Hyperparapeters optimization with grid_search in keras and flow_from_directory - python

I tried to optimize hyperparameters in my keras CNN made for image classification. I decided to use grid search from sklearn. I overcame the fundamental difficulty with making x and y out of keras flow_from_directory but it still doesn't work.
Error in the last line
ValueError: dropout is not a legal parameter
def grid_model(optimizer='adam',
kernel_initializer='random_uniform',
dropout=0.2,
loss='categorical_crossentropy'):
model = Sequential()
model.add(Conv2D(6,(5,5),activation="relu",padding="same",
input_shape=(img_width, img_height, 3)))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(dropout))
model.add(Conv2D(16,(5,5),activation="relu"))
model.add(MaxPooling2D((2,2)))
model.add(Dropout(dropout))
model.add(Flatten())
model.add(Dense(120, activation='relu', kernel_initializer=kernel_initializer))
model.add(Dropout(dropout))
model.add(Dense(84, activation='relu', kernel_initializer=kernel_initializer))
model.add(Dropout(dropout))
model.add(Dense(10, activation='softmax'))
model.compile(loss=loss,
optimizer=optimizer,
metrics=['accuracy'])
return model
train_generator = ImageDataGenerator(rescale=1/255)
validation_generator = ImageDataGenerator(rescale=1/255)
# Retrieve images and their classes for train and validation sets
train_flow = train_generator.flow_from_directory(directory=train_data_dir,
batch_size=batch_size,
target_size=(img_height,img_width))
validation_flow = validation_generator.flow_from_directory(directory=validation_data_dir,
batch_size=batch_size,
target_size=(img_height,img_width),
shuffle = False)
clf = KerasClassifier(build_fn=grid_model(), epochs=epochs, verbose=0)
param_grid = {
'clf__optimizer':['adam', 'Nadam'],
'clf__epochs':[100, 200],
'clf__dropout':[0.1, 0.2, 0.5],
'clf__kernel_initializer':['normal','uniform'],
'clf__loss':['categorical_crossentropy',
'sparse_categorical_crossentropy',
'kullback_leibler_divergence']
}
pipeline = Pipeline([('clf',clf)])
(X_train, Y_train) = train_flow.next()
grid = GridSearchCV(pipeline, cv=2, param_grid=param_grid)
grid.fit(X_train, Y_train)

The problem is in this line:
clf = KerasClassifier(build_fn=grid_model(), epochs=epochs, verbose=0)
change it to
clf = KerasClassifier(build_fn=grid_model, epochs=epochs, verbose=0)
The grid_model method should not be invoked but a reference to it should be passed.
Also, in the list of losses, 'sparse_categorical_crossentropy'(integer) cannot be used because the output shape required of the model is incompatible with that of 'categorical_crossentropy'(one-hot).

Related

How to calculate mean relative error on test datasets

def create_model():
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(40002, 12)))
model.add(LSTM(50, return_sequences= True))
model.add(LSTM(50, return_sequences= True))
model.add(tf.keras.layers.LSTM(30))
model.add(Dense(2, activation='linear'))
def rmse(Y_test, prediction):
return K.sqrt(K.mean(K.square(Y_test-prediction)))
# compile
model.compile(optimizer='adam', loss=rmse, metrics=['mean_squared_error', rmse])
return model
# fit the model
model = create_model()
model.fit(x_train, Y_train, shuffle=False, verbose=1, epochs=10)
# # predict model
prediction = model.predict(x_test, verbose=0)
print(prediction)
How to calculate mean relative error for tensor inputs i.e my Y_test and prediction are tensor.
Y_test and prediction as 2 values
Example:
Y_test = [[0.2,0.003],
[0.3, 0.008]]
prediction = [[0.4,0.005],
[0.5,0.007]]
mean_relative_error = mean(absolute(0.2-0.4)/0.2 + absolute(0.003-0.005)/0.003), mean(absolute(0.3-0.5)/0.3 + absolute(0.008-0.007)/0.008)
mean_relative_error = [0.533, 0.3925]
Please note that I don't want to use it for backpropagation to improve the network.
Would have added like this:
from tensorflow.math import reduce_mean, abs, reduce_sum
relative_error = reduce_mean(reduce_sum(abs(prediction-Y_test)/prediction, axis=1))
# [0.9, 0.54285717]
mean_relative_error = reduce_mean(relative_error)
# 0.7214286
I couldn't use tf.keras.losses.MeanAbsoluteError(reduction=tf.keras.losses.Reduction.NONE) because of a bug. The MeanAbsoluteError still does reduce to mean despite specifying it not to. The bug reported HERE

Very simple Keras binary classification doesn't work

Can someone please explain why the following code achieves only about 50% classification accuracy?
I am trying to classify lists of 20 items into 0 or 1. The lists are all 5s or all 6s.
import numpy as np
import keras
from sklearn.model_selection import train_test_split
positive_samples = [[5]*20]*100
negative_samples = [[6]*20]*100
x_list = np.array(positive_samples+negative_samples, dtype=np.float32)
y_list = np.array([1]*len(positive_samples)+[0]*len(negative_samples), dtype=np.float32)
x_train, x_test, y_train, y_test = train_test_split(x_list, y_list, test_size=0.20, random_state=42)
y_train = keras.utils.to_categorical(y_train, 2)
y_test = keras.utils.to_categorical(y_test, 2)
model = keras.models.Sequential()
model.add(keras.layers.Dense(10, input_dim=x_train.shape[1], kernel_initializer='normal', activation='relu'))
model.add(keras.layers.Dense(5, kernel_initializer='normal', activation='relu'))
model.add(keras.layers.Dense(2, kernel_initializer='normal', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=10, epochs=20, verbose=2, validation_data=(x_test, y_test))
print (model.evaluate(x_test, y_test, verbose=0))
Since the last output layer has 2 values per sample, you need to use a softmax activation instead of sigmoid.
Also, that means binary_crossentropy cannot be used, and you have to use categorical_crossentropy.
I have also normalized the dataset x_list by dividing with the maximum (6).
x_list /= x_list.max()
Also, you need to shuffle the dataset, by passing shuffle=True in train_test_split.
import numpy as np
import keras
from sklearn.model_selection import train_test_split
positive_samples = [[5]*20]*100
negative_samples = [[6]*20]*100
x_list = np.array(positive_samples+negative_samples, dtype=np.float32)
y_list = np.array([1]*len(positive_samples)+[0]*len(negative_samples), dtype=np.float32)
x_list /= x_list.max()
x_train, x_test, y_train, y_test = train_test_split(x_list, y_list, test_size=0.20, shuffle=True, random_state=42)
y_train = keras.utils.to_categorical(y_train, 2)
y_test = keras.utils.to_categorical(y_test, 2)
model = keras.models.Sequential()
model.add(keras.layers.Dense(10, input_dim=x_train.shape[1], kernel_initializer='normal', activation='relu'))
model.add(keras.layers.Dense(5, kernel_initializer='normal', activation='relu'))
model.add(keras.layers.Dense(2, kernel_initializer='normal', activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=10, epochs=100, verbose=2, validation_data=(x_test, y_test))
print (model.evaluate(x_test, y_test, verbose=0))
A sigmoid activation in the output makes sense only when there is 1 output, in which the value would be in range [0, 1] signifying probability of the instance being a 1.
In case of 2 (or more) output neurons, it is necessary we normalize the probabilities to sum upto 1 so we use a softmax layer instead.
Data should be normalized before feeding it to the network, this is normally done by changing the values to be between 0 and 1 or -1 and 1. Setting the input to;
positive_samples = [[1]*20]*100
negative_samples = [[-1]*20]*100
works or the model could be changed to:
model = keras.models.Sequential()
model.add(BatchNormalization())
model.add(keras.layers.Dense(10, kernel_initializer='normal', activation='relu'))
model.add(keras.layers.Dense(5, kernel_initializer='normal', activation='relu'))
model.add(keras.layers.Dense(2, kernel_initializer='normal', activation='sigmoid'))

How to save pipelined estimator in Keras?

I am using Scikit Learn in Python where I pipelined KerasClassifier with StandardScaler().
The code is:
def create_baseline():
model = Sequential()
model.add(Dense(11, input_dim=11, kernel_initializer='normal', activation='relu'))
model.add(Dense(7, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal', activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
classifier = KerasClassifier(build_fn=create_baseline, nb_epoch=150, batch_size=5)
kfold = StratifiedKFold(n_splits=2, shuffle=True, random_state=seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', classifier))
pipeline = Pipeline(estimators)
results = cross_val_score(pipeline, X, Y, cv=kfold, verbose=1, fit_params={'mlp__callbacks':[tbCallBack]})
print("Result: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
How can I save the cross validation? Taking into consideration that I did not fit the classifier before, I need to save the result and then load it to make predictions.

Can't plot learning curve of keras model

It's my NN in keras. The model was compiled and trained. When I try to plot the learning curve of history, only empty window appears.
model = Sequential()
model.add(Dense(64, input_dim=30,
activity_regularizer=regularizers.l2(0.01)))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Dense(16,
activity_regularizer=regularizers.l2(0.01)))
model.add(BatchNormalization())
model.add(LeakyReLU())
model.add(Dense(2))
model.add(Activation('softmax'))
opt = Nadam(lr=0.001)
reduce_lr = ReduceLROnPlateau(monitor='val_acc', factor=0.9, patience=25, min_lr=0.000001, verbose=1)
checkpointer = ModelCheckpoint(filepath="test.hdf5", verbose=1, save_best_only=False)
model.compile(optimizer=opt,
loss='categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
nb_epoch = 1,
batch_size = 128,
verbose=1,
validation_data=(X_test, Y_test),
callbacks=[reduce_lr, checkpointer],
shuffle=True)
plt.plot(history.history['acc'])
When I print history.history['acc'], it's just one number. Not a list.
I'd be happy, if you can help
Try increasing the number of epochs

Operation u'init_27' has been marked as not fetchable. tensorflow

I'm triying to train my network using a convolutional neural network based on keras tensorflow this is my code i have an error on the function compile but i don't know why
model = Sequential() # or Graph or whatever
model.add(Embedding(input_dim = n_symbols + 1,
output_dim = vocab_dim,
input_length=maxlen,
dropout=0.2))
# we add a Convolution1D, which will learn nb_filter
# word group filters of size filter_length:
model.add(Convolution1D(nb_filter=nb_filter,
filter_length=filter_length,
border_mode='valid',
activation='relu',
subsample_length=1))
# we use max pooling:
model.add(GlobalMaxPooling1D())
# We add a vanilla hidden layer:
model.add(Dense(hidden_dims))
model.add(Dropout(0.2))
model.add(Activation('relu'))
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='mean_squared_error',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, y_train,
batch_size=batch_size,
nb_epoch=nb_epoch,
validation_data=(X_test, y_test))
print("Evaluate...")
score, acc = model.evaluate(X_test, y_test,
batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)
error:
ValueError: Operation u'init_27' has been marked as not fetchable.

Categories