Highlighting multiple hex_tiles by hovering in bokeh - python

I try to visualize my data in a hex map. For this I use python bokeh and the corresponding hex_tile function in the figure class. My data belongs to one of 8 different classes, each having a different color. The image below shows the current visualization:
I would like to add the possibility to change the color of the element (and ideally all its class members) when the mouse hovers over it.
I know, that it is somewhat possible, as bokeh themselves provide the following example:
https://docs.bokeh.org/en/latest/docs/gallery/hexbin.html
However, I do not know how to implement this myself (as this seems to be a feature for the hexbin function and not the simple hex_tile function)
Currently I provide my data in a ColumnDataSource:
source = ColumnDataSource(data=dict(
r=x_row,
q=y_col,
color=colors_array,
ipc_class=ipc_array
))
where "ipc_class" describes one of the 8 classes the element belongs to.
For the mouse hover tooltip I used the following code:
TOOLTIPS = [
("index", "$index"),
("(r,q)", "(#r, #q)"),
("ipc_class", "#ipc_class")
]
and then I visualized everything with:
p = figure(plot_width=1600, plot_height=1000, title="Ipc to Hexes with colors", match_aspect=True,
tools="wheel_zoom,reset,pan", background_fill_color='#440154', tooltips=TOOLTIPS)
p.grid.visible = False
p.hex_tile('q', 'r', source=source, fill_color='color')
I would like the visualization to add a function, where hovering over one element will result in one of the following:
1. Highlight the current element by changing its color
2. Highlight multiple elements of the same class when one is hovered over by changing its color
3. Change the color of the outer line of the hex_tile element (or complete class) when the element is hovered over
Which of these features is possible with bokeh and how would I go about it?
EDIT:
After trying to reimplement the suggestion by Tony, all elements will turn pink as soon as my mouse hits the graph and the color won´t turn back. My code looks like this:
source = ColumnDataSource(data=dict(
x=x_row,
y=y_col,
color=colors_array,
ipc_class=ipc_array
))
p = figure(plot_width=800, plot_height=800, title="Ipc to Square with colors", match_aspect=True,
tools="wheel_zoom,reset,pan", background_fill_color='#440154')
p.grid.visible = False
p.hex_tile('x', 'y', source=source, fill_color='color')
###################################
code = '''
for (i in cb_data.renderer.data_source.data['color'])
cb_data.renderer.data_source.data['color'][i] = colors[i];
if (cb_data.index.indices != null) {
hovered_index = cb_data.index.indices[0];
hovered_color = cb_data.renderer.data_source.data['color'][hovered_index];
for (i = 0; i < cb_data.renderer.data_source.data['color'].length; i++) {
if (cb_data.renderer.data_source.data['color'][i] == hovered_color)
cb_data.renderer.data_source.data['color'][i] = 'pink';
}
}
cb_data.renderer.data_source.change.emit();
'''
TOOLTIPS = [
("index", "$index"),
("(x,y)", "(#x, #y)"),
("ipc_class", "#ipc_class")
]
callback = CustomJS(args=dict(colors=colors), code=code)
hover = HoverTool(tooltips=TOOLTIPS, callback=callback)
p.add_tools(hover)
########################################
output_file("hexbin.html")
show(p)
basically, I removed the tooltips from the figure function and put them down to the hover tool. As I already have red in my graph, I replaced the hover color to "pink". As I am not quite sure what each line in the "code" variable is supposed to do, I am quite helpless with this. I think one mistake may be, that my ColumnDataSource looks somewhat different from Tony's and I do not know what was done to "classifiy" the first and third element, as well as the second and fourth element together. For me, it would be perfect, if the classification would be done by the "ipc_class" variable.

Following the discussion from previous post here comes the solution targeted for the OP code (Bokeh v1.1.0). What I did is:
1) Added a HoverTool
2) Added a JS callback to the HoverTool which:
Resets the hex colors to the original ones (colors_array passed in the callback)
Inspects the index of currently hovered hex (hovered_index)
Gets the ip_class of currently hovered hex (hovered_ip_class)
Walks through the data_source.data['ip_class'] and finds all hexagons with the same ip_class as the hovered one and sets a new color for it (pink)
Send source.change.emit() signal to the BokehJS to update the model
The code:
from bokeh.plotting import figure, show, output_file
from bokeh.models import ColumnDataSource, CustomJS, HoverTool
colors_array = ["green", "green", "blue", "blue"]
x_row = [0, 1, 2, 3]
y_col = [1, 1, 1, 1]
ipc_array = ['A', 'B', 'A', 'B']
source = ColumnDataSource(data = dict(
x = x_row,
y = y_col,
color = colors_array,
ipc_class = ipc_array
))
p = figure(plot_width = 800, plot_height = 800, title = "Ipc to Square with colors", match_aspect = True,
tools = "wheel_zoom,reset,pan", background_fill_color = '#440154')
p.grid.visible = False
p.hex_tile('x', 'y', source = source, fill_color = 'color')
###################################
code = '''
for (let i in cb_data.renderer.data_source.data['color'])
cb_data.renderer.data_source.data['color'][i] = colors[i];
if (cb_data.index.indices != null) {
const hovered_index = cb_data.index.indices[0];
const hovered_ipc_class = cb_data.renderer.data_source.data['ipc_class'][hovered_index];
for (let i = 0; i < cb_data.renderer.data_source.data['ipc_class'].length; i++) {
if (cb_data.renderer.data_source.data['ipc_class'][i] == hovered_ipc_class)
cb_data.renderer.data_source.data['color'][i] = 'pink';
}
}
cb_data.renderer.data_source.change.emit();
'''
TOOLTIPS = [
("index", "$index"),
("(x,y)", "(#x, #y)"),
("ipc_class", "#ipc_class")
]
callback = CustomJS(args = dict(ipc_array = ipc_array, colors = colors_array), code = code)
hover = HoverTool(tooltips = TOOLTIPS, callback = callback)
p.add_tools(hover)
########################################
output_file("hexbin.html")
show(p)
Result:

Maybe something like this to start with (Bokeh v1.1.0):
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource, CustomJS, HoverTool
colors = ["green", "blue", "green", "blue"]
source = ColumnDataSource(dict(r = [0, 1, 2, 3], q = [1, 1, 1, 1], color = colors))
plot = figure(plot_width = 300, plot_height = 300, match_aspect = True)
plot.hex_tile('r', 'q', fill_color = 'color', source = source)
code = '''
for (i in cb_data.renderer.data_source.data['color'])
cb_data.renderer.data_source.data['color'][i] = colors[i];
if (cb_data.index.indices != null) {
hovered_index = cb_data.index.indices[0];
hovered_color = cb_data.renderer.data_source.data['color'][hovered_index];
for (i = 0; i < cb_data.renderer.data_source.data['color'].length; i++) {
if (cb_data.renderer.data_source.data['color'][i] == hovered_color)
cb_data.renderer.data_source.data['color'][i] = 'red';
}
}
cb_data.renderer.data_source.change.emit();
'''
callback = CustomJS(args = dict(colors = colors), code = code)
hover = HoverTool(tooltips = [('R', '#r')], callback = callback)
plot.add_tools(hover)
show(plot)
Result:

Another approach is to update cb_data.index.indices to include all those indices that have ipc_class in common, and add hover_color="pink" to hex_tile. So in the CustomJS code one would loop the ipc_class column and get the indices that match the ipc_class of the currently hovered item.
In this setup there is not need to update the color column in the data source.
Code below tested used Bokeh version 3.0.2.
from bokeh.plotting import figure, show, output_file
from bokeh.models import ColumnDataSource, CustomJS, HoverTool
colors_array = ["green", "green", "blue", "blue"]
x_row = [0, 1, 2, 3]
y_col = [1, 1, 1, 1]
ipc_array = ['A', 'B', 'A', 'B']
source = ColumnDataSource(data = dict(
x = x_row,
y = y_col,
color = colors_array,
ipc_class = ipc_array
))
plot = figure(
width = 800,
height = 800,
title = "Ipc to Square with colors",
match_aspect = True,
tools = "wheel_zoom,reset,pan",
background_fill_color = '#440154'
)
plot.grid.visible = False
plot.hex_tile(
'x', 'y',
source = source,
fill_color = 'color',
hover_color = 'pink' # Added!
)
code = '''
const hovered_index = cb_data.index.indices;
const src_data = cb_data.renderer.data_source.data;
if (hovered_index.length > 0) {
const hovered_ipc_class = src_data['ipc_class'][hovered_index];
var idx_common_ipc_class = hovered_index;
for (let i = 0; i < src_data['ipc_class'].length; i++) {
if (i === hovered_index[0]) {
continue;
}
if (src_data['ipc_class'][i] === hovered_ipc_class) {
idx_common_ipc_class.push(i);
}
}
cb_data.index.indices = idx_common_ipc_class;
cb_data.renderer.data_source.change.emit();
}
'''
TOOLTIPS = [
("index", "$index"),
("(x,y)", "(#x, #y)"),
("ipc_class", "#ipc_class")
]
callback = CustomJS(code = code)
hover = HoverTool(
tooltips = TOOLTIPS,
callback = callback
)
plot.add_tools(hover)
output_file("hexbin.html")
show(p)

Related

How do I make a bokeh DataTable respond to DoubleTap

I am trying to add a feature to recalculate the diff column.
Currently I using a button to trigger the callback but I would really like to trigger it by double clicking a row in the table.
I can only find solutions with single click implementation by using the code
source.selected.js_on_change('indices', callback).
Does anyone know how to get the DataTable to react to double clicks?
from bokeh.models import ColumnDataSource, TableColumn, DataTable, Div, CustomJS, Button
from bokeh.layouts import column
from bokeh.plotting import show
from bokeh import events
names = ['Alfa', 'Bravo', 'Charlie', 'Delta']
values = [150, 100, 125, 200]
difference = [0, 0, 0, 0]
data = dict(names=names, values=values, diff=difference)
source = ColumnDataSource(data)
columns = [TableColumn(field='names', title='Name', width=200),
TableColumn(field='values', title='Value (-)', width=200),
TableColumn(field='diff', title='Difference (%)', width=200)]
# create total table width value
table_width = 0
for col in columns:
table_width = table_width + col.width
header = Div(text=f'<b>Results<b>', style={'font-size': '150%'})
fig = DataTable(source=source, columns=columns, height=len(values) * 25 + 50, width=table_width, selectable=True)
# callback to change reference for (%) difference calculation
callback = CustomJS(args=dict(source=source), code="""
var idx = source.selected.indices[0]
if (typeof idx == "undefined") {
idx = 0
}
var ref_val = source.data['values'][idx]
console.log(ref_val)
var d = source.data['diff']
for (var i = 0; i < d.length; i++) {
value = source.data['values'][i]
source.data['diff'][i] = (100*(value/ref_val-1)).toFixed(2)
}
source.change.emit()
""")
button = Button()
button.label = 'Click HERE to change reference to selected row for Difference (%) calculation'
# source.selected.js_on_change('indices', callback)
source.selected.js_on_event(events.DoubleTap, callback)
button.js_on_event(events.ButtonClick, callback)
show(column([button, fig]))
My trick is to set 2 active rows for each row click.
lst_source_indices_old =[]
source = ColumnDataSource(df)
def callback(attr, old, new):
global lst_source_indices_old # declare it is a global variable
lst = source.selected.indices # selected row in DataTable
if(len(lst)==1):
nrow=lst[0]
if(lst==lst_source2_indices_old):
print("... DataTable : Double-click")
# Save
lst_source2_indices_old = [nrow]
source.selected.indices = [nrow, 9999] # s.t. every click will be triggered
source.selected.on_change('indices', callback)

Hovering over the legend will hide all lines except the corresponding line

When you hover over the legend, all lines except the corresponding line will be hidden. How to achieve this via bokeh, python or javascript. I have no idea what to do to achieve this function. It would be great if we could provide a simple example with three lines.Thanks for your help.My code example is as follows:
import bokeh.palettes as bp
from bokeh.plotting import figure, output_file, show, ColumnDataSource
from bokeh.models import LinearAxis, Range1d, NumeralTickFormatter, Legend
from bokeh.layouts import column
import numpy as np
if __name__ == '__main__':
num = 5
color_list2 = bp.magma(num)
color_list1 = bp.viridis(num)
plotTools = 'box_zoom, wheel_zoom, pan, tap, crosshair, hover, reset, save'
p = figure(plot_width=800, plot_height=400, x_range=(0, 1000), y_range=(-2.5, -1.5),
tools=plotTools, toolbar_location='right', active_scroll='wheel_zoom', )
p.title.text = 'Hover and Hide'
items_c1 = []
i = 0
pictures = []
labels = ['a', 'b', 'c', 'd', 'e']
for label in labels:
n = np.random.randint(low=3, high=6)
xs = np.random.random(n) * 1000
y1s = np.random.random(n) - 2.5
temp_line = p.line(xs, y1s, line_width=2, color=color_list1[i % num],
alpha=0.3, hover_color='red', hover_alpha=0.9) # , legend_label=label
items_c1.append((label + '_BER', [temp_line]))
i = i + 1
if i % num == 0:
legend_1 = Legend(items=items_c1)
p.add_layout(legend_1, 'left')
p.xaxis.axis_label = 'run_time'
p.yaxis[0].axis_label = 'BER'
p.legend[0].orientation = 'vertical'
p.legend[0].location = 'bottom_center'
p.legend[0].click_policy = 'hide'
pictures.append(p)
p = figure(plot_width=800, plot_height=400, x_range=(0, 1000), y_range=(-2.5, -1.5),
tools=plotTools, toolbar_location='right', active_scroll='wheel_zoom', )
items_c1 = []
file = "test_ask_5"
file_path = file + '.html'
output_file(file_path)
show(column(pictures))
The solution below hides all lines but the one that is being clicked (not hovered). This code works for Bokeh v1.3.4
import numpy as np
from bokeh.plotting import figure, show
from bokeh.models import CustomJS
colors = ['orange', 'cyan', 'lightgreen']
p = figure()
lines = [p.line(np.arange(10), np.random.random(10), line_color = colors[i], line_width = 3, legend=colors[i], name=colors[i]) for i in range(3)]
code = '''if(Bokeh != 'undefined' && (Bokeh.active_line === 'undefined' || Bokeh.active_line == null))
{
Bokeh.active_line = cb_obj.name;
}'''
[line.js_on_change('visible', CustomJS(code = code)) for line in lines]
code = ''' for(i = 0; i < lines.length; i++) {
if (lines[i].name == Bokeh.active_line) {
lines[i].visible = true
}
else {
lines[i].visible = false
}
}
Bokeh.active_line = null'''
p.js_on_event('tap', CustomJS(args = {'lines' : lines}, code = code))
code = ''' for(i = 0; i < lines.length; i++) {
lines[i].visible = true
}
Bokeh.active_line = null'''
p.js_on_event('reset', CustomJS(args = dict(lines = lines), code = code))
p.legend.click_policy = 'hide'
show(p)
The first callback is applied to all glyph renderers (lines) and is being triggered when the line must be hidden, that is when a user clicks a legend item. The callback just sets the global variable Bokeh.active_line which remembers the renderer (line) name, e.g. "orange" or "cyan"
The second callback is attached to the plot canvas and is triggered every time the user clicks anywhere on the plot. What is basically does is inverting the glyphs (lines) visibility. It only shows the line specified by
Bokeh.active_line
The third callback is attached to the plot and is triggered when user clicks on the reset tool in the toolbar. It restores visibility of all lines.

Bokeh - Do not show tooltip if it has missing value

I'm working on a bokeh figure that shows cluster activity. When a user hovers over a particular processor, I want it to show statistics about the processor. Heres the code:
TOOLTIPS = [
("Usage", "#{usage}%"),
("Name", "#name"),
("PID", "#pid"),
("Command", "#command"),
("User", "#user"),
]
p = figure(title="Cluster Activity",
plot_width=1200,
plot_height=700,
x_range=nodes,
y_range=list(reversed(cores)),
tools='hover',
toolbar_location=None,
tooltips=TOOLTIPS
)
This works, but I don't want to show tooltips with a value of None. For example, if a particular processor, has a None value for User, the tooltip should not contain a user value, rather than showing "User : ???".
Is there any way to do this? I can't seem to find anything similar to this in the tutorials. I'd like to avoid writing custom JS.
You can also create the tooltips dynamically using JS callback attached to the HoverTool (Bokeh 1.1.0)
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource, HoverTool, CustomJS, FactorRange
pid = [1, 2, 3, 4, 5, 6]
user = ['user1', 'user2', 'user3', 'user4', None, 'user6']
name = ['name', 'name2', 'name3', 'name4', 'name5', 'name6']
source = ColumnDataSource(data = dict(pid = pid, user = user, name = name))
p = figure(x_range = FactorRange(*name), sizing_mode = 'stretch_both', title = "Test", toolbar_location = None, tools = "")
p.vbar(x = 'name', top = 'pid', width = 0.2, source = source)
code = ''' hover.tooltips = [["Name", "#name"], ["PID", "#pid"]];
if (cb_data.index.indices.length > 0) {
index = cb_data.index.indices[0];
counts = source.data.user[index]
if (counts != null)
hover.tooltips = [["Name", "#name"], ["User", "#user"], ["PID", "#pid"]];
} '''
hover = HoverTool()
hover.callback = CustomJS(args = dict(source = source, hover = hover), code = code)
p.add_tools(hover)
show(p)
Due to the comment below I checked the code for Bokeh v2.1.1 and it seems it still works after modifying the callback to:
code = ''' if (cb_data.index.indices.length > 0) {
const index = cb_data.index.indices[0];
const counts = source.data.user[index]
if (counts != null) {
hover.tooltips = [["Name", "#name"], ["User", "#user"], ["PID", "#pid"]];
}
else {
hover.tooltips = [["Name", "#name"], ["PID", "#pid"]];
}
} '''
Result:
I see two ways of doing this:
1. Checking if Name is None with Python and using multiple HoverTool
Since HoverTool is a bokeh.models.tools you can add it via
p.add_tools(hovertool)
So you could make two instances of HoverTool and split your data to two data sources:
p = figure(title="Cluster Activity",
plot_width=1200,
plot_height=700,
toolbar_location=None)
without = p.square(name="without", ##your filtered data source without names)
with = p.square(name="with", ##your filtered data source with names)
hoverwith = HoverTool(names=["with"],tooltips=TOOLTIPS = [
("Usage", "#{usage}%"),
("Name", "#name"),
("PID", "#pid"),
("Command", "#command"),
("User", "#user"),
])
hoverwithout = HoverTool(names=["without"],tooltips=TOOLTIPS = [
("Usage", "#{usage}%"),
("PID", "#pid"),
("Command", "#command"),
("User", "#user"),
])
p.add_tools(hoverwith, hoverwithout)
With the names attribute of HoverTool you can specify for which glyps the hover is rendered. I haven't tested the code.
2. Using custom JS (just mentioning for the sake of completeness)
In case you have many different combinations of possible missing values, I only see JS as a way to do this, have a look here: https://groups.google.com/a/continuum.io/forum/#!msg/bokeh/4VxEbPaLqnA/-qYLDsbZAwAJ

Changing colors on bokeh patches plot real time

I'm trying to create a bokeh plot of the US States, and color each of the state according to some data. Now using this tutorial I managed to create this, but I also want to enhance it, and add a slider to it, to change the values displayed. For example like displaying separate years.
With the help of this tutorial, I managed to add the slider, and the underlying data does change, according to the hover text, but the colors aren't recalculated, and so the visual representation does not match the values.
This is the code I've used, from a Jupyter notebook, so anybody who wants to try can reproduce
from bokeh.io import show, output_notebook
from bokeh.models import (
ColumnDataSource,
HoverTool,
LogColorMapper,
Range1d, CustomJS, Slider
)
from bokeh.palettes import Inferno256 as palette
from bokeh.plotting import figure
from bokeh.layouts import row, widgetbox
from bokeh.sampledata.us_counties import data as counties
from bokeh.sampledata.us_states import data as states
from bokeh.sampledata.unemployment import data as unemployment
import pandas as pd
import random
output_notebook()
palette.reverse()
states_accumulated ={}
available_state_codes = states.keys()
for key, value in counties.items():
state_name = value["state"].upper()
if state_name in states.keys() and "number" not in states[state_name]:
states[state_name]["number"] = key[0]
for key,state in states.items():
state["code"] = key
state_list = []
for key,state in states.items():
state_list.append(state)
unemployment_transf = []
for key,value in unemployment.items():
unemployment_transf.append({
"State":key[0],
"County":key[1],
"Value":value
})
unemp_df = pd.DataFrame(unemployment_transf)
unemp_sum = unemp_df.groupby("State").mean()["Value"]
unemp_sum = unemp_sum.sort_index()
unemp_sum_flat = {key:value for key, value in unemp_sum.items()}
for state in state_list:
state["value"] = unemp_sum_flat[state["number"]]
state_df = pd.DataFrame(state_list)
color_mapper = LogColorMapper(palette=palette)
state_xy = (list(state_df["lons"].values),list(state_df["lats"].values))
max_x = max([max(l) for l in state_xy[0]])
max_y = max([max(l) for l in state_xy[1]])
min_x = min([min(l) for l in state_xy[0]])
min_y = min([min(l) for l in state_xy[1]])
data=dict(
x=state_xy[0],
y=state_xy[1],
name=list(state_df["name"].values),
used = list(state_df["value"].values)
)
data['1999'] = list(state_df["value"].values)
data['2000'] = [random.randrange(0,10) for i in range(len(state_xy[0]))]
source = ColumnDataSource(data)
TOOLS = "pan,wheel_zoom,reset,hover,save"
p = figure(
title="States", tools=TOOLS,
x_axis_location=None, y_axis_location=None
)
p.width=450
p.height = 450
p.x_range= Range1d(-170,-60)
p.y_range = Range1d(min_y-10,max_y+10)
p.grid.grid_line_color = None
renderer = p.patches('x', 'y', source=source,
fill_color={'field': 'used', 'transform': color_mapper},
fill_alpha=0.7, line_color="white", line_width=0.5)
hover = p.select_one(HoverTool)
hover.point_policy = "follow_mouse"
hover.tooltips = [
("Name", "#name"),
("Unemployment rate)", "#used%"),
("(Long, Lat)", "($x, $y)"),
]
callback = CustomJS(args=dict(source=source,plot=p,color_mapper = color_mapper,renderer = renderer), code="""
var data = source.data;
var year = year.value;
used = data['used']
should_be = data[String(year)]
for (i = 0; i < should_be.length; i++) {
used[i] = should_be[i];
}
""")
year_slider = Slider(start=1999, end=2000, value=1999, step=1,
title="year", callback=callback)
callback.args["year"] = year_slider
layout = row(
p,
widgetbox(year_slider),
)
show(layout)
Sample images of the plot:
What I would like to accomplish, is that when I change the slider, the colors on the plot should change. Now I think the JS callback should call some kind of redraw or recalculate, but I haven't found any documentation about it. Is there a way to do this?
append source.change.emit() to the Javascipt code to trigger the change event.
Appending source.trigger("change"); to the CustomJS seems to solve the problem, now as the slider changes, the colors change.

Get selected data contained within box select tool in Bokeh

If I have a scatter plot in bokeh and I've enabled the Box Select Tool, suppose I select a few points with the Box Select Tool. How can I access the (x,y) position location information of the points that I've selected?
%matplotlib inline
import numpy as np
from random import choice
from string import ascii_lowercase
from bokeh.models.tools import *
from bokeh.plotting import *
output_notebook()
TOOLS="pan,wheel_zoom,reset,hover,poly_select,box_select"
p = figure(title = "My chart", tools=TOOLS)
p.xaxis.axis_label = 'X'
p.yaxis.axis_label = 'Y'
source = ColumnDataSource(
data=dict(
xvals=list(range(0, 10)),
yvals=list(np.random.normal(0, 1, 10)),
letters = [choice(ascii_lowercase) for _ in range(10)]
)
)
p.scatter("xvals", "yvals",source=source,fill_alpha=0.2, size=5)
select_tool = p.select(dict(type=BoxSelectTool))[0]
show(p)
# How can I know which points are contained in the Box Select Tool?
I can't call the "callback" attribute and the "dimensions" attribute just returns a list ["width", "height"]. If I can just get the dimensions and the location of the Selected Box, I can figure out which points are in my dataset from there.
You can use a callback on the ColumnDataSource that updates a Python variable with the indices of the selected data:
%matplotlib inline
import numpy as np
from random import choice
from string import ascii_lowercase
from bokeh.models.tools import *
from bokeh.plotting import *
from bokeh.models import CustomJS
output_notebook()
TOOLS="pan,wheel_zoom,reset,hover,poly_select,box_select"
p = figure(title = "My chart", tools=TOOLS)
p.xaxis.axis_label = 'X'
p.yaxis.axis_label = 'Y'
source = ColumnDataSource(
data=dict(
xvals=list(range(0, 10)),
yvals=list(np.random.normal(0, 1, 10)),
letters = [choice(ascii_lowercase) for _ in range(10)]
)
)
p.scatter("xvals", "yvals",source=source,fill_alpha=0.2, size=5)
select_tool = p.select(dict(type=BoxSelectTool))[0]
source.callback = CustomJS(args=dict(p=p), code="""
var inds = cb_obj.get('selected')['1d'].indices;
var d1 = cb_obj.get('data');
console.log(d1)
var kernel = IPython.notebook.kernel;
IPython.notebook.kernel.execute("inds = " + inds);
"""
)
show(p)
Then you can access the desired data attributes using something like
zip([source.data['xvals'][i] for i in inds],
[source.data['yvals'][i] for i in inds])
Here is a working example with Python 3.7.5 and Bokeh 1.4.0
public github link to this jupyter notebook:
https://github.com/surfaceowl-ai/python_visualizations/blob/master/notebooks/bokeh_save_linked_plot_data.ipynb
environment report:
virtual env python version: Python 3.7.5
virtual env ipython version: 7.9.0
watermark package reports:
bokeh 1.4.0
jupyter 1.0.0
numpy 1.17.4
pandas 0.25.3
rise 5.6.0
watermark 2.0.2
# Generate linked plots + TABLE displaying data + save button to export cvs of selected data
from random import random
from bokeh.io import output_notebook # prevent opening separate tab with graph
from bokeh.io import show
from bokeh.layouts import row
from bokeh.layouts import grid
from bokeh.models import CustomJS, ColumnDataSource
from bokeh.models import Button # for saving data
from bokeh.models.widgets import DataTable, DateFormatter, TableColumn
from bokeh.models import HoverTool
from bokeh.plotting import figure
# create data
x = [random() for x in range(500)]
y = [random() for y in range(500)]
# create first subplot
plot_width = 400
plot_height = 400
s1 = ColumnDataSource(data=dict(x=x, y=y))
fig01 = figure(
plot_width=plot_width,
plot_height=plot_height,
tools=["lasso_select", "reset", "save"],
title="Select Here",
)
fig01.circle("x", "y", source=s1, alpha=0.6)
# create second subplot
s2 = ColumnDataSource(data=dict(x=[], y=[]))
# demo smart error msg: `box_zoom`, vs `BoxZoomTool`
fig02 = figure(
plot_width=400,
plot_height=400,
x_range=(0, 1),
y_range=(0, 1),
tools=["box_zoom", "wheel_zoom", "reset", "save"],
title="Watch Here",
)
fig02.circle("x", "y", source=s2, alpha=0.6, color="firebrick")
# create dynamic table of selected points
columns = [
TableColumn(field="x", title="X axis"),
TableColumn(field="y", title="Y axis"),
]
table = DataTable(
source=s2,
columns=columns,
width=400,
height=600,
sortable=True,
selectable=True,
editable=True,
)
# fancy javascript to link subplots
# js pushes selected points into ColumnDataSource of 2nd plot
# inspiration for this from a few sources:
# credit: https://stackoverflow.com/users/1097752/iolsmit via: https://stackoverflow.com/questions/48982260/bokeh-lasso-select-to-table-update
# credit: https://stackoverflow.com/users/8412027/joris via: https://stackoverflow.com/questions/34164587/get-selected-data-contained-within-box-select-tool-in-bokeh
s1.selected.js_on_change(
"indices",
CustomJS(
args=dict(s1=s1, s2=s2, table=table),
code="""
var inds = cb_obj.indices;
var d1 = s1.data;
var d2 = s2.data;
d2['x'] = []
d2['y'] = []
for (var i = 0; i < inds.length; i++) {
d2['x'].push(d1['x'][inds[i]])
d2['y'].push(d1['y'][inds[i]])
}
s2.change.emit();
table.change.emit();
var inds = source_data.selected.indices;
var data = source_data.data;
var out = "x, y\\n";
for (i = 0; i < inds.length; i++) {
out += data['x'][inds[i]] + "," + data['y'][inds[i]] + "\\n";
}
var file = new Blob([out], {type: 'text/plain'});
""",
),
)
# create save button - saves selected datapoints to text file onbutton
# inspriation for this code:
# credit: https://stackoverflow.com/questions/31824124/is-there-a-way-to-save-bokeh-data-table-content
# note: savebutton line `var out = "x, y\\n";` defines the header of the exported file, helpful to have a header for downstream processing
savebutton = Button(label="Save", button_type="success")
savebutton.callback = CustomJS(
args=dict(source_data=s1),
code="""
var inds = source_data.selected.indices;
var data = source_data.data;
var out = "x, y\\n";
for (i = 0; i < inds.length; i++) {
out += data['x'][inds[i]] + "," + data['y'][inds[i]] + "\\n";
}
var file = new Blob([out], {type: 'text/plain'});
var elem = window.document.createElement('a');
elem.href = window.URL.createObjectURL(file);
elem.download = 'selected-data.txt';
document.body.appendChild(elem);
elem.click();
document.body.removeChild(elem);
""",
)
# add Hover tool
# define what is displayed in the tooltip
tooltips = [
("X:", "#x"),
("Y:", "#y"),
("static text", "static text"),
]
fig02.add_tools(HoverTool(tooltips=tooltips))
# display results
# demo linked plots
# demo zooms and reset
# demo hover tool
# demo table
# demo save selected results to file
layout = grid([fig01, fig02, table, savebutton], ncols=3)
output_notebook()
show(layout)
# things to try:
# select random shape of blue dots with lasso tool in 'Select Here' graph
# only selected points appear as red dots in 'Watch Here' graph -- try zooming, saving that graph separately
# selected points also appear in the table, which is sortable
# click the 'Save' button to export a csv
# TODO: export from Bokeh to pandas dataframe

Categories