Predicting from the middle of a Keras model - python

I am trying to develop an auto-encoder for compressing images using Keras. I was able to train it and to compress images, but I am struggling with the decoder part of it. Specifically, given a compressed image, I don't know how to use the model to de-compress it.
This is what I have:
input_layer = keras.layers.Input(shape=(64, 64, 3))
code_layer = build_encoder(input_layer, size_of_code) # add some convolution layers and max-pooling
output_layer = build_decoder(code_layer) # add some convolution layers and up-sampling
autoencoder_model = keras.models.Model(input_layer, output_layer)
encoder_model = keras.models.Model(input_layer, code_layer)
decoder_model = ??
autoencoder_model.compile(optimizer='adam', loss='binary_crossentropy')
using the code above I can train the autoencoder_model and compress the images using the encoder_model, but I don't know how to construct the decoder_model, mainly because I don't know how to insert a new input to the middle of the model.

Like this. Instead of the code_layer, need to define an input layer and build the decoder model with that input.
latent_inputs = keras.layers.Input(shape=(size_of_code))
output_layer = build_decoder(latent_inputs) # add some convolution layers and up-sampling
decoder_model = keras.models.Model(latent_inputs, output_layer)
You can refer this complete VAE example:
https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py

Related

How to get the latent vector as an output from a cnn model before training to the fully connected layer?

I am working on CNN model using Tensorflow frames in google collab. I am unable to extract the latent vectors from the convolutional layers. I want to extract the output of the convolutional layers, the layers before fully connected layer.
I have tried with the following code
a = dropout()(classifier_model.output)
print(a)
I am unable to understand the solution suggested on the link Stackoverflow solution to print the value of tensorflow object after applying a-conv-pool-layer
Anyone with any suggestion?
You can use get_layer method of the Model class to get a layer by its name, find bellow an example with a dummy 1D CNN and a binary classifier :
timesteps = 100
nfeatures = 2
# build the model using the functional API
# example of a 1D CNN inspired by the your stack overflow link, but using a model instead of successive *raw* layers
# the values of the Conv1D filters and kernels are different
input = Input((timesteps, nfeatures))
p = Conv1D(filters=16, kernel_size=10)(input)
p = ReLU()(p)
p = MaxPool1D(pool_size=2)(p)
p = Conv1D(filters=32, kernel_size=10)(p)
p = ReLU()(p)
p = MaxPool1D(pool_size=2)(p)
p = Conv1D(filters=64, kernel_size=10)(p)
p = ReLU()(p)
p = MaxPool1D(pool_size=2, name='conv1Dfeat')(p) # give a name to the CNN output
# fully connected part
p = Flatten()(p)
p = Dense(10)(p)
# could add a dropout layer to ease optimization
finaloutput = Dense(1, activation='sigmoid')(p)
# full model
model = Model(inputs=input, outputs=finaloutput)
# compile network, i.e. define optimizer, loss and metrics
model.compile(optimizer='Adam', loss='binary_crossentropy', metrics=['accuracy'])
model.summary()
You need to train the model using the fit method with some data. Then you can get the output of the layer which name is conv1Dfeat (the last layer of the convolutive part) by defining the model:
modelCNN = Model(inputs=input, outputs=model.get_layer('conv1Dfeat').output)
modelCNN.summary()
If you want to get the output of the convolutive part, let's say based on a single numpy input array of shape (timesteps, nfeatures), you can use the predict of the Model class on batched data:
data = np.random.normal(size=(timesteps, nfeatures)) # dummy data
data_tf = tf.expand_dims(data, axis=0) # convert to TF tensor and add batch dimension at the same time
cnn_out_np = modelCNN.predict(data_tf)
cnn_out_np = np.squeeze(cnn_out_np, axis=0) # remove batch dimension
print(cnn_out_np.shape)
(4, 64)

What is the most efficient way to modify a Keras Model?

Is there a way to add nodes to a layer in an existing Keras model? if so, what is the most efficient way to do so?
Also, is it possible to do the same but with layers? i.e. add a new layer to an existing Keras model (for example, right after the input layer).
One way I know of is to use Keras functional API by iterating and cloning each layer of the model in order to create a "copy" of the original model with the desired changes, but is it the most efficient way to accomplish this task?
You can take the output of a layer in a model and build another model starting from it:
import tensorflow as tf
# One simple model
inputs = tf.keras.Input(shape=(3,))
x = tf.keras.layers.Dense(4, activation='relu')(inputs)
outputs = tf.keras.layers.Dense(5, activation='softmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
# Make a second model starting from layer in previous model
x2 = tf.keras.layers.Dense(8, activation='relu')(model.layers[1].output)
outputs2 = tf.keras.layers.Dense(7, activation='softmax')(x2)
model2 = tf.keras.Model(inputs=model.input, outputs=outputs2)
Note that in this case model and model2 share the same input layer and first dense layer objects (model.layers[0] is model2.layers[0] and model.layers[1] is model2.layers[1]).

How to bypass portion of neural network in TensorFlow for some (but not all) features

In my TensorFlow model I have some data that I feed into a stack of CNNs before it goes into a few fully connected layers. I have implemented that with Keras' Sequential model. However, I now have some data that should not go into the CNN and instead be fed directly into the first fully connected layer because that data contains some values and labels that are part of the input data but that data should not undergo convolutions as it is not image data.
Is such a thing possible with tensorflow.keras or should I do that with tensorflow.nn instead? As far as I understand Keras' sequential models is that the input goes in one end and comes out the other with no special wiring in the middle.
Am I correct that to do this I have to use tensorflow.concat on the data from the last CNN layer and the data that bypasses the CNNs before feeding it into the first fully connected layer?
Here is an simple example in which the operation is to sum the activations from different subnets:
import keras
import numpy as np
import tensorflow as tf
from keras.layers import Input, Dense, Activation
tf.reset_default_graph()
# this represents your cnn model
def nn_model(input_x):
feature_maker = Dense(10, activation='relu')(input_x)
feature_maker = Dense(20, activation='relu')(feature_maker)
feature_maker = Dense(1, activation='linear')(feature_maker)
return feature_maker
# a list of input layers, of course the input shapes can be different
input_layers = [Input(shape=(3, )) for _ in range(2)]
coupled_feature = [nn_model(input_x) for input_x in input_layers]
# assume you take the sum of the outputs
coupled_feature = keras.layers.Add()(coupled_feature)
prediction = Dense(1, activation='relu')(coupled_feature)
model = keras.models.Model(inputs=input_layers, outputs=prediction)
model.compile(loss='mse', optimizer='adam')
# example training set
x_1 = np.linspace(1, 90, 270).reshape(90, 3)
x_2 = np.linspace(1, 90, 270).reshape(90, 3)
y = np.random.rand(90)
inputs_x = [x_1, x_2]
model.fit(inputs_x, y, batch_size=32, epochs=10)
You can actually plot the model to gain more intuition
from keras.utils.vis_utils import plot_model
plot_model(model, show_shapes=True)
The model of the above code looks like this
With a little remodeling and the functional API you can:
#create the CNN - it can also be a sequential
cnn_input = Input(image_shape)
cnn_output = Conv2D(...)(cnn_input)
cnn_output = Conv2D(...)(cnn_output)
cnn_output = MaxPooling2D()(cnn_output)
....
cnn_model = Model(cnn_input, cnn_output)
#create the FC model - can also be a sequential
fc_input = Input(fc_input_shape)
fc_output = Dense(...)(fc_input)
fc_output = Dense(...)(fc_output)
fc_model = Model(fc_input, fc_output)
There is a lot of space for creativity, this is just one of the ways.
#create the full model
full_input = Input(image_shape)
full_output = cnn_model(full_input)
full_output = fc_model(full_output)
full_model = Model(full_input, full_output)
You can use any of the three models in any way you want. They share the layers and the weights, so internally they are the same.
Saving and loading the full model might be quirky. I'd probably save the other two separately and when loading create the full model again.
Notice also that if you save two models that share the same layers, after loading they will probably not share these layers anymore. (Another reason for saving/loading only fc_model and cnn_model, while creating full_model again from code)

Make fixed timestep length LSTM Keras model free timestep length

I have a Keras LSTM multitask model that performs two tasks. One is a sequence tagging task (so I predict a label per token). The other is a global classification task over the whole sequence using a CNN that is stacked on the hidden states of the LSTM.
In my setup (don't ask why) I only need the CNN task during training, but the labels it predicts have no use on the final product. So, on Keras, one can train a LSTM model without especifiying the input sequence lenght. like this:
l_input = Input(shape=(None,), dtype="int32", name=input_name)
However, if I add the CNN stacked on the LSTM hidden states I need to set a fixed sequence length for the model.
l_input = Input(shape=(timesteps_size,), dtype="int32", name=input_name)
The problem is that once I have trained the model with a fixed timestep_size I can no longer use it to predict longer sequences.
In other frameworks this is not a problem. But in Keras, I cannot get rid of the CNN and change the expected input shape of the model once it has been trained.
Here is a simplified version of the model
l_input = Input(shape=(timesteps_size,), dtype="int32")
l_embs = Embedding(len(input.keys()), 100)(l_input)
l_blstm = Bidirectional(GRU(300, return_sequences=True))(l_embs)
# Sequential output
l_out1 = TimeDistributed(Dense(len(labels.keys()),
activation="softmax"))(l_blstm)
# Global output
conv1 = Conv1D( filters=5 , kernel_size=10 )( l_embs )
conv1 = Flatten()(MaxPooling1D(pool_size=2)( conv1 ))
conv2 = Conv1D( filters=5 , kernel_size=8 )( l_embs )
conv2 = Flatten()(MaxPooling1D(pool_size=2)( conv2 ))
conv = Concatenate()( [conv1,conv2] )
conv = Dense(50, activation="relu")(conv)
l_out2 = Dense( len(global_labels.keys()) ,activation='softmax')(conv)
model = Model(input=input, output=[l_out1, l_out2])
optimizer = Adam()
model.compile(optimizer=optimizer,
loss="categorical_crossentropy",
metrics=["accuracy"])
I would like to know if anyone here has faced this issue, and if there are any solutions to delete layers from a model after training and, more important, how to reshape input layer sizes after training.
Thanks
Variable timesteps length makes a problem not because of using convolution layers (actually the good thing about convolution layers is that they do not depend on the input size). Rather, using Flatten layers cause the problem here since they need an input with specified size. Instead, you can use Global Pooling layers. Further, I think stacking convolution and pooling layers on top of each other might give a better result instead of using two separate convolution layers and merging them (although this depends on the specific problem and dataset you are working on). So considering these two points it might be better to write your model like this:
# Global output
conv1 = Conv1D(filters=16, kernel_size=5)(l_embs)
conv1 = MaxPooling1D(pool_size=2)(conv1)
conv2 = Conv1D(filters=32, kernel_size=5)(conv1)
conv2 = MaxPooling1D(pool_size=2)(conv2)
gpool = GlobalAveragePooling1D()(conv2)
x = Dense(50, activation="relu")(gpool)
l_out2 = Dense(len(global_labels.keys()), activation='softmax')(x)
model = Model(inputs=l_input, outputs=[l_out1, l_out2])
You may need to tune the number of conv+maxpool layers, number of filters, kernel size and even add dropout or batch normalization layers.
As a side note, using TimeDistributed on a Dense layer is redundant as the Dense layer is applied on the last axis.

Delete last layer and insert three Conv2D layers in Keras

I have a model in Keras for classification that I trained on some dataset. Call that model "classification_model". That model is saved in "classification.h5". Model for detection is the same, except that we delete last convolutional layer, and add three Conv2D layers of size (3,3). So, our model for detection "detection_model" should look like this:
detection_model = classification_model[: last_conv_index] + Conv2d + Conv2d + Conv2d.
How can we implement that in Keras?
Well, load your classification model and use Keras functional API to construct your new model:
model = load_model("classification.h5")
last_conv_layer_output = model.layers[last_conv_index].output
conv = Conv2D(...)(last_conv_layer_output)
conv = Conv2D(...)(conv)
output = Conv2D(...)(conv)
new_model = Model(model.inputs, output)
# compile the new model and save it ...

Categories