Python: Find Prime Number Algorithm - python

Recently I was given a challenge to my coding skills by my teacher since he saw that I was already knowledgeable in what he was teaching. The question is as follows.
Create a program that prompts the user for 2 numbers. The program will then display all the prime numbers in between the two given numbers, including the given numbers. Note: You cannot assume the first input is bigger than the second input.
So I took this question and built a fairly simple algorithm and ran it and it worked. I opened it today to find out for some reason my output is occasionally wrong, for example when you input 8 and 29 I get 27. I am looking for HINTS as to what is wrong with my logic because I cannot for the life of me figure out what Im doing wrong. I dont want straight up fixes because I would like to learn as much from this and doing it as much as possible by myself.
numbers = [int(input("First Number")), int(input("Second Number"))]
numbers.sort()
numList = []
#Removing Even Numbers
for num in range(numbers[0],numbers[1] + 1):
if num % 2 != 0:
numList.append(num)
#Checking For Prime Numbers
for currNum in numList:
#Set Start number to divide
i = 2
while i < currNum:
#Checks if the currNum can be divisble by i and is a whole number
if currNum % i != 0:
i = i + 1
else :
numList.remove(currNum)
break
print(numList)
From what I have learned from testing this out it seems like 27 is never checked during my for loop or while loop even though it is in the numList array.

Never remove items form a list you are iterating over.
Instead create a new list:
numbers = [int(input("First Number")), int(input("Second Number"))]
numbers.sort()
primes = []
for num in range(numbers[0], numbers[1] + 1):
#Set Start number to divide
i = 2
while i < num:
#Checks if the currNum can be divisble by i and is a whole number
if num % i == 0:
break
i += 1
else:
primes.append(num)
print(primes)

Related

Is there a way of checking if a value is evenly divisible by any value in a given data set?

I am currently attempting to write a simple bit of python 3 code that allows the user to tell the program which prime number it wants to find and then return the number to the user. I have hit a roadblock because I need to check if the "newprime" value is in fact a prime, which requires me to divide the value by all the previous prime numbers ("primes") and then checking if the answer is a whole number or not. Here is the current program
import numpy
primes = [2]
print("the how many-th prime would you like to calculate?")
numberOfPrime = int( input() )
x = 0
while x <= numberOfPrime:
notprime = 0 #placeholder, should be all numbers which when divided by any of the set "primes" gives a whole number
while newprime == notprime:
newprime = primes[x] + 1
primes.append(newprime)
print(primes)
x += 1
print(primes[numberOfPrime], " is the ", numberOfPrime, "-th prime number", sep="")
As you can see, I added a comment where I would have to insert the missing part.
How do I best approach this?

Why doesn't the inner loop increment each time?

I am a new person to programming and still wrapping my head around the logic. The code I am laying out for you works: it produces the first N prime numbers. i.e. if user enters 10, the code will produce all primes up to and including 10. This was an assignment question, by the way. This is how my professor laid it out.
Also, if I am not displaying my code correctly, please give me some helpful hints about how to do that. I don't know what a fence is, but I indented each line 4 spaces, if that helps.
I stepped through this code in debug mode, and noticed that the value of j never went beyond 2 or 3. Why not?
n = int(input("Please enter the number up to which you want to find prime
numbers: "))
count = 0
if n > 1:
for i in range(2, n + 1):
isPrime = True # set flag to True
for j in range(2, i // 2 + 1):
if i % j == 0:
isPrime = False
break
if isPrime:
print(i, "is a prime number.")
count += 1
else:
print("Prime numbers must be greater than 1.")
print(count, "prime numbers have been found.")
There were no error messages that I could detect.

I can't get count to work in my Python code

I'm trying to create a code that will print every number in a range set by the user, and then identify how many numbers in that range are odd numbers and how many are even.
I've tried a few different formats, but I'm very much a beginner and can't seem to nail down where I'm going wrong. I'm trying to keep the code as simple as possible.
for i in range(x,y+1):
print(i)
range = (x,y+1)
count_odd = 0
count_even = 0
for n in range:
if n%2==0:
count_even = count_even+1
else:
count_odd = count_odd+1
print("Number of even numbers :",count_even)
print("Number of odd numbers :",count_odd)
Currently when I run this, even numbers always comes to 0 and odd to 2.
On line 4 you have:
range = (x,y+1)
This is the tuple (x, y+1) not the range between them. So when you loop through it you are only looping through those two numbers. I assume in your case they are both odd. I would recommend removing that line and starting your second for loop like this:
for n in range(x, y + 1):
range is a builtin function, which returns an iterable from [start, end). You likely want something like:
count_odd = 0
count_even = 0
for n in range(x,y+1):
if n % 2 == 0:
count_even = count_even + 1
else:
count_odd = count_odd + 1
print("Number of even numbers :", count_even)
print("Number of odd numbers :", count_odd)
There's no point for a loop. If your range consists of even elements, then half of values is even and half is odd. If it consists og odd elements and starts from odd value then half+1 is odd and half-1 is even. It starts with even value then it's opposite.

Find prime numbers less than or equal to the number the user has entered with loops. How do I do that?

With this code, I only get to test if the number the user entered is prime or not.
How do I add another loop to my original code in order to find all the prime numbers less than or equal to the number the user has entered?
num = int(input("Enter a number: "))
if num > 1:
prime = True
for n in range(2, num):
if (num % n) == 0:
print ("Number", num, "is not prime")
break
else:
print("Number", num, "is prime")
You can'not print both in one loop, you can do one thing add a loop above your current loop and display each number like this :
num = int(input("Enter a number: "))
if num > 1:
prime = True
for n in range(2, num):
if (num % n) == 0:
print ("Number", num, "is not prime")
break
else:
print("Number", num, "is prime")
#your current code ends here
for j in range(2, num + 1):
# prime numbers are greater than 1
for i in range(2, j):
if (j % i) == 0:
break
else:
print(j)
Your code only check the number entered is prime or not , but you questioned about to get prime numbers from 2 to n (n = number entered by user) for this you run below code with the help of flag bit it will little bit easy for you. i hope it will help you.
Try This i run this code It will Surely help you to find your answer it work in python 3.0 or above
num = int(input("Enter The Number"))
if num > 1:
num = num+1
list = []
for j in range (2,num,1):
flag = 0
for i in range (2,int(j/2)+1,1):
if(j%i)== 0:
flag = 1
break
if flag==0:
list.append(j)
print(list)
else:
print("Enter Number Greater Than 1")
Aside from small things (unused boolean variable) your prime test is also super inefficient.
Let's go through this step by step.
First: To test if a number is prime, you don't need to check all integers up to the number for divisors. Actually, going up to sqrt(num) turns out to be sufficient. We can write a one-liner function to find out if a number is prime like so:
from numpy import sqrt
def is_prime(n):
return n > 1 and all(n%i for i in range(2,int(sqrt(n))+1))
range(2,some_num) gives an iterator through all numbers from 2 up to some_num-1and the all() function checks if the statement n%i is true everywhere in that iterator and returns a boolean. If you can guarantee to never pass even numbers you can start the range from 3 (of course with the loss of generality). Even if you don't want to use that function, it's cleaner to separate the functionality into a different function, because in a loop of numbers up to your input you will probably have to check each number for being prime separately anyways.
Second: From here, finding all primes smaller or equal than your input should be pretty easy.
num = int(input("Enter a number:"))
assert num>0, "Please provide a positive integer" # stops with an assertion error if num<=0
prime_lst = [2] if num > 1 else []
for x in range(3,num+1,2):
if is_prime(x):
prime_lst.append(x)
The list prime_lst will contain all your sought after prime numbers. I start the loop from 1 such that I can loop through only the odd numbers, even numbers are divisible by two. So this way none of the numbers will be divisible by two. Unfortunately this requires me to check if the number itself may be 2, which is a prime. By the twin-prime conjecture we can not simplify this range further without knowing about the input.
Finally: If you really want to find the primes in one loop, change your loop to something along the lines of:
prime_lst = [2] if num > 1 else []
for x in range(3,num+1,2): # outer loop
for i in range(3,int(sqrt(x))+1): # inner loop for check if x is prime
if x%i == 0:
break # breaks the inner loop, number is not prime
else:
prime_lst.append(x)
Edit: Just saw that the second answer here has a good explanation (and an even better way) of writing the one-liner for finding out if a number is prime.

Calculating prime numbers

I am now doing the MIT opencourse thing, and already the second assignment, I feel it has left me out in the cold. http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-00-introduction-to-computer-science-and-programming-fall-2008/assignments/pset1a.pdf
The specifics of it, are to write something that can calculate the 1000th prime number. We only know about the print, ==, =, 1=,if, else, elif, while, %, -,+,*,/, commands I think. We also don't yet know about importing libraries.
My Idea of how it would work is to take an odd number and try to divide it by, 3,4,5,6,7,8,9 and if %n !=0, then add a number to NumberofPrimes variable starting with 11 as the base of the tests, and assigning it a base value of 4 at the base of NumberofPrimes, though I don't know if that is even right, because I wouldn't know how to display the 1000th prime number.
Am I close?
The latest incarnation of it is as follows:
##calculate the 1000th prime number
potprime = 3
numberofprime = 1
cycle = if potprime%3 = 0:
break
if potpimre%4 = 0:
break
if potprime%5 = 0:
break
if potprime%6 = 0:
break
if potprime%7 = 0:
break
if potprime%8 = 0:
break
if potprime%9 = 0:
break
numberofprime + 1
potprime + 1
if potprime%2 == 0:
potprime = potprime + 1
if potprime != 0:
cycle
Where exactly am I going wrong? Walk me through it step by step. I really want to learn it, though I feel like I am just being left out in the cold here.
At this point, it would be more beneficial for me to see how a proper one could be done rather than doing this. I have been working for 3 hours and have gotten nowhere with it. If anybody has a solution, I would be more than happy to look at it and try to learn from that.
Looks like I am late
It is quite straight forward that if a number is not divisible by any prime number, then that number is itself a prime number. You can use this fact to minimize number of divisions.
For that you need to maintain a list of prime numbers. And for each number only try to divide with prime numbers already in the list. To optimize further it you can discard all prime numbers more than square root of the number to be tested. You will need to import sqrt() function for that.
For example, if you test on 1001, try to test with 3, 5, 7, 11, 13, 17, 19, 23, 29 and 31. That should be enough. Also never try to find out if an even number is prime. So basically if you test an odd number n, then after that test next number: (n + 2)
Have tested the below code. The 1000th prime number is 7919. Not a big number!!
Code may be like:
from math import sqrt
primeList = [2]
num = 3
isPrime = 1
while len(primeList) < 1000:
sqrtNum = sqrt(num)
# test by dividing with only prime numbers
for primeNumber in primeList:
# skip testing with prime numbers greater than square root of number
if num % primeNumber == 0:
isPrime = 0
break
if primeNumber > sqrtNum:
break
if isPrime == 1:
primeList.append(num)
else:
isPrime = 1
#skip even numbers
num += 2
# print 1000th prime number
print primeList[999]
The following code is gross, but since 1000 is indeed a small index, it solves your problem in a fraction of a second (and it uses only the primitives you are supposed to know so far):
primesFound = 0
number = 1
while primesFound < 1000:
number = number + 1 # start from 2
# test for primality
divisor = 2
numberIsPrime = True
while divisor*divisor <= number: # while divisor <= sqrt(number)
if number % divisor == 0:
numberIsPrime = False
break
divisor = divisor + 1
# found one?
if numberIsPrime:
primesFound = primesFound + 1
print number
You can test the solution here.
Now you should find a more efficient solution, optimize and maybe go for the 1000000-th prime...
For one thing, I'm pretty sure that in Python, if you want to have an if statement that tests whether or not A = B, you need to use the == operator, rather then the =.
For another thing, your algorithm would consider the number 143 to be prime, even though 143 = 11 * 13
You need keep track of all the prime numbers that you have already computed - add them to an array. Use that array to determine whether or not a new number that you are testing is prime.
It seems to me that you are jumping into the deep-end after deciding the kiddy-pool is too deep. The prime number project will be assignment 2 or 3 in most beginning programming classes, just after basic syntax is covered. Rather than help you with the algorithm (there are many good ones out there) I'm going to suggest that you attempt to learn syntax with the python shell before you write long programs, since debugging a line is easier than debugging an entire program. Here is what you wrote in a way that will actually run:
count = 4
n = 10 #I'm starting you at 10 because your method
#says that 2, 3, 5, and 7 are not prime
d = [2, 3, 4, 5, 6, 7, 8, 9] #a list containing the ints you were dividing by
def cycle(n): #This is how you define a function
for i in d: #i will be each value in the list d
if not n%i: #this is equal to if n%i == 0
return 0 #not prime (well, according to this anyway)
return 1 #prime
while count < 1000:
count += cycle(n) #adds the return from cycle to count
n += 1
print n - 1
The answer is still incorrect because that is not how to test for a prime. But knowing a little syntax would at least get you that wrong answer, which is better than a lot of tracebacks.
(Also, I realize lists, for loops, and functions were not in the list of things you say you know.)
Your code for this answer can be condensed merely to this:
prime_count = 1
start_number = 2
number_to_check = 2
while prime_count <= 1000:
result = number_to_check % start_number
if result > 0:
start_number +=1
elif result == 0:
if start_number == number_to_check:
print (number_to_check)
number_to_check +=1
prime_count +=1
start_number =2
else:
number_to_check +=1
start_number = 2
To answer your subsequent question, 'How do I keep track of all the prime numbers?
One way of doing this is to make a list.
primeList = [] # initializes a list
Then, each time you test a number for whether it is prime or not, add that number to primeList
You can do this by using the 'append' function.
primeList.append( potprime ) # adds each prime number to that list
Then you will see the list filling up with numbers so after the first three primes it looks like this:
>>> primeList
[11, 13, 17]
Your math is failing you. A prime number is a number that has 2 divisors: 1 and itself. You are not testing the numbers for primality.
I am very late on this but maybe my answer will be of use to someone. I am doing the same open course at MIT and this is the solution I came up with. It returns the correct 1000th prime and the correct 100,000th prime and various others in between that I have tested. I think this is a correct solution (not the most efficient I am sure but a working solution I think).
#Initialise some variables
candidate = 1
prime_counter = 1
while prime_counter < 1000:
test = 2
candidate = candidate + 2
# While there is a remainder the number is potentially prime.
while candidate%test > 0:
test = test + 1
# No remainder and test = candidate means candidate is prime.
if candidate == test:
prime_counter = prime_counter + 1
print "The 1000th prime is: " + str(candidate)
While I was at it I went on and did the second part of the assignment. The question is posed as follows:
"There is a cute result from number theory that states that for sufficiently large n the product of the primes less than n is less than or equal to e^n and that as n grows, this becomes a tight bound (that is, the ratio of the product of the primes to e^n gets close to 1 as n grows).
Computing a product of a large number of prime numbers can result in a very large number,
which can potentially cause problems with our computation. (We will be talking about how
computers deal with numbers a bit later in the term.) So we can convert the product of a set of primes into a sum of the logarithms of the primes by applying logarithms to both parts of this conjecture. In this case, the conjecture above reduces to the claim that the sum of the
logarithms of all the primes less than n is less than n, and that as n grows, the ratio of this sum to n gets close to 1."
Here is my solution. I print the result for every 1,000th prime up to the 10,000th prime.
from math import *
#Initialise some variables
candidate = 1
prime_counter = 1
sum_logs = log(2)
while prime_counter < 10000:
test = 2
candidate = candidate + 2
# While there is a remainder the number is potentially prime.
while candidate%test > 0:
test = test + 1
# No remainder and test = candidate means candidate is prime.
if candidate == test:
prime_counter = prime_counter + 1
# If the number is prime add its log to the sum of logs.
sum_logs = sum_logs + log(candidate)
if prime_counter%1000 == 0:
# For every 1000th prime print the result.
print sum_logs," ",candidate," ",sum_logs/candidate
print "The 10000th prime is: " + str(candidate)
Cheers,
Adrian
I came up with this solution in my interview, but I didn't get the job :( It has about 1/100 less iterations than the solution above:
from math import *
MAX_IDX=1000
MAX_IDX-=1
num_iter=0
l_pirme_list=[3]
candidate=l_pirme_list[0]
prime_counter=1
while prime_counter < MAX_IDX:
candidate+=2
#Cut the binary number in half. This is quite faster than sqrt()
bin_candidate=format(candidate, "2b")
max_prime_search=int(bin_candidate[:len(bin_candidate)/2+1],2)+1
# max_prime_search=sqrt(candidate)+1
candidate_is_prime=1
for prime_item in l_pirme_list:
num_iter+=1
if candidate % prime_item==0:
candidate_is_prime=0
break
elif prime_item > max_prime_search:
candidate_is_prime=1
break
if candidate_is_prime:
prime_counter+=1
l_pirme_list.append(candidate)
l_pirme_list.insert(0,2)
print "number iterations=", num_iter
print l_pirme_list[MAX_IDX]

Categories