How to merge multiple pictures diagonally into a single one using Python - python

I'm trying to merge multiple images diagonally into a single one using Python.
I checked a lot of questions but didn't find something similar to my need.
All I can do right now is a simple merge of files on top of each other:
from PIL import Image
import numpy as np
img = Image.open("1.png")
background = Image.open("2.png")
background.paste(img, (0, 0), img)
background.save('result.png',"PNG")
Here are the pictures to test :
image1, image2, image3
I need the pictures to be arranged diagonally to fit into a final 900 x 1200 px size picture with white Background. Probably they need to be sized down a bit and fit ? At least that's the process I am doing in Photoshop, manually (time consuming).
Sometimes there's 2 pictures to fit, sometimes could be 4 or 5.

This should do the job:
from PIL import Image
images = ['1.png', '2.png', '3.png']
# shift between images
offset = (200, 100)
target_size = (900, 1200)
images = [Image.open(fn) for fn in images]
no_img = len(images)
image_size = [s+no_img*o for s, o in zip(images[0].size, offset)]
#create empty background
combined_image = Image.new('RGBA', image_size)
# paste each image at a slightly shifted position, start at top right
for idx, image in enumerate(images):
combined_image.paste(image, ((no_img - idx - 1) * offset[0], idx * offset[1]), image)
# crop to non-empty area
combined_image = combined_image.crop(combined_image.getbbox())
# resizing and padding such that it fits 900 x 1200 px
scale = min(target_size[0] / combined_image.size[0], target_size[1] / combined_image.size[1])
combined_image = combined_image.resize((int(combined_image.size[0] * scale), int(combined_image.size[1] * scale)), Image.BICUBIC)
img_w, img_h = combined_image.size
finale_output = Image.new('RGB', target_size, (255, 255, 255))
offset = ((target_size[0] - img_w) // 2, (target_size[1] - img_h) // 2)
finale_output.paste(combined_image, offset, combined_image)
# display
finale_output.show()
EDIT: I added the code for resizing and padding such that the output is exactly of your wanted size (whilst maintaining the aspect ratio).

Related

How to iterate over multiple images of different dimensions and stack them into a single picture horizontally?

I have a multiple pictures with different dimensions. I have been trying to concat them horizontally using openCV.
The process is kind of following:
Iterate over all the images to find the max width and total height.
Create a black mask that is with the size of max width and total height got from all the images.
Stack all the images horizontally on that black mask.
I am not sure how to do this thing. Kindly help me!
Images are just 3D matrices, so you can do this very easily by creating a matrix of zeros (= black) of the desired size, then filling in your images.
I've created fake images here but you can use cv2 to read in your real images.
import numpy as np
import matplotlib.pyplot as plt
# create three images of different shapes and different shades of grey
img1 = np.ones((100, 200, 3), dtype=int)*50
img2 = np.ones((200, 400, 3), dtype=int)*100
img3 = np.ones((100, 300, 3), dtype=int)*150
imgs = [img1, img2, img3]
# get max width and total height
max_width = 0
total_height = 0
for img in imgs:
total_height += img.shape[0]
max_width = max(max_width, img.shape[1])
# make black canvas of appropriate shape
canvas = np.zeros((total_height, max_width, 3), dtype=int)
# stack images on canvas
start_height = 0
for img in imgs:
print(img.shape)
canvas[start_height:start_height+img.shape[0], 0:img.shape[1], :] = img
start_height+= img.shape[0]
# show results
plt.imshow(canvas)
This produces the following result:

How do I make ImageOps.fit not crop?

How do I get ImageOps.fit(source28x32, (128, 128)) to fit without cropping off the top/bottom/sides? Do I really have to find the aspect, resize accordingly so the enlarged version does not exceed 128x128, and then add border pixels (or center the image in a 128x128 canvas)? Mind you that the source can be of any ratio, the 28x32 is just an example.
source image (28x32)
fitted image (128x128)
This is my attempt so far, not particularly elegant
def fit(im):
size = 128
x, y = im.size
ratio = float(x) / float(y)
if x > y:
x = size
y = size * 1 / ratio
else:
y = size
x = size * ratio
x, y = int(x), int(y)
im = im.resize((x, y))
new_im = Image.new('L', (size, size), 0)
new_im.paste(im, ((size - x) / 2, (size - y) / 2))
return new_im
New fitted image
Here is the function implemented in both PIL and cv2. The input can be of any size; the function finds the scale needed to fit the largest edge to the desired width, and then puts it onto a black square image of the desired width.
In PIL
def resize_PIL(im, output_edge):
scale = output_edge / max(im.size)
new = Image.new(im.mode, (output_edge, output_edge), (0, 0, 0))
paste = im.resize((int(im.width * scale), int(im.height * scale)), resample=Image.NEAREST)
new.paste(paste, (0, 0))
return new
In cv2
def resize_cv2(im, output_edge):
scale = output_edge / max(im.shape[:2])
new = np.zeros((output_edge, output_edge, 3), np.uint8)
paste = cv2.resize(im, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST)
new[:paste.shape[0], :paste.shape[1], :] = paste
return new
With a desired width of 128:
→
→
Not shown: these functions work on images larger than the desired size
This works pretty good to fit the image to size you want while filling in the rest with black space
from PIL import Image, ImageOps
def fit(im, width):
border = int((max(im.width, im.height) - min(im.width, im.height))/2)
im = ImageOps.expand(im, border)
im = ImageOps.fit(im, (width, width))
return im

Importing images like MNIST

I have a 100 images, each 10 for every digit and i am trying to convert it like MNIST images in python. But, constantly i am getting an error. Error is posted down!
from PIL import Image, ImageFilter
from os import listdir
def imageprepare(argv):
"""
This function returns the pixel values.
The imput is a png file location.
"""
imagesList = listdir(argv)
for image in imagesList:
im = Image.open(argv).convert('L')
width = float(im.size[0])
height = float(im.size[1])
newImage = Image.new('L', (28, 28), (255)) # creates white canvas of 28x28 pixels
if width > height: # check which dimension is bigger
# Width is bigger. Width becomes 20 pixels.
nheight = int(round((20.0 / width * height), 0)) # resize height according to ratio width
if (nheight == 0): # rare case but minimum is 1 pixel
nheight = 1
# resize and sharpen
img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wtop = int(round(((28 - nheight) / 2), 0)) # calculate horizontal position
newImage.paste(img, (4, wtop)) # paste resized image on white canvas
else:
# Height is bigger. Heigth becomes 20 pixels.
nwidth = int(round((20.0 / height * width), 0)) # resize width according to ratio height
if (nwidth == 0): # rare case but minimum is 1 pixel
nwidth = 1
# resize and sharpen
img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
wleft = int(round(((28 - nwidth) / 2), 0)) # caculate vertical pozition
newImage.paste(img, (wleft, 4)) # paste resized image on white canvas
# newImage.save("sample.png
tv = list(newImage.getdata()) # get pixel values
# normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
tva = [(255 - x) * 1.0 / 255.0 for x in tv]
print(tva)
return tva
argv= 'images/'
x=imageprepare(argv)#file path here
print(len(x))# mnist IMAGES are 28x28=784 pixels
error:
File "C:/Users/lenovo/.spyder-py3/Project1/test12.py", line 47, in
x=imageprepare(argv)#file path here
File "C:/Users/lenovo/.spyder-py3/Project1/test12.py", line 14, in imageprepare
im = Image.open(argv).convert('L')
File "C:\Users\lenovo\Anaconda3\lib\site-packages\PIL\Image.py", line 2477, in open
fp = builtins.open(filename, "rb")
PermissionError: [Errno 13] Permission denied: 'images/'
From the log above, it seems that you have no permission on folder images/ which has been passed as an argument to function imageprepare. Have you tried to change the access privileges of images? Or just run this from prompt as Administrator.

Using openCV to overlay transparent image onto another image

How can I overlay a transparent PNG onto another image without losing it's transparency using openCV in python?
import cv2
background = cv2.imread('field.jpg')
overlay = cv2.imread('dice.png')
# Help please
cv2.imwrite('combined.png', background)
Desired output:
Sources:
Background Image
Overlay
import cv2
background = cv2.imread('field.jpg')
overlay = cv2.imread('dice.png')
added_image = cv2.addWeighted(background,0.4,overlay,0.1,0)
cv2.imwrite('combined.png', added_image)
The correct answer to this was far too hard to come by, so I'm posting this answer even though the question is really old. What you are looking for is "over" compositing, and the algorithm for this can be found on Wikipedia: https://en.wikipedia.org/wiki/Alpha_compositing
I am far from an expert with OpenCV, but after some experimentation this is the most efficient way I have found to accomplish the task:
import cv2
background = cv2.imread("background.png", cv2.IMREAD_UNCHANGED)
foreground = cv2.imread("overlay.png", cv2.IMREAD_UNCHANGED)
# normalize alpha channels from 0-255 to 0-1
alpha_background = background[:,:,3] / 255.0
alpha_foreground = foreground[:,:,3] / 255.0
# set adjusted colors
for color in range(0, 3):
background[:,:,color] = alpha_foreground * foreground[:,:,color] + \
alpha_background * background[:,:,color] * (1 - alpha_foreground)
# set adjusted alpha and denormalize back to 0-255
background[:,:,3] = (1 - (1 - alpha_foreground) * (1 - alpha_background)) * 255
# display the image
cv2.imshow("Composited image", background)
cv2.waitKey(0)
The following code will use the alpha channels of the overlay image to correctly blend it into the background image, use x and y to set the top-left corner of the overlay image.
import cv2
import numpy as np
def overlay_transparent(background, overlay, x, y):
background_width = background.shape[1]
background_height = background.shape[0]
if x >= background_width or y >= background_height:
return background
h, w = overlay.shape[0], overlay.shape[1]
if x + w > background_width:
w = background_width - x
overlay = overlay[:, :w]
if y + h > background_height:
h = background_height - y
overlay = overlay[:h]
if overlay.shape[2] < 4:
overlay = np.concatenate(
[
overlay,
np.ones((overlay.shape[0], overlay.shape[1], 1), dtype = overlay.dtype) * 255
],
axis = 2,
)
overlay_image = overlay[..., :3]
mask = overlay[..., 3:] / 255.0
background[y:y+h, x:x+w] = (1.0 - mask) * background[y:y+h, x:x+w] + mask * overlay_image
return background
This code will mutate background so create a copy if you wish to preserve the original background image.
Been a while since this question appeared, but I believe this is the right simple answer, which could still help somebody.
background = cv2.imread('road.jpg')
overlay = cv2.imread('traffic sign.png')
rows,cols,channels = overlay.shape
overlay=cv2.addWeighted(background[250:250+rows, 0:0+cols],0.5,overlay,0.5,0)
background[250:250+rows, 0:0+cols ] = overlay
This will overlay the image over the background image such as shown here:
Ignore the ROI rectangles
Note that I used a background image of size 400x300 and the overlay image of size 32x32, is shown in the x[0-32] and y[250-282] part of the background image according to the coordinates I set for it, to first calculate the blend and then put the calculated blend in the part of the image where I want to have it.
(overlay is loaded from disk, not from the background image itself,unfortunately the overlay image has its own white background, so you can see that too in the result)
If performance isn't a concern then you can iterate over each pixel of the overlay and apply it to the background. This isn't very efficient, but it does help to understand how to work with png's alpha layer.
slow version
import cv2
background = cv2.imread('field.jpg')
overlay = cv2.imread('dice.png', cv2.IMREAD_UNCHANGED) # IMREAD_UNCHANGED => open image with the alpha channel
height, width = overlay.shape[:2]
for y in range(height):
for x in range(width):
overlay_color = overlay[y, x, :3] # first three elements are color (RGB)
overlay_alpha = overlay[y, x, 3] / 255 # 4th element is the alpha channel, convert from 0-255 to 0.0-1.0
# get the color from the background image
background_color = background[y, x]
# combine the background color and the overlay color weighted by alpha
composite_color = background_color * (1 - overlay_alpha) + overlay_color * overlay_alpha
# update the background image in place
background[y, x] = composite_color
cv2.imwrite('combined.png', background)
result:
fast version
I stumbled across this question while trying to add a png overlay to a live video feed. The above solution is way too slow for that. We can make the algorithm significantly faster by using numpy's vector functions.
note: This was my first real foray into numpy so there may be better/faster methods than what I've come up with.
import cv2
import numpy as np
background = cv2.imread('field.jpg')
overlay = cv2.imread('dice.png', cv2.IMREAD_UNCHANGED) # IMREAD_UNCHANGED => open image with the alpha channel
# separate the alpha channel from the color channels
alpha_channel = overlay[:, :, 3] / 255 # convert from 0-255 to 0.0-1.0
overlay_colors = overlay[:, :, :3]
# To take advantage of the speed of numpy and apply transformations to the entire image with a single operation
# the arrays need to be the same shape. However, the shapes currently looks like this:
# - overlay_colors shape:(width, height, 3) 3 color values for each pixel, (red, green, blue)
# - alpha_channel shape:(width, height, 1) 1 single alpha value for each pixel
# We will construct an alpha_mask that has the same shape as the overlay_colors by duplicate the alpha channel
# for each color so there is a 1:1 alpha channel for each color channel
alpha_mask = np.dstack((alpha_channel, alpha_channel, alpha_channel))
# The background image is larger than the overlay so we'll take a subsection of the background that matches the
# dimensions of the overlay.
# NOTE: For simplicity, the overlay is applied to the top-left corner of the background(0,0). An x and y offset
# could be used to place the overlay at any position on the background.
h, w = overlay.shape[:2]
background_subsection = background[0:h, 0:w]
# combine the background with the overlay image weighted by alpha
composite = background_subsection * (1 - alpha_mask) + overlay_colors * alpha_mask
# overwrite the section of the background image that has been updated
background[0:h, 0:w] = composite
cv2.imwrite('combined.png', background)
How much faster? On my machine the slow method takes ~3 seconds and the optimized method takes ~ 30 ms. So about
100 times faster!
Wrapped up in a function
This function handles foreground and background images of different sizes and also supports negative and positive offsets the move the overlay across the bounds of the background image in any direction.
import cv2
import numpy as np
def add_transparent_image(background, foreground, x_offset=None, y_offset=None):
bg_h, bg_w, bg_channels = background.shape
fg_h, fg_w, fg_channels = foreground.shape
assert bg_channels == 3, f'background image should have exactly 3 channels (RGB). found:{bg_channels}'
assert fg_channels == 4, f'foreground image should have exactly 4 channels (RGBA). found:{fg_channels}'
# center by default
if x_offset is None: x_offset = (bg_w - fg_w) // 2
if y_offset is None: y_offset = (bg_h - fg_h) // 2
w = min(fg_w, bg_w, fg_w + x_offset, bg_w - x_offset)
h = min(fg_h, bg_h, fg_h + y_offset, bg_h - y_offset)
if w < 1 or h < 1: return
# clip foreground and background images to the overlapping regions
bg_x = max(0, x_offset)
bg_y = max(0, y_offset)
fg_x = max(0, x_offset * -1)
fg_y = max(0, y_offset * -1)
foreground = foreground[fg_y:fg_y + h, fg_x:fg_x + w]
background_subsection = background[bg_y:bg_y + h, bg_x:bg_x + w]
# separate alpha and color channels from the foreground image
foreground_colors = foreground[:, :, :3]
alpha_channel = foreground[:, :, 3] / 255 # 0-255 => 0.0-1.0
# construct an alpha_mask that matches the image shape
alpha_mask = np.dstack((alpha_channel, alpha_channel, alpha_channel))
# combine the background with the overlay image weighted by alpha
composite = background_subsection * (1 - alpha_mask) + foreground_colors * alpha_mask
# overwrite the section of the background image that has been updated
background[bg_y:bg_y + h, bg_x:bg_x + w] = composite
example usage:
background = cv2.imread('field.jpg')
overlay = cv2.imread('dice.png', cv2.IMREAD_UNCHANGED) # IMREAD_UNCHANGED => open image with the alpha channel
x_offset = 0
y_offset = 0
print("arrow keys to move the dice. ESC to quit")
while True:
img = background.copy()
add_transparent_image(img, overlay, x_offset, y_offset)
cv2.imshow("", img)
key = cv2.waitKey()
if key == 0: y_offset -= 10 # up
if key == 1: y_offset += 10 # down
if key == 2: x_offset -= 10 # left
if key == 3: x_offset += 10 # right
if key == 27: break # escape
You need to open the transparent png image using the flag IMREAD_UNCHANGED
Mat overlay = cv::imread("dice.png", IMREAD_UNCHANGED);
Then split the channels, group the RGB and use the transparent channel as an mask, do like that:
/**
* #brief Draws a transparent image over a frame Mat.
*
* #param frame the frame where the transparent image will be drawn
* #param transp the Mat image with transparency, read from a PNG image, with the IMREAD_UNCHANGED flag
* #param xPos x position of the frame image where the image will start.
* #param yPos y position of the frame image where the image will start.
*/
void drawTransparency(Mat frame, Mat transp, int xPos, int yPos) {
Mat mask;
vector<Mat> layers;
split(transp, layers); // seperate channels
Mat rgb[3] = { layers[0],layers[1],layers[2] };
mask = layers[3]; // png's alpha channel used as mask
merge(rgb, 3, transp); // put together the RGB channels, now transp insn't transparent
transp.copyTo(frame.rowRange(yPos, yPos + transp.rows).colRange(xPos, xPos + transp.cols), mask);
}
Can be called like that:
drawTransparency(background, overlay, 10, 10);
To overlay png image watermark over normal 3 channel jpeg image
import cv2
import numpy as np
​
def logoOverlay(image,logo,alpha=1.0,x=0, y=0, scale=1.0):
(h, w) = image.shape[:2]
image = np.dstack([image, np.ones((h, w), dtype="uint8") * 255])
​
overlay = cv2.resize(logo, None,fx=scale,fy=scale)
(wH, wW) = overlay.shape[:2]
output = image.copy()
# blend the two images together using transparent overlays
try:
if x<0 : x = w+x
if y<0 : y = h+y
if x+wW > w: wW = w-x
if y+wH > h: wH = h-y
print(x,y,wW,wH)
overlay=cv2.addWeighted(output[y:y+wH, x:x+wW],alpha,overlay[:wH,:wW],1.0,0)
output[y:y+wH, x:x+wW ] = overlay
except Exception as e:
print("Error: Logo position is overshooting image!")
print(e)
​
output= output[:,:,:3]
return output
Usage:
background = cv2.imread('image.jpeg')
overlay = cv2.imread('logo.png', cv2.IMREAD_UNCHANGED)
​
print(overlay.shape) # must be (x,y,4)
print(background.shape) # must be (x,y,3)
# downscale logo by half and position on bottom right reference
out = logoOverlay(background,overlay,scale=0.5,y=-100,x=-100)
​
cv2.imshow("test",out)
cv2.waitKey(0)
import cv2
import numpy as np
background = cv2.imread('background.jpg')
overlay = cv2.imread('cloudy.png')
overlay = cv2.resize(overlay, (200,200))
# overlay = for_transparent_removal(overlay)
h, w = overlay.shape[:2]
shapes = np.zeros_like(background, np.uint8)
shapes[0:h, 0:w] = overlay
alpha = 0.8
mask = shapes.astype(bool)
# option first
background[mask] = cv2.addWeighted(shapes, alpha, shapes, 1 - alpha, 0)[mask]
cv2.imwrite('combined.png', background)
# option second
background[mask] = cv2.addWeighted(background, alpha, overlay, 1 - alpha, 0)[mask]
# NOTE : above both option will give you image overlays but effect would be changed
cv2.imwrite('combined.1.png', background)
**Use this function to place your overlay on any background image.
if want to resize overlay use this overlay = cv2.resize(overlay, (200,200)) and then pass resized overlay into the function.
**
import cv2
import numpy as np
def image_overlay_second_method(img1, img2, location, min_thresh=0, is_transparent=False):
h, w = img1.shape[:2]
h1, w1 = img2.shape[:2]
x, y = location
roi = img1[y:y + h1, x:x + w1]
gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
_, mask = cv2.threshold(gray, min_thresh, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
img_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
img_fg = cv2.bitwise_and(img2, img2, mask=mask)
dst = cv2.add(img_bg, img_fg)
if is_transparent:
dst = cv2.addWeighted(img1[y:y + h1, x:x + w1], 0.1, dst, 0.9, None)
img1[y:y + h1, x:x + w1] = dst
return img1
if __name__ == '__main__':
background = cv2.imread('background.jpg')
overlay = cv2.imread('overlay.png')
output = image_overlay_third_method(background, overlay, location=(800,50), min_thresh=0, is_transparent=True)
cv2.imwrite('output.png', output)
background.jpg
output.png

Python PIL/Image make 3x3 Grid from sequence Images

I'm trying to make a 3x3 Grid by sequence images but can't seem to get it right. The images are in folder, named from 0 - 8 (total 9 images), the output of the final one image grid of 3x3 should as follow
image0 image1 image2
image3 image4 image5
image6 image7 image8
I was trying to follow How do you merge images into a canvas using PIL/Pillow? but couldn't get it work correctly.
There are no need to change anything in the image, just merge them and make a 3x3 Grid
To make a grid of arbitrary shape (cols*img_height, rows*img_width) out of rows*cols images:
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
In your case, assuming imgs is a list of PIL images:
grid = image_grid(imgs, rows=3, cols=3)
Here's an example how this can be done (consider image is one of your images):
img_w, img_h = image.size
background = Image.new('RGBA',(1300, 1300), (255, 255, 255, 255))
bg_w, bg_h = background.size
offset = (10,(((bg_h - img_h)) / 2)-370)
background.paste(image1,offset)
Adjust the offset, width and height to fit your requirements.

Categories