Alternative to opencv warpPerspective - python

I am using opencv warpPerspective() function to warp the found countour in the image to find contour i am using findContours().
This is shown in this image:
but the warpPerspective() function takes "more time" to warp to full image is there any alternative to this function to warp the object in image to full image as shown in figure.
OR will traversing help?but this would be difficult to do so that i can reduce the time the warpPerspective() function takes.

You can try to work on rotation and translation matrices (or roto-translational matrix, a combination of both), which can warp image as you wish. The function warpPerspective() utilizes similar approach, so you will basically will have an opportunity to look inside the function.
The approach is:
You calculate the matrix, then multiply the height and width of
the original image to find dimensions of the output image.
Go through all pixels in the original image and multiply their
(x,y) coordinates to the matrix R
(rotation/translation/roto-translation matrix) to get the
coordinates on the output image (xo,yo).
On every calculated coordinate (xo,yo) assign value from the
corresponding original image coordinate (x,y).
Interpolate using median filter/bilinear/bicubic/etc. method as
sometimes there may be empty points left on the output image
However, if you work in Python your implementation may work even slower than warpPerspective(), so you may consider C++. Another thing is that OpenCV uses C++ compiler and I am pretty sure that implementation of warpPerspective() in OpenCV is very efficient.
So, I think that you can go around warpPerspective(), however, I am not sure if you can do it faster than in OpenCV without any boosts (like GPU, powerful CPU etc.) :)
Good luck!

Related

Is there an alternative to cv2.resize() in OpenCV for downscaling images?

I'm using OpenCV with Python to process images for AI training. I need to scale the images down to 32×32 pixels, but with cv2.resize() the images come out too noisy. It looks like this function takes the value of a single pixel from each region of the image, but I need an average value of each region so that the images are less noisy. Is there an alternative to cv2.resize()? I could just write my own function but I don't think it would be very fast.
As you can see in the cv2.resize documentation, the last parameter interpolation determines the way the image is resampled.
See also the possible values for it.
The default is cv2.INTER_LINEAR meaning a linear interpolation. It can create a blurred/noisy effect when the image is downsampled.
You can try to use other interpolation methods to see if the result is better suited for your needs.
Sepcifically I recommend you to try the cv2.INTER_NEAREST option. It will determine the destination pixel value based on the color of the nearest pixel in the source. The downsampled image should be pixellated, but not blurred.
Another option is cv2.INTER_AREA as mentioned in #fmw42's comment.

Rotate 4x4 image patch by multiples of 15 degrees

I want to find an efficient way to rotate a 4x4 image patches from a larger image by angles that are multiples of 15. I am currently extracting a 6x6 patch e.g. patch=img[x-3:x+3,y-3:y+3] and then running scipy.ndimage.interpolation.rotate(patch,-15*o,reshape=False)[1:5,1:5]. However, I essentially need to do this at ever location (x,y) in the image. I have a "stacked" version of the image with an array of size (m,n,6,6) where m and n are the dimensions of the original image. Even if run interpolation.rotate on the stacked version, it looks like it internally simply does it iteratively and it takes a long time.
Since I only need to do this at fixed angles, I am trying to pre-compute some constants and vectorize the implementation so that I can process them all at once. I have tried digging into the implementation of SciPy rotate but it did not help much.
Is there a sensible way to do this?

Stitching four images with OpenCV + Python

Goal:
For the past two weeks I've been trying to figure out how to convert the following image:
To one that looks like this (may not match exactly, as this image was taken at a different time):
Lens Correction (necessary?):
The first thing I noticed is that simply slicing the image and overlaying the four parts wouldn't work perfectly, as the curvature of certain lines does not match. For instance, the mid-court line bends left in the second slice and bends right in the third slice. This bending looks like a barrel distortion so I tried using both a parameterized lens correction function (passing k1, k2, and k3 to OpenCV) and using lensfun. Since the lensfun database does not include my camera make or model (it's an AXIS camera) and I do not know the make or model of the lens (it's manufactured as part of the camera), I wrote a small script to dump test images using various lenses with various parameters, then skimmed through the thousands of output images until I found one that looked like it had relatively straight lines:
This correction was done using the "Samyang 12mm f/2.8 Fish-Eye ED AS NCS" lens with a "Canon EOS 10D" camera in lensfun. It's probably not perfect, but I figured it was close enough to move on to step two.
Once the lens distortion was corrected, the second issue is that the same line in two slices was pointing in different directions, which should be corrected with a simple perspective transform. So I began a long quest to figure out the proper parameters for this perspective transform.
Failed Attempts:
1. Using SciPy
I started by writing a cost function to judge the "quality" of a given set of parameters (overlapped pixels should match) and applying SciPy's solver to figure it out. I made several tweaks to my cost function (applying a Gaussian blur, scaling down the image, gray scaling the image, using the Sobel operator to get a gradient, looking only at the pixels on either side of a "seam" after overlapping instead of the whole overlap region, etc) but it always failed to find a good solution. The results looked worse than the original camera image most of the time:
2. Using math
When that failed I tried applying math to compute the proper perspective transform. I know the FOV of the camera (from the spec sheet), I know the image width and height, I know the sensor size (from the spec sheet), and using a protractor I measured the angles between the lenses. Using the pinhole model I then calculated the expected (x,y) values of points on the image plane and what transform would be necessary to correct them. The results looked better than SciPy, but were still dismal.
3. Using OpenCV's Stitcher
After this I tried using OpenCV's built-in Stitcher class. However it failed to stitch together slices 2 and 3 due to insufficient overlap between the images (and about 10% of the time it even failed to stitch together slices 1 and 2, presumably because of the non-deterministic nature of RANSAC). Even when it did succeed, the stitch wasn't that great:
4. Using ORB and OpenCV's findHomography
Most recently I tried using ORB with a mask (only looking for features in the overlap region) and OpenCV's findHomography function to create a custom version of the Stitcher. While the matches seemed promising, the resulting stitch was still sub-optimal:
I'm beginning to suspect that my methodology (slice -> lens correct -> perspective transform -> overlay) is flawed and there's a better way to do this.
5. Updated ORB / findHomography
I updated my feature detection to eliminate any matches where the Y coordinates differed drastically (e.g. matching the white of the table to the white of the lights). After doing this my number of matched features fell from ~110 to ~55, but the homography was improved significantly. Here's the stitch that results for slices 1/2 and 2/3 with the update:
Until someone can tell me that I'm going about this all wrong, I'm going to keep pursuing this strategy with the following added step:
Slice image
Lens correct each slice
Perspective transform slice 2 or 3 so that the side line is horizontal and the mid-court line is vertical
Use ORB + match filtering + findHomography to iteratively align and then stitch adjacent slices
Ultimately when it's all said and done I want to try and compute a mapping from input pixels to output pixels so that we're not doing all of this complex work (lens correction, ORB, findHomography, etc) per-frame. We'll do it once per camera, save the mapping to a file somewhere, then we can in real-time map the input video to an output video frame-by-frame using cv2.remap
Note:
The second image I posted showing the "expected output" comes directly from the camera in question. It can be configured to return the first image at 30 fps, or the second image at 10 fps. We wish to perform the stitching off-camera on a more powerful computer so we can get 30 fps but still have the single image.
AXIS provides an SDK for doing the stitching off-camera, but this SDK is Windows-only and most of our tech stack is Linux and most of our development machines are Mac OS. I have used a Windows computer to try and look into the stitching SDK they provide, however I had no luck getting it to compile and run. Their sample code kept throwing errors and I've never had any luck getting Visual Studio or C++ to play nicely for me.
My suggestion is to train an autoencoder. Use the first image as input and the second one as an output, as in a denoising autoencoder:
Note that you may lose resolution if you create a botteleneck too small in the middle layer.
Also, Variational autoencoders present a latent vector but work following the same principle.
You can adapt this code:
denoise = Sequential()
denoise.add(Convolution2D(20, 3,3,
border_mode='valid',
input_shape=input_shape))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(UpSampling2D(size=(2, 2)))
denoise.add(Convolution2D(20, 3, 3,
init='glorot_uniform'))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(Convolution2D(20, 3, 3,init='glorot_uniform'))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(MaxPooling2D(pool_size=(3,3)))
denoise.add(Convolution2D(4, 3, 3,init='glorot_uniform'))
denoise.add(BatchNormalization(mode=2))
denoise.add(Activation('relu'))
denoise.add(Reshape((28,28,1)))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False)
denoise.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['accuracy'])
denoise.summary()
denoise.fit(x_train_noisy, x_train,
nb_epoch=50,
batch_size=30,verbose=1)

How does the Image Registration/alignment and transformation work on the pixel level?

I know the basic flow or process of the Image Registration/Alignment but what happens at the pixel level when 2 images are registered/aligned i.e. similar pixels of moving image which is transformed to the fixed image are kept intact but what happens to the pixels which are not matched, are they averaged or something else?
And how the correct transformation technique is estimated i.e. how will I know that whether to apply translation, scaling, rotation, etc and how much(i.e. what value of degrees for rotation, values for translation, etc.) to apply?
Also, in the initial step how the similar pixel values are identified and matched?
I've implemented the python code given in https://simpleitk.readthedocs.io/en/master/Examples/ImageRegistrationMethod1/Documentation.html
Input images are of prostate MRI scans:
Fixed Image Moving Image Output Image Console output
The difference can be seen in the output image on the top right and top left. But I can't interpret the console output and how the things actually work internally.
It'll be very helpful if I get a deep explanation of this thing. Thank you.
A transformation is applied to all pixels. You might be confusing rigid transformations, which will only translate, rotate and scale your moving image to match the fixed image, with elastic transformations, which will also allow some morphing of the moving image.
Any pixel that a transformation cannot place in the fixed image is interpolated from the pixels that it is able to place, though a registration is not really intelligent.
What it attempts to do is simply reduce a cost function, where a high cost is associated with a large difference and a low cost is associated with a small difference. Cost functions can be intensity based (pixel values) or feature based (shapes). It will (semi-)randomly shift the image around untill a preset criteria is met, generally a maximum amount of iterations.
What that might look like can be seen in the following gif:
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/registration_visualization.gif

opencv: reprojectImageTo3d what is the metric unit of the (X,Y,Z) point?

firstly, I wanted to know the metric unit of the 3d point we got from the opencv reprojectImageTo3D() function.
secondly, I have calibrated each camera individually with a chessboard with "mm" as metric unit and then use the opencv functions to calibrate the stereo system, rectify the stereo pair and then compute the disparity map.
Basically i want the distance of a center of a bounding box.
so i compute the disparity map and reproject it to 3D with the reprojectImageTo3D() function and then i take from those 3D points, the one which correspond to the center of the bbox (x, y).
But which image should i use to get the center of bbox? the rectified or the original?
Secondly, is it better to use the same camera model for a stereo system?
Thank you
During the calibration process (calibrateCamera) you have to give the points grid of your calibration target. The unit that you give there will then define the unit for the rest of the process.
When calling reprojectImageTo3D, you probably used the matrix Q output by stereoRectify, which takes in the individual calibrations (cameraMatrix1, cameraMatrix2). That's where the unit came from.
So in your case you get mm I guess.
reprojectImageTo3D has to use the rectified image, since the disparity is calculated using the rectified image (It wouldn't be properly aligned otherwise). Also, when calculating the disparity, it is calculated relative to the first image given (left one in the doc). So you should use the left rectified image if you computed the disparity like this: cv::StereoMatcher::compute(left, right)
I never had two different cameras, but it makes sense to use the same ones. I think that if you have very different color images, edges or any image difference, that could potentially influence the disparity quality.
What is actually very important (unless you are only working with still pictures), is to use cameras that can be synchronized by hardware (e.g. GENLOCK signal: https://en.wikipedia.org/wiki/Genlock). If you have a bit of delay between left and right and a moving subject, the disparity can be wrong. This is also true for the calibration.
Hope this helps!

Categories