Data of 1 sub-folder gets added to 2nd sub-folder - python

I have a script for object recognition. While writing output to disk output of 1 sub-folder gets appended to the output of 2nd sub-folder
The code works fine for object recognition and writes data of 1st sub-folder perfectly but on writing the output of 2nd sub-folder the output of 1st sub-folder is also added to the output of 2nd sub-folder
def recognize_object(model_name,ckpt_path,label_path,test_img_path,img_output):
count=0
sys.path.append("..")
MODEL_NAME = model_name
PATH_TO_CKPT = ckpt_path
PATH_TO_LABELS = label_path
if not os.path.exists(img_output):
os.makedirs(img_output,exist_ok=True)
folders = glob(test_img_path)
print(folders)
img_list=[]
for folder in folders:
folder_name=os.path.basename(folder)
print(folder_name)
out=img_output+"\\"+folder_name
os.makedirs(out,exist_ok=True)
print(out)
for f in glob(folder+"/*.jpg"):
img_list.append(f)
for x in range(len(img_list)):
PATH_TO_IMAGE = img_list[x]
v1=os.path.basename(img_list[x])
img_name = os.path.splitext(v1)[0]
NUM_CLASSES = 3
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(image, axis=0)
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections],feed_dict={image_tensor: image_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4,
min_score_thresh=0.80,
skip_scores=True)
coordinates=vis_util.return_coordinates(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4,
min_score_thresh=0.80)
threshold=0.80
cv2.imwrite(out+"\\{}.jpg".format(img_name),image)
cv2.waitKey(0)
cv2.destroyAllWindows()
objects = []
with open(out+'/metadata.csv','a') as csv_file:
writer = csv.writer(csv_file)
for index, value in enumerate(classes[0]):
object_dict = {}
if scores[0, index] > threshold:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = scores[0, index]
objects.append(object_dict)
writer.writerow(objects)
print (objects)
filename_string='coordinates_data'
textfile = open("json/"+filename_string+".json", "a")
textfile.write(json.dumps(coordinates))
textfile.write("\n")
textfile = open("json/"+"img_names"+".json", "a")
textfile.write(json.dumps(PATH_TO_IMAGE))
textfile.write("\n")
img_list=[]
model_name='inference_graph'
ckpt_path=("C:\\new_multi_cat\\models\\research\\object_detection\\inference_graph\\frozen_inference_graph.pb")
label_path=("C:\\new_multi_cat\\models\\research\\object_detection\\training\\labelmap.pbtxt")
test_img_path=("C:\\Python35\\target_non_target\\Target_images_new\\*")
img_output=("C:\\new_multi_cat\\models\\research\\object_detection\\my_imgs")
recognize = recognize_object(model_name,ckpt_path,label_path,test_img_path,img_output)
Suppose there is a folder Y with sub-folders C and D. I want the data to be written to their individual folders. Currently the data of sub-folder C is written perfectly but on writing the data for sub-folder D the data of folder C is also appended to D. Is this issue related to indentation or something else?

Indent the second img_list = [] one more time, it’s outside of the folders loop.

Related

Tensorflow: Mac OS camera switched on but video not visible on screen

For a current project, I am trying to set up a video recognition program leveraging TensorFlow 2 and OpenCV (Mac OS Catalina).
When running the below script with Python 3 through terminal or via Jupyter, the green "wecam light" is indicating that the camera is switched on and no error messages appear. However, there is not video image/window showing on my screen. I have tried various solutions, including adding camera screen frame data, none of which worked.
Does anyone know a smart tweak to make the camera image/window visible?
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
# Define the video stream
cap = cv2.VideoCapture(0) # Change only if you have more than one webcams
# What model to download.
# Models can bee found here: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
MODEL_NAME = 'ssd_inception_v2_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
# Number of classes to detect
NUM_CLASSES = 90
# Download Model
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# Detection
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
# Read frame from camera
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Extract image tensor
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Extract detection boxes
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Extract detection scores
scores = detection_graph.get_tensor_by_name('detection_scores:0')
# Extract detection classes
classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Extract number of detectionsd
num_detections = detection_graph.get_tensor_by_name(
'num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
# Display output
cv2.imshow('object detection', cv2.resize(image_np, (800, 600)))
if cv2.waitKey(25) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
Have you tried passing -1 or 1 as the device index of the VideoCapture? Just in case you haven't tried it yet.
But
First of all, you should know where it went wrong. We should verify if the system reads the frames properly.
You can try implementing this to test if your camera is running and being read properly:
cap = cv.VideoCapture(0)
if not cap.isOpened():
print("Cannot open camera")
exit()
while True:
# Capture frame-by-frame
ret, frame = cap.read()
# if frame is read correctly ret is True
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
# Our operations on the frame come here
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
# Display the resulting frame
cv.imshow('frame', gray)
if cv.waitKey(1) == ord('q'):
break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()
cap.read() returns a bool (True/False). If the frame is read correctly, it will be True. So you can check for the end of the video by checking this returned value.
Sometimes, cap may not have initialized the capture. In that case, this code shows an error. You can check whether it is initialized or not by the method cap.isOpened(). If it is True, OK. Otherwise open it using cap.open().
with this, it will help you and us to determine what part has gone wrong and can suggest furthermore solutions.
After this, if the test shows no error, this link will be a little bit related.
You can check it out.
Provide us the result from this so we can inspect furthermore.

Feeding detection coordinates to an object tracker?

I'm working on multiple object tracking, I'm using the TensorFlow API to generate detections. I have managed to modify it a bit to make it return coordinates of the detected objects, now I want to feed the coordinates (bounding boxes) to an object tracker (CRST or KCF).
However running both detection and tracking simultaneously would be too computationally expensive.
Is there any other methods to pass the coordinates or pause the detection?
Below is the detection code.
And in this link is the tracking code https://github.com/spmallick/learnopencv/blob/master/MultiObjectTracker/multiTracker.py
import numpy as np
import os
import six.moves.urllib as urllib
import sys
sys.path.insert(0,r'C:\Users\Ahmed.DESKTOP-KJ6U1BJ\.spyder-py3\TensorFlow\models\research\object_detection')
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
import cv2
import imutils
from protos import string_int_label_map_pb2
from utils import visualization_utils2 as vis_util
def scale(bbox, width, height):
x = int(bbox[0]*width)
y = int(bbox[1]*height)
w = int(bbox[2]*width)
h = int(bbox[3]*height)
return (x,y,w,h)
W = 800
H = 600
videopath = "file:///C:/Users/Ahmed.DESKTOP-KJ6U1BJ/.spyder-py3/soccer4.mp4"
cap = cv2.VideoCapture(videopath)
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
# # Model preparation
# Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.
# By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = r'C:\Users\Ahmed.DESKTOP-KJ6U1BJ\.spyder-py3\TensorFlow\models\research\object_detection\data\mscoco_label_map.pbtxt'
NUM_CLASSES = 90
# ## Download Model ( uncomment if the model isn't downloaded / comment if you alredy have the model)
"""
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
"""
# ## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# ## Loading label map
# Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
import label_map_util
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# # Detection
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True :
ret, image_np = cap.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
boxes2 = np.squeeze(boxes)
max_boxes_to_draw =boxes2.shape[0]
scores2 = np.squeeze(scores)
min_score_thresh=0.7
classes2 = np.squeeze(classes).astype(np.int32)
for i in range(min(max_boxes_to_draw, boxes2.shape[0])):
if boxes2 is None or scores2[i] > min_score_thresh:
class_name = category_index[classes2[i]]['name']
print ("This box is gonna get used", scale(boxes2[i], W , H), class_name)
cv2.imshow('Object Detection',cv2.resize(image_np,(800,600)))
k = cv2.waitKey(1) & 0xff
if k == 27:
cv2.destroyAllWindows()
cap.release()
cv2.destroyAllWindows()
cap.release
you could count frames with a simple counter in the while True loop and "pause" the detection with an if statement before session.run like:
frame_count = 0
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True :
ret, image_np = cap.read()
#the first frame and every 10 frames do the detection
if frame_count == 0:
###detection here
#restart counter (from -10 to 0)
frame_count = -10
##do tracking here
frame_count += 1
This way the actual detection is done for the first frame and then every 10th frame, so in the other 9 frames you can do whatever you want.

How to run inference from the SavedModel locally?

I want to run a model locally. I'm trying to train and predict models from web course:
https://github.com/GoogleCloudPlatform/tensorflow-without-a-phd/blob/master/tensorflow-planespotting/trainer_yolo/main.py
A model was trained with above code. This is a YOLO object detection model that detect airplane built with tf.estimator. Training was done successfully with provided codes but I don't know about how to inference the model.
import tensorflow as tf
# DATA
DATA = './samples/airplane_sample.png'
# Model: This directory contains saved_model.pb and variables
SAVED_MODEL_DIR = './1559196417/'
def decode_image():
img_bytes = tf.read_file(DATA)
decoded = tf.image.decode_image(img_bytes, channels=3)
return tf.cast(decoded, dtype=tf.uint8)
def main1():
with tf.Session(graph=tf.Graph()) as sess:
tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], SAVED_MODEL_DIR)
img = decode_image()
result = sess.run(['classes'], feed_dict={'input': img})
print(result)
def main2():
model = tf.contrib.predictor.from_saved_model(SAVED_MODEL_DIR)
pred = model({'image_bytes': [decode_image()], 'square_size': [tf.placeholder(tf.int32)]})
print(pred)
if __name__ == "__main__":
main2()
Above is a code written by me but it doesn't work. Even I don't know what is a problem. Incorrect input type? Improper API? Could you give me some advice to me?
First run saved_model_cli show --all --dir SAVED_MODEL_DIR in the terminal outside of python to inspect the saved model and check that it has the right tags, inputs and outputs. From there it takes a bit of wrangling to get the necessary info out of the API.
def extract_tensors(signature_def, graph):
output = dict()
for key in signature_def:
value = signature_def[key]
if isinstance(value, tf.TensorInfo):
output[key] = graph.get_tensor_by_name(value.name)
return output
def extract_tags(signature_def, graph):
output = dict()
for key in signature_def:
output[key] = dict()
output[key]['inputs'] = extract_tensors(
signature_def[key].inputs, graph)
output[key]['outputs'] = extract_tensors(
signature_def[key].outputs, graph)
return output
with tf.Session(graph=tf.Graph()) as session:
serve = tf.saved_model.load(
session, tags=['serve'], export_dir=SAVED_MODEL_DIR)
tags = extract_tags(serve.signature_def, session.graph)
model = tags['serving_default']
From there you can try print(model['inputs'], model['outputs']) to see which inputs and outputs were exported and if they agree with saved_model_cli, if you need another tag then just replace serving_default with that.
Maybe this will work:
import tensorflow as tf
import cv2
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile('./1559196417/saved_model.pb', 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image = cv2.imread('./samples/airplane_sample.png')
rgb_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
rgb_img_expanded = np.expand_dims(rgb_img, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
classes = detection_graph.get_tensor_by_name('classes:0')
result = sess.run([classes],feed_dict={image_tensor: rgb_img_expanded})

Object Detection using Tensorflow

I am following tensorflow object detection tutorial for Oxford-IIIT Pets Dataset: https://github.com/tensorflow/models/blob/master/object_detection/g3doc/running_pets.md
I have successfully generated the "frozen_inference_graph.pb" from the latest checkpoint.
How I can test the inference graph - "frozen_inference_graph.pb" and pet labels - "pet_label_map.pbtxt" on an image.
I have tried using jupytor notebook but nothing gets detected in the image. I have also used following python code for detecting "dog" and "cat" but nothing gets detected. Python code is given below:
import os
import cv2
import time
import argparse
import multiprocessing
import numpy as np
import tensorflow as tf
from utils import FPS, WebcamVideoStream
from multiprocessing import Queue, Pool
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
PATH_TO_CKPT = os.path.join('frozen_inference_graph.pb')
PATH_TO_LABELS = os.path.join('pet_label_map.pbtxt')
NUM_CLASSES = 37
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(image_np, sess, detection_graph):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
return image_np
def worker(input_q, output_q):
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
frame = input_q.get()
output_q.put(detect_objects(frame, sess, detection_graph))
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-src', '--source', dest='video_source', type=int,
default=0, help='Device index of the camera.')
parser.add_argument('-wd', '--width', dest='width', type=int,
default=20, help='Width of the frames in the video stream.')
parser.add_argument('-ht', '--height', dest='height', type=int,
default=20, help='Height of the frames in the video stream.')
parser.add_argument('-num-w', '--num-workers', dest='num_workers', type=int,
default=2, help='Number of workers.')
parser.add_argument('-q-size', '--queue-size', dest='queue_size', type=int,
default=5, help='Size of the queue.')
args = parser.parse_args()
logger = multiprocessing.log_to_stderr()
logger.setLevel(multiprocessing.SUBDEBUG)
input_q = Queue(maxsize=args.queue_size)
output_q = Queue(maxsize=args.queue_size)
pool = Pool(args.num_workers, worker, (input_q, output_q))
frame = cv2.imread("image2.jpg");
input_q.put(frame)
cv2.imshow('Video', output_q.get())
cv2.waitKey(0)
cv2.destroyAllWindows()
Any help will be greatly appreciated related to running the inference graph on actual image or debugging if nothing gets detected.
if you are using Tensorflow API, go to the folder models/research, open there a console.
In the research folder run command protoc object_detection/protos/*.proto --python_out=. and then export PYTHONPATH=$PYTHONPATH:pwd:pwd/slim.
Then run cd object_detection to change folder in the console and open jupyter notebook in current folder.
In jupyter notebook's home find the file object_detection_tutorial.ipynb, modify it so that it suits your purposes.
What are the outputs of boxes, scores and classes? Can you print them? If you get numbers from them, maybe you just need to change a few lines in your code to properly visualize the results.
For test, you can use:
vis_util.save_image_array_as_png(image,'./outputImg.png')
#print(image.shape)
print('image saved')
img=mpimg.imread('./outputImg.png')
imgplot = plt.imshow(img)
plt.show()

Precision and recall from text file

I have this chunk of code which takes in a directory and spits of 5 prediction in descending order and stores it in a text file.
Any sugestions as to how may i edit this to calculate precsion and recall for the directory?
Thanks in advance.
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# change this as you see fit
image_path = sys.argv[1]
extension = ['*.jpeg', '*.jpg']
files=[]
for e in extension:
directory = os.path.join(image_path, e)
fileList = glob.glob(directory)
for f in fileList:
files.append(f)
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("/tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("/tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
# Read in the image_data
for file in files:
image_data = tf.gfile.FastGFile(file, 'rb').read()
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
print("Image Name: " + file)
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))
Consider using precision_recall_fscore_support or confusion_matrix.
For both of these you need actual labels and the predicted labels by model.

Categories