pattern restriction in substring- Python - python

I found a question in glassdoor. I do not have additional clarification
Input : an int array [1,0,0,1,1,0,0,1,0,1,0,0,0,1]
you have to come up with a program that will give all possible subsets of the array based on the pattern.
Pattern restrictions were the string array should start with 1 and end with 1. So there will be many sub arrays like from index 0 to 3 and 0 to 4 and index 7 to 9
To solve this I was thinking of using 2 for loops and if both cases the values are equal to 1 then print them.
v=[1,0,0,1,1,0,0,1,0,1,0,0,0,1]
resultList=[]
for i in range(0,len(v)-1):
for j in range(i+1, len(v)):
if v[i]==1 and v[j]==1:
r=v[i:j]
resultList.append(r)
print(resultList)
Output:[[1, 0, 0], [1, 0, 0, 1], [1, 0, 0, 1, 1, 0, 0], [1, 0, 0, 1, 1, 0, 0, 1, 0], [1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0], [1], [1, 1, 0, 0],
I only see 1 correct value so far in output [1, 0, 0, 1]. Should I have used set instead of list? I tried that but that approach did not work either. Can someone kindly give some directions on how to solve this problem?
Thanks for your time.

You can use itertools.combinations to pick 2 indices where the values are non-zeroes in the list:
from itertools import combinations
a = [1,0,0,1,1,0,0,1,0,1,0,0,0,1]
[a[i: j + 1] for i, j in combinations((i for i, n in enumerate(a) if n), 2)]
This returns:
[[1, 0, 0, 1], [1, 0, 0, 1, 1], [1, 0, 0, 1, 1, 0, 0, 1], [1, 0, 0, 1, 1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1], [1, 1], [1, 1, 0, 0, 1], [1, 1, 0, 0, 1, 0, 1], [1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1], [1, 0, 0, 1], [1, 0, 0, 1, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 1], [1, 0, 1], [1, 0, 1, 0, 0, 0, 1], [1, 0, 0, 0, 1]]

The probelm is in v[i:j]. Change v[i:j] to v[i:j+1]

Related

Successive zeroing of columns of a numpy array

I have an array a of ones and zeroes (it might be rather big)
a = np.array([[1, 0, 0, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 1, 1, 0, 0, 1],
[0, 0, 0, 1, 1, 1])
in which the "upper" rows are more "important" in the sense that if there is 1 in any column of the i-th row, then all ones in that columns in the following rows must be zeroed.
So, the desired output should be:
array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0]])
In other words, there should only be single 1 per column.
I'm looking for a more numpy way to do this (i.e. minimising or, better, avoiding the loops).
Your array:
[[1, 0, 0, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 1, 1, 0, 0, 1],
[0, 0, 0, 1, 1, 1]]
Transpose it with numpy:
a = np.transpose(your_array)
Now it looks like this:
[[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, 0],
[1, 0, 0, 1],
[0, 1, 0, 1],
[0, 0, 1, 1]]
Zero all the non-zero (and "not upper") elements row wise:
res = np.zeros(a.shape, dtype="int64")
idx = np.arange(res.shape[0])
args = a.astype(bool).argmax(1)
res[idx, args] = a[idx, args]
The output of res is this:
#### Output
[[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]]
Re-transpose your array:
a = np.transpose(res)
[[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0]])
EDIT: Thanks to #The.B for the tip
An alternative solution is to do a forward fill followed by the cumulative sum and then replace all values which are not 1 with 0:
a = np.array([[1, 0, 0, 1, 0, 0],
[1, 1, 0, 0, 1, 0],
[0, 1, 1, 0, 0, 1],
[0, 0, 0, 1, 1, 1]])
ff = np.maximum.accumulate(a, axis=0)
cs = np.cumsum(ff, axis=0)
cs[cs > 1] = 0
Output in cs:
array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0]])
EDIT
This will do the same thing and should be slightly more efficient:
ff = np.maximum.accumulate(a, axis=0)
ff ^ np.pad(ff, ((1,0), (0,0)))[:-1]
Output:
array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0]])
And if you want to do the operations in-place to avoid temporary memory allocation:
out = np.zeros((a.shape[0]+1, a.shape[1]), dtype=a.dtype)
np.maximum.accumulate(a, axis=0, out=out[1:])
out[:-1] ^ out[1:]
Output:
array([[1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0]])
You can traverse through each column of array and check if it is the first one -
If Not: Make it 0
for col in a.T:
f=0
for x in col:
if(x==1 and f==0):
f=1
else:
x=0

How to find the indices of a certain value that exists in the same location in two matrices?

In what I am working on, I have two numpy matrices, both the same size, filled with 0's and 1's for simplicity (but let's say it could be filled with any numbers). What I would like to know is a way to extract, from these two matrices, the position of the 1's that exist in the same position in both matrices.
For example, if I have the following two matrices and value
a = np.array([[0, 0, 0, 1, 0, 1],
[1, 1, 0, 1, 1, 1],
[1, 0, 1, 1, 0, 1],
[1, 0 ,1, 1, 1, 0],
[0, 0, 1, 0, 0, 0]])
b = np.array([[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 0]])
value = 1
then I would like a way to somehow get the information of all the locations where the value "1" exists in both matrices, i.e.:
result = [(0,5),(1,1),(2,3),(4,2)]
I guess the result could be thought of as an intersection, but in my case the position is important which is the reason I don't think np.intersect1d() would be much help. In the actual matrices I am working with, they are on the order of about 10,000 by 10,000, so this list would probably be a lot longer.
Thanks in advance for any help!
You could use numpy.argwhere:
import numpy as np
a = np.array([[0, 0, 0, 1, 0, 1],
[1, 1, 0, 1, 1, 1],
[1, 0, 1, 1, 0, 1],
[1, 0, 1, 1, 1, 0],
[0, 0, 1, 0, 0, 0]])
b = np.array([[0, 0, 0, 0, 0, 1],
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 1],
[1, 1, 1, 1, 1, 0]])
result = np.argwhere(a & b)
print(result)
Output
[[0 5]
[1 1]
[2 3]
[2 5]
[4 2]]

alternating values in numpy

Trying to make my code more efficient and readable and i'm stuck. Assume I want to build something like a chess board, with alternating black and white colors on an 8x8 grid. So, using numpy, I have done this:
import numpy as np
board = np.zeros((8,8), np.int32)
for ri in range(8):
for ci in range(8):
if (ci + ri) % 2 == 0:
board[ri,ci] = 1
Which nicely outputs:
array([[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1]], dtype=int32)
That I can then parse as white squares or black squares. However, in practice my array is much larger, and this way is very inefficient and unreadable. I assumed numpy already has this figured out, so I tried this:
board = np.zeros(64, np.int32)
board[::2] = 1
board = board.reshape(8,8)
But that output is wrong, and looks like this:
array([[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0],
[1, 0, 1, 0, 1, 0, 1, 0]], dtype=int32)
Is there a better way to achieve what I want that works efficiently (and preferably, is readable)?
Note: i'm not attached to 1's and 0's, this can easily be done with other types of values, even True/False or strings of 2 kinds, as long as it works
Here's one approach using slicing with proper starts and stepsize of 2 in two steps -
board = np.zeros((8,8), np.int32)
board[::2,::2] = 1
board[1::2,1::2] = 1
Sample run -
In [229]: board = np.zeros((8,8), np.int32)
...: board[::2,::2] = 1
...: board[1::2,1::2] = 1
...:
In [230]: board
Out[230]:
array([[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1]], dtype=int32)
Other tricky ways -
1) Broadcasted comparison :
In [254]: r = np.arange(8)%2
In [255]: (r[:,None] == r)*1
Out[255]:
array([[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1]])
2) Broadcasted addition :
In [279]: r = np.arange(8)
In [280]: 1-(r[:,None] + r)%2
Out[280]:
array([[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1]])
Just found out an alternative answer by myself, so posting it here for future reference to anyone who's interested:
a = np.array([[1,0],[0,1]])
b = np.tile(a, (4,4))
Results:
array([[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1],
[1, 0, 1, 0, 1, 0, 1, 0],
[0, 1, 0, 1, 0, 1, 0, 1]])
I think the following is also a good way of doing it for a variable input
import sys
lines = sys.stdin.readlines()
n = int(lines[0])
import numpy as np
a = np.array([[1,0], [0,1]],dtype=np.int)
outputData= np.tile(a,(n//2,n//2))
print(outputData)
You can achieve this for single even input number n
import numpy as np
i = np.eye(2)
i = i[::-1]
k = np.array(i, dtype = np.int)
print(np.tile(k,(n//2,n//2)))
I tried and found this to be shorter one for any giver number:
n = int(input())
import numpy as np
c = np.array([[0,1], [1, 0]])
print(np.tile(c, reps=(n//2, n//2)))

Python: Remove sublist from a nested list following a criterion

I'm trying to remove sublists from a nested list containing all the possible permutation of [1, 1, 1, 0, 0, 0, 0]
[[0, 1, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 1, 0], [0, 0, 1, 1, 0, 0, 1], [0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 0], [1, 0, 0, 0, 1, 1, 0], [0, 0, 1, 0, 0, 1, 1], [0, 0, 1, 0, 1, 1, 0], [0, 0, 1, 0, 1, 0, 1], [0, 1, 0, 0, 0, 1, 1], [0, 1, 1, 1, 0, 0, 0], [1, 1, 0, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0, 1], [1, 1, 0, 1, 0, 0, 0], [0, 1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 0, 0], [0, 1, 1, 0, 1, 0, 0], [0, 1, 0, 1, 0, 1, 0], [1, 0, 0, 1, 1, 0, 0], [0, 0, 0, 1, 0, 1, 1], [1, 0, 1, 0, 1, 0, 0], [1, 1, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 1], [1, 0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 1, 1, 0, 1], [0, 0, 0, 1, 1, 1, 0], [1, 0, 0, 0, 1, 0, 1], [1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0], [1, 0, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1], [0, 0, 1, 1, 0, 1, 0]]
I want to remove all the sublists in which there are 3 consecutive 0 or two couples of consecutive 0 (eg. i want to remove [1, 0, 1, 0, 0, 0, 1] or [0, 0, 1, 1, 0, 0, 1]).
Can someone give me an advice on how to proceed? Thanks in advance!
You could define such a methode to find out if a given permutation p has those triple zeros or two double zeros:
def has_triple_zeros(p):
for i, e in enumerate(p[:-2]): # e are elements (0s and 1s) of the perm
if e == 0: # we encounter a 0
if p[i+1] == 0 and p[i+2] == 0: # the two following are also 0s
return True
return False # we made it to the end, no triple 0s
def has_two_double_zeros(p):
nb_doubles = 0
i = 0 # init loop
while i < len(p[:-1]):
if p[i] == 0: # we encounter a first 0
if p[i+1] == 0: # there is one next to it
nb_doubles += 1
i += 1 # skip the next element (already treated, cannot start new double)
i += 1 # increment the loop
return nb_doubles == 2
for p in lst: # here, lst is your list of permutations
print(p, has_two_double_zeros(p), has_triple_zeros(p))
Then just read your list of permutations and delete if it matches one of your criteria. This is an idea:
res = list() # result
for p in lst:
if not (has_two_double_zeros(p) or has_triple_zeros(p)):
res.append(p)
print(res)

Finding the Max value in a two dimensional Array

I'm trying to find an elegant way to find the max value in a two-dimensional array.
for example for this array:
[0, 0, 1, 0, 0, 1] [0, 1, 0, 2, 0, 0][0, 0, 2, 0, 0, 1][0, 1, 0, 3, 0, 0][0, 0, 0, 0, 4, 0]
I would like to extract the value '4'.
I thought of doing a max within max but I'm struggling in executing it.
Another way to solve this problem is by using function numpy.amax()
>>> import numpy as np
>>> arr = [0, 0, 1, 0, 0, 1] , [0, 1, 0, 2, 0, 0] , [0, 0, 2, 0, 0, 1] , [0, 1, 0, 3, 0, 0] , [0, 0, 0, 0, 4, 0]
>>> np.amax(arr)
Max of max numbers (map(max, numbers) yields 1, 2, 2, 3, 4):
>>> numbers = [0, 0, 1, 0, 0, 1], [0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 1], [0, 1, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0]
>>> map(max, numbers)
<map object at 0x0000018E8FA237F0>
>>> list(map(max, numbers)) # max numbers from each sublist
[1, 2, 2, 3, 4]
>>> max(map(max, numbers)) # max of those max-numbers
4
Not quite as short as falsetru's answer but this is probably what you had in mind:
>>> numbers = [0, 0, 1, 0, 0, 1], [0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 1], [0, 1, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0]
>>> max(max(x) for x in numbers)
4
How about this?
import numpy as np
numbers = np.array([[0, 0, 1, 0, 0, 1], [0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 1], [0, 1, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0]])
print(numbers.max())
4
>>> numbers = [0, 0, 1, 0, 0, 1], [0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 1], [0, 1, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0]
You may add key parameter to max as below to find Max value in a 2-D Array/List
>>> max(max(numbers, key=max))
4
One very easy solution to get both the index of your maximum and your maximum could be :
numbers = np.array([[0,0,1,0,0,1],[0,1,0,2,0,0],[0,0,2,0,0,1],[0,1,0,3,0,0],[0,0,0,0,4,0]])
ind = np.argwhere(numbers == numbers.max()) # In this case you can also get the index of your max
numbers[ind[0,0],ind[0,1]]
This approach is not as intuitive as others but here goes,
numbers = [0, 0, 1, 0, 0, 1], [0, 1, 0, 2, 0, 0], [0, 0, 2, 0, 0, 1], [0, 1, 0, 3, 0, 0], [0, 0, 0, 0, 4, 0]
maximum = -9999
for i in numbers:
maximum = max(maximum,max(i))
return maximum"

Categories