakText
def __unicode__(self, ):
print("IN UNICODE METHOD")
def __str__(self):
print("IN STR METHOD")
obj = Dog("JIMMY", 1, 2, 3, "WOOF")
print(id(obj))
If you want to call method without creating object, you can change method to static method.
class MyClass:
#staticmethod
def method(arg):
print(arg)
MyClass.method("i am a static method")
I get this error when I'm sleep-deprived, and create a class using def instead of class:
def MyClass():
def __init__(self, x):
self.x = x
a = MyClass(3)
-> TypeError: MyClass() takes 0 positional arguments but 1 was given
You should actually create a class:
class accum:
def __init__(self):
self.acc = 0
def accumulator(self, var2add, end):
if not end:
self.acc+=var2add
return self.acc
In my case, I forgot to add the ()
I was calling the method like this
obj = className.myMethod
But it should be is like this
obj = className.myMethod()
I have many Questions !
look at this code plz:
class Dog(object):
_the_most_oldest = int()
def __init__(self,age):
self.age=age
#staticmethod
#property
def the_most_oldest(age):
if Dog._the_most_oldest < age:
Dog._the_most_oldest=age
return Dog._the_most_oldest
1 :
is it maybe that a property be a static method ??
beacuse I need a really static var that share between instances -> _the_most_oldest dog ! => so I need #property . and because the_most_oldest(age) method is not for any special instance I need #staticmethod !
2 :
the second thing I need to do is in every instace the_most_oldest shuold be call and calculate and refresh _the_most_oldest var. how do that ?
this have Error :
def __init__(self,age):
self.age=age
the_most_oldest(self.age)
No, property can not be static method (it's not a method it's descriptor).
Create class attribute which will hold all instances of that class.
class Dog(object):
_dogs = []
And put new instances in the _dogs class attribute.
def __init__(self, age):
self._dogs.append(self)
self.age = age
And then create classmethod the_most_oldest. Which will calculate the most oldest dog of all instances.
#classmethod
def the_most_oldest(cls):
return max(cls._dogs, key=lambda dog: dog.age)
In your place I would initialize _the_most_oldest = 0 (and maybe call it _the_oldest, better english)
A #staticmethod in Python is just a function "contained in a class" in your case I think it would be better to use #classmethod.
If you want to assign a value to a property you can not use the decorator, you need to pass a setter and a getter method.
def _get_oldest(self):
return self._the_oldest
def _set_oldest(self, age):
if Dog._the_oldest < age:
Dog._the_oldest=age
the_oldest = property(_get_oldest, _set_oldest)
When creating a simple object hierarchy in Python, I'd like to be able to invoke methods of the parent class from a derived class. In Perl and Java, there is a keyword for this (super). In Perl, I might do this:
package Foo;
sub frotz {
return "Bamf";
}
package Bar;
#ISA = qw(Foo);
sub frotz {
my $str = SUPER::frotz();
return uc($str);
}
In Python, it appears that I have to name the parent class explicitly from the child.
In the example above, I'd have to do something like Foo::frotz().
This doesn't seem right since this behavior makes it hard to make deep hierarchies. If children need to know what class defined an inherited method, then all sorts of information pain is created.
Is this an actual limitation in python, a gap in my understanding or both?
Use the super() function:
class Foo(Bar):
def baz(self, **kwargs):
return super().baz(**kwargs)
For Python < 3, you must explicitly opt in to using new-style classes and use:
class Foo(Bar):
def baz(self, arg):
return super(Foo, self).baz(arg)
Python also has super as well:
super(type[, object-or-type])
Return a proxy object that delegates method calls to a parent or sibling class of type.
This is useful for accessing inherited methods that have been overridden in a class.
The search order is same as that used by getattr() except that the type itself is skipped.
Example:
class A(object): # deriving from 'object' declares A as a 'new-style-class'
def foo(self):
print "foo"
class B(A):
def foo(self):
super(B, self).foo() # calls 'A.foo()'
myB = B()
myB.foo()
ImmediateParentClass.frotz(self)
will be just fine, whether the immediate parent class defined frotz itself or inherited it. super is only needed for proper support of multiple inheritance (and then it only works if every class uses it properly). In general, AnyClass.whatever is going to look up whatever in AnyClass's ancestors if AnyClass doesn't define/override it, and this holds true for "child class calling parent's method" as for any other occurrence!
Python 3 has a different and simpler syntax for calling parent method.
If Foo class inherits from Bar, then from Bar.__init__ can be invoked from Foo via super().__init__():
class Foo(Bar):
def __init__(self, *args, **kwargs):
# invoke Bar.__init__
super().__init__(*args, **kwargs)
Many answers have explained how to call a method from the parent which has been overridden in the child.
However
"how do you call a parent class's method from child class?"
could also just mean:
"how do you call inherited methods?"
You can call methods inherited from a parent class just as if they were methods of the child class, as long as they haven't been overwritten.
e.g. in python 3:
class A():
def bar(self, string):
print("Hi, I'm bar, inherited from A"+string)
class B(A):
def baz(self):
self.bar(" - called by baz in B")
B().baz() # prints out "Hi, I'm bar, inherited from A - called by baz in B"
yes, this may be fairly obvious, but I feel that without pointing this out people may leave this thread with the impression you have to jump through ridiculous hoops just to access inherited methods in python. Especially as this question rates highly in searches for "how to access a parent class's method in Python", and the OP is written from the perspective of someone new to python.
I found:
https://docs.python.org/3/tutorial/classes.html#inheritance
to be useful in understanding how you access inherited methods.
Here is an example of using super():
#New-style classes inherit from object, or from another new-style class
class Dog(object):
name = ''
moves = []
def __init__(self, name):
self.name = name
def moves_setup(self):
self.moves.append('walk')
self.moves.append('run')
def get_moves(self):
return self.moves
class Superdog(Dog):
#Let's try to append new fly ability to our Superdog
def moves_setup(self):
#Set default moves by calling method of parent class
super(Superdog, self).moves_setup()
self.moves.append('fly')
dog = Superdog('Freddy')
print dog.name # Freddy
dog.moves_setup()
print dog.get_moves() # ['walk', 'run', 'fly'].
#As you can see our Superdog has all moves defined in the base Dog class
There's a super() in Python too. It's a bit wonky, because of Python's old- and new-style classes, but is quite commonly used e.g. in constructors:
class Foo(Bar):
def __init__(self):
super(Foo, self).__init__()
self.baz = 5
I would recommend using CLASS.__bases__
something like this
class A:
def __init__(self):
print "I am Class %s"%self.__class__.__name__
for parentClass in self.__class__.__bases__:
print " I am inherited from:",parentClass.__name__
#parentClass.foo(self) <- call parents function with self as first param
class B(A):pass
class C(B):pass
a,b,c = A(),B(),C()
If you don't know how many arguments you might get, and want to pass them all through to the child as well:
class Foo(bar)
def baz(self, arg, *args, **kwargs):
# ... Do your thing
return super(Foo, self).baz(arg, *args, **kwargs)
(From: Python - Cleanest way to override __init__ where an optional kwarg must be used after the super() call?)
There is a super() in python also.
Example for how a super class method is called from a sub class method
class Dog(object):
name = ''
moves = []
def __init__(self, name):
self.name = name
def moves_setup(self,x):
self.moves.append('walk')
self.moves.append('run')
self.moves.append(x)
def get_moves(self):
return self.moves
class Superdog(Dog):
#Let's try to append new fly ability to our Superdog
def moves_setup(self):
#Set default moves by calling method of parent class
super().moves_setup("hello world")
self.moves.append('fly')
dog = Superdog('Freddy')
print (dog.name)
dog.moves_setup()
print (dog.get_moves())
This example is similar to the one explained above.However there is one difference that super doesn't have any arguments passed to it.This above code is executable in python 3.4 version.
In this example cafec_param is a base class (parent class) and abc is a child class. abc calls the AWC method in the base class.
class cafec_param:
def __init__(self,precip,pe,awc,nmonths):
self.precip = precip
self.pe = pe
self.awc = awc
self.nmonths = nmonths
def AWC(self):
if self.awc<254:
Ss = self.awc
Su = 0
self.Ss=Ss
else:
Ss = 254; Su = self.awc-254
self.Ss=Ss + Su
AWC = Ss + Su
return self.Ss
def test(self):
return self.Ss
#return self.Ss*4
class abc(cafec_param):
def rr(self):
return self.AWC()
ee=cafec_param('re',34,56,2)
dd=abc('re',34,56,2)
print(dd.rr())
print(ee.AWC())
print(ee.test())
Output
56
56
56
In Python 2, I didn't have a lot luck with super(). I used the answer from
jimifiki on this SO thread how to refer to a parent method in python?.
Then, I added my own little twist to it, which I think is an improvement in usability (Especially if you have long class names).
Define the base class in one module:
# myA.py
class A():
def foo( self ):
print "foo"
Then import the class into another modules as parent:
# myB.py
from myA import A as parent
class B( parent ):
def foo( self ):
parent.foo( self ) # calls 'A.foo()'
class department:
campus_name="attock"
def printer(self):
print(self.campus_name)
class CS_dept(department):
def overr_CS(self):
department.printer(self)
print("i am child class1")
c=CS_dept()
c.overr_CS()
If you want to call the method of any class, you can simply call Class.method on any instance of the class. If your inheritance is relatively clean, this will work on instances of a child class too:
class Foo:
def __init__(self, var):
self.var = var
def baz(self):
return self.var
class Bar(Foo):
pass
bar = Bar(1)
assert Foo.baz(bar) == 1
class a(object):
def my_hello(self):
print "hello ravi"
class b(a):
def my_hello(self):
super(b,self).my_hello()
print "hi"
obj = b()
obj.my_hello()
This is a more abstract method:
super(self.__class__,self).baz(arg)