Is this an ideal way to automate object instantiation using functions? - python

I'm trying to design a function in Python which instantiates a number of objects based on a user input. I've derived one which works, and it looks as follows
class Node(): ...
def initialise():
binary_tree=[]
opt=int(input("Enter the number of nodes you want\n"))
for i in range(opt):
a=Node()
binary_tree.append(a)
although I'm not sure that this is the ideal way to do this.
Is there a better way of programming a function such as the one I've described, or is the above method sufficient for efficiency and clarity purposes?
Any responses are appreciated, thank you in advance.

Your code seems to work ok.
There are other options to format it; for example, you could use list comprehension, which might be slightly faster than using .append() and also uses slightly less code:
def initialise():
opt = int(input("Enter the number of nodes you want\n"))
return [
Node()
for _ in range(opt)]
Careful: this (as well as your version) code might raise a ValueError if the uses enters a string that cannot be converted to int.

Related

Zen of Python 'Explicit is better than implicit'

I'm trying to understand what 'implicit' and 'explicit' really means in the context of Python.
a = []
# my understanding is that this is implicit
if not a:
print("list is empty")
# my understanding is that this is explicit
if len(a) == 0:
print("list is empty")
I'm trying to follow the Zen of Python rules, but I'm curious to know if this applies in this situation or if I am over-thinking it?
The two statements have very different semantics. Remember that Python is dynamically typed.
For the case where a = [], both not a and len(a) == 0 are equivalent. A valid alternative might be to check not len(a). In some cases, you may even want to check for both emptiness and listness by doing a == [].
But a can be anything. For example, a = None. The check not a is fine, and will return True. But len(a) == 0 will not be fine at all. Instead you will get TypeError: object of type 'NoneType' has no len(). This is a totally valid option, but the if statements do very different things and you have to pick which one you want.
(Almost) everything has a __bool__ method in Python, but not everything has __len__. You have to decide which one to use based on the situation. Things to consider are:
Have you already verified whether a is a sequence?
Do you need to?
Do you mind if your if statement crashed on non-sequences?
Do you want to handle other falsy objects as if they were empty lists?
Remember that making the code look pretty takes second place to getting the job done correctly.
Though this question is old, I'd like to offer a perspective.
In a dynamic language, my preference would be to always describe the expected type and objective of a variable in order to offer more purpose understanding. Then use the knowledge of the language to be succinct and increase readability where possible (in python, an empty list's boolean result is false). Thus the code:
lst_colours = []
if not lst_colours:
print("list is empty")
Even better to convey meaning is using a variable for very specific checks.
lst_colours = []
b_is_list_empty = not lst_colours
if b_is_list_empty:
print("list is empty")
Checking a list is empty would be a common thing to do several times in a code base. So even better such things in a separate file helper function library. Thus isolating common checks, and reducing code duplication.
lst_colours = []
if b_is_list_empty(lst_colours):
print("list is empty")
def b_is_list_empty (lst):
......
Most importantly, add meaning as much as possible, have an agreed company standard to chose how to tackle the simple things, like variable naming and implicit/explicit code choices.
Try to think of:
if not a:
...
as shorthand for:
if len(a) == 0:
...
I don't think this is a good example of a gotcha with Python's Zen rule of "explicit" over "implicit". This is done rather mostly because of readability. It's not that the second one is bad and the other is good. It's just that the first one is more skillful. If one understands boolean nature of lists in Python, I think you find the first is more readable and readability counts in Python.

Disparate methods. Would like for class to be able to treat them all the same

This is a question about a clean, pythonic way to juggle some different instance methods.
I have a class that operates a little differently depending on certain inputs. The differences didn't seem big enough to justify producing entirely new classes. I have to interface the class with one of several data "providers". I thought I was being smart when I introduced a dictionary:
self.interface_tools={'TYPE_A':{ ... various ..., 'data_supplier':self.current_data},
'TYPE_B':{ ... various ..., 'data_supplier':self.predicted_data} }
Then, as part of the class initialization, I have an input "source_name" and I do ...
# ... various ....
self.data_supplier = self.interface_tools[source_name]['data_supplier']
self.current_data and self.predicted_data need the same input parameter, so when it comes time to call the method, I don't have to distinguish them. I can just call
new_data = self.data_supplier(param1)
But now I need to interface with a new data source -- call it "TYPE_C" -- and it needs more input parameters. There are ways to do this, but nothing I can think of is very clean. For instance, I could just add the new parameters to the old data_suppliers and never use them, so then the call would look like
new_data = self.data_supplier(param1,param2,param3)
But I don't like that. I could add an if block
if self.data_source != 'TYPE_C':
new_data = self.data_supplie(param1)
else:
new_data = self.data_c_supplier(param1,param2,param3)
but avoiding if blocks like this was exactly what I was trying to do in the first place with that dictionary I came up with.
So the upshot is: I have a few "data_supplier" routines. Now that my project has expanded, they have different input lists. But I want my class to be able to treat them all the same to the extent possible. Any ideas? Thanks.
Sounds like your functions could be making use of variable length argument lists.
That said, you could also just make subclasses. They're fairly cheap to make, and would solve your problem here. This is pretty much the case they were designed for.
You could make all your data_suppliers accept a single argument and make it a dictionary or a list or even a NamedTuple.

How to abstract parts of a method into "sub-methods" (Python)

I'm working my way through SICP, and have been reading Code Complete a bit. In Code Complete, I learnt to abstract and structure things as much as possible. In SICP, I learnt to create "helper" functions for every task that could possibly be abstracted into one. Anyway, my problem: I have a class "A", that should be able to do task "b", task "c", and task "d". So I create 3 methods, "b", "c", and "d". The tasks that each of those methods have to do are reasonably complex, but fit with the level of abstraction my class and other code provides(e.g. the class abstracts database access, and rather than having A.findEmployee('Steve') return a list or other low-level data-type, it returns an Employee instance). The findEmployee method can (and should, in my opinion) be divided in different parts as well. It could for example call two functions, fetchEmployeeData('Steve'), and returnEmployeeInstance(employeedata).
But just putting all those functions in a class, like this:
class EmployeeDB(object):
def findEmployee(self,name):
employeedata=self._fetchEmployeeData(name)
employeeinstance=self._returnEmployeeInstance(employeedata)
return employeeinstance
def _fetchEmployeeData(self,name):
pass
def _returnEmployeeInstance(self,employeedata):
pass
makes it much less structured, and doesn't really help improve cohesion.
What is an appropriate way to structure my code, in cases such as this?
Thanks for your time.
EDIT: I just realised I could do it like this:
class EmployeeDB(object):
def findEmployee(self,name):
def fetchEmployeeData(name):
pass
def returnEmployeeInstance(employeedata):
pass
employeedata=fetchEmployeeData(name)
employeeinstance=returnEmployeeInstance(employeedata)
return employeeinstance
It hides the sub-functions nicely, and looks rather nice, but I only very seldom see this in any code, so I'm not sure if that's the right way to go. What do you think?
My opinion is that you don't need to repeat (parts of) the class name in its methods, because when possible you will no be able to employ duck typing.
So you will want to create methods of EmployeeDB without the "Employee"-prefix: find(), fetch() and returnInstance()
Using closures is good only when you really need to expand the scope of the function, and when that function will not be used by other methods. I find closures handy when I want to return function.
I think that you will find that using closures generally decreases code reuse("Don't repeat yourself").

Methods which return values vs methods which directly set attributes in Python

Which of the following classes would demonstrate the best way to set an instance attribute? Should they be used interchangeably based on the situation?
class Eggs(object):
def __init__(self):
self.load_spam()
def load_spam(self):
# Lots of code here
self.spam = 5
or
class Eggs(object):
def __init__(self):
self.spam = self.load_spam()
def load_spam(self):
# Lots of code here
return 5
I would prefer the second method.
Here's why:
Procedures with side effects tend to introduce temporal coupling. Simply put, changing the order in which you execute these procedures might break your code. Returning values and passing them to other methods in need of them makes inter-method communication explicit and thus easier to reason about and hard to forget/get in the wrong order.
Also returning a value makes it easier to test your method. With a return value, you can treat the enclosing object as a black box and ignore the internals of the object, which is generally a good thing. It makes your test code more robust.
I would indeed choose depending on the situation. If in doubt, I would choose the second version, because it's more explicit and load_spam as no (or at least less) side effects. Less side effects usually lead to code which is easier to maintain and easier to understand. As you know, there's not rule without exception. But that's the way how I would approach the problem.
If you are setting instance attributes the first method is more Pythonic. If you are calculating intermediate results then function calls are fine. Note that the second method is not only not Pythonic, it's misleading -- it's called load_spam, but it doesn't!

Class with too many parameters: better design strategy?

I am working with models of neurons. One class I am designing is a cell class which is a topological description of a neuron (several compartments connected together). It has many parameters but they are all relevant, for example:
number of axon segments, apical bifibrications, somatic length, somatic diameter, apical length, branching randomness, branching length and so on and so on... there are about 15 parameters in total!
I can set all these to some default value but my class looks crazy with several lines for parameters. This kind of thing must happen occasionally to other people too, is there some obvious better way to design this or am I doing the right thing?
UPDATE:
As some of you have asked I have attached my code for the class, as you can see this class has a huge number of parameters (>15) but they are all used and are necessary to define the topology of a cell. The problem essentially is that the physical object they create is very complex. I have attached an image representation of objects produced by this class. How would experienced programmers do this differently to avoid so many parameters in the definition?
class LayerV(__Cell):
def __init__(self,somatic_dendrites=10,oblique_dendrites=10,
somatic_bifibs=3,apical_bifibs=10,oblique_bifibs=3,
L_sigma=0.0,apical_branch_prob=1.0,
somatic_branch_prob=1.0,oblique_branch_prob=1.0,
soma_L=30,soma_d=25,axon_segs=5,myelin_L=100,
apical_sec1_L=200,oblique_sec1_L=40,somadend_sec1_L=60,
ldecf=0.98):
import random
import math
#make main the regions:
axon=Axon(n_axon_seg=axon_segs)
soma=Soma(diam=soma_d,length=soma_L)
main_apical_dendrite=DendriticTree(bifibs=
apical_bifibs,first_sec_L=apical_sec1_L,
L_sigma=L_sigma,L_decrease_factor=ldecf,
first_sec_d=9,branch_prob=apical_branch_prob)
#make the somatic denrites
somatic_dends=self.dendrite_list(num_dends=somatic_dendrites,
bifibs=somatic_bifibs,first_sec_L=somadend_sec1_L,
first_sec_d=1.5,L_sigma=L_sigma,
branch_prob=somatic_branch_prob,L_decrease_factor=ldecf)
#make oblique dendrites:
oblique_dends=self.dendrite_list(num_dends=oblique_dendrites,
bifibs=oblique_bifibs,first_sec_L=oblique_sec1_L,
first_sec_d=1.5,L_sigma=L_sigma,
branch_prob=oblique_branch_prob,L_decrease_factor=ldecf)
#connect axon to soma:
axon_section=axon.get_connecting_section()
self.soma_body=soma.body
soma.connect(axon_section,region_end=1)
#connect apical dendrite to soma:
apical_dendrite_firstsec=main_apical_dendrite.get_connecting_section()
soma.connect(apical_dendrite_firstsec,region_end=0)
#connect oblique dendrites to apical first section:
for dendrite in oblique_dends:
apical_location=math.exp(-5*random.random()) #for now connecting randomly but need to do this on some linspace
apsec=dendrite.get_connecting_section()
apsec.connect(apical_dendrite_firstsec,apical_location,0)
#connect dendrites to soma:
for dend in somatic_dends:
dendsec=dend.get_connecting_section()
soma.connect(dendsec,region_end=random.random()) #for now connecting randomly but need to do this on some linspace
#assign public sections
self.axon_iseg=axon.iseg
self.axon_hill=axon.hill
self.axon_nodes=axon.nodes
self.axon_myelin=axon.myelin
self.axon_sections=[axon.hill]+[axon.iseg]+axon.nodes+axon.myelin
self.soma_sections=[soma.body]
self.apical_dendrites=main_apical_dendrite.all_sections+self.seclist(oblique_dends)
self.somatic_dendrites=self.seclist(somatic_dends)
self.dendrites=self.apical_dendrites+self.somatic_dendrites
self.all_sections=self.axon_sections+[self.soma_sections]+self.dendrites
UPDATE: This approach may be suited in your specific case, but it definitely has its downsides, see is kwargs an antipattern?
Try this approach:
class Neuron(object):
def __init__(self, **kwargs):
prop_defaults = {
"num_axon_segments": 0,
"apical_bifibrications": "fancy default",
...
}
for (prop, default) in prop_defaults.iteritems():
setattr(self, prop, kwargs.get(prop, default))
You can then create a Neuron like this:
n = Neuron(apical_bifibrications="special value")
I'd say there is nothing wrong with this approach - if you need 15 parameters to model something, you need 15 parameters. And if there's no suitable default value, you have to pass in all 15 parameters when creating an object. Otherwise, you could just set the default and change it later via a setter or directly.
Another approach is to create subclasses for certain common kinds of neurons (in your example) and provide good defaults for certain values, or derive the values from other parameters.
Or you could encapsulate parts of the neuron in separate classes and reuse these parts for the actual neurons you model. I.e., you could write separate classes for modeling a synapse, an axon, the soma, etc.
You could perhaps use a Python"dict" object ?
http://docs.python.org/tutorial/datastructures.html#dictionaries
Having so many parameters suggests that the class is probably doing too many things.
I suggest that you want to divide your class into several classes, each of which take some of your parameters. That way each class is simpler and won't take so many parameters.
Without knowing more about your code, I can't say exactly how you should split it up.
Looks like you could cut down the number of arguments by constructing objects such as Axon, Soma and DendriticTree outside of the LayerV constructor, and passing those objects instead.
Some of the parameters are only used in constructing e.g. DendriticTree, others are used in other places as well, so the problem it's not as clear cut, but I would definitely try that approach.
could you supply some example code of what you are working on? It would help to get an idea of what you are doing and get help to you sooner.
If it's just the arguments you are passing to the class that make it long, you don't have to put it all in __init__. You can set the parameters after you create the class, or pass a dictionary/class full of the parameters as an argument.
class MyClass(object):
def __init__(self, **kwargs):
arg1 = None
arg2 = None
arg3 = None
for (key, value) in kwargs.iteritems():
if hasattr(self, key):
setattr(self, key, value)
if __name__ == "__main__":
a_class = MyClass()
a_class.arg1 = "A string"
a_class.arg2 = 105
a_class.arg3 = ["List", 100, 50.4]
b_class = MyClass(arg1 = "Astring", arg2 = 105, arg3 = ["List", 100, 50.4])
After looking over your code and realizing I have no idea how any of those parameters relate to each other (soley because of my lack of knowledge on the subject of neuroscience) I would point you to a very good book on object oriented design. Building Skills in Object Oriented Design by Steven F. Lott is an excellent read and I think would help you, and anyone else in laying out object oriented programs.
It is released under the Creative Commons License, so is free for you to use, here is a link of it in PDF format http://homepage.mac.com/s_lott/books/oodesign/build-python/latex/BuildingSkillsinOODesign.pdf
I think your problem boils down to the overall design of your classes. Sometimes, though very rarely, you need a whole lot of arguments to initialize, and most of the responses here have detailed other ways of initialization, but in a lot of cases you can break the class up into more easier to handle and less cumbersome classes.
This is similar to the other solutions that iterate through a default dictionary, but it uses a more compact notation:
class MyClass(object):
def __init__(self, **kwargs):
self.__dict__.update(dict(
arg1=123,
arg2=345,
arg3=678,
), **kwargs)
Can you give a more detailed use case ? Maybe a prototype pattern will work:
If there are some similarities in groups of objects, a prototype pattern might help.
Do you have a lot of cases where one population of neurons is just like another except different in some way ? ( i.e. rather than having a small number of discrete classes,
you have a large number of classes that slightly differ from each other. )
Python is a classed based language, but just as you can simulate class based
programming in a prototype based language like Javascript, you can simulate
prototypes by giving your class a CLONE method, that creates a new object and
populates its ivars from the parent. Write the clone method so that keyword parameters
passed to it override the "inherited" parameters, so you can call it with something
like:
new_neuron = old_neuron.clone( branching_length=n1, branching_randomness=r2 )
I have never had to deal with this situation, or this topic. Your description implies to me that you may find, as you develop the design, that there are a number of additional classes that will become relevant - compartment is the most obvious. If these do emerge as classes in their own right, it is probable that some of your parameters become parameters of these additional classes.
You could create a class for your parameters.
Instead passing a bunch of parameters, you pass one class.
In my opinion, in your case the easy solution is to pass higher order objects as parameter.
For example, in your __init__ you have a DendriticTree that uses several arguments from your main class LayerV:
main_apical_dendrite = DendriticTree(
bifibs=apical_bifibs,
first_sec_L=apical_sec1_L,
L_sigma=L_sigma,
L_decrease_factor=ldecf,
first_sec_d=9,
branch_prob=apical_branch_prob
)
Instead of passing these 6 arguments to your LayerV you would pass the DendriticTree object directly (thus saving 5 arguments).
You probably want to have this values accessible everywhere, therefore you will have to save this DendriticTree:
class LayerV(__Cell):
def __init__(self, main_apical_dendrite, ...):
self.main_apical_dendrite = main_apical_dendrite
If you want to have a default value too, you can have:
class LayerV(__Cell):
def __init__(self, main_apical_dendrite=None, ...):
self.main_apical_dendrite = main_apical_dendrite or DendriticTree()
This way you delegate what the default DendriticTree should be to the class dedicated to that matter instead of having this logic in the higher order class that LayerV.
Finally, when you need to access the apical_bifibs you used to pass to LayerV you just access it via self.main_apical_dendrite.bifibs.
In general, even if the class you are creating is not a clear composition of several classes, your goal is to find a logical way to split your parameters. Not only to make your code cleaner, but mostly to help people understand what these parameter will be used for. In the extreme cases where you can't split them, I think it's totally ok to have a class with that many parameters. If there is no clear way to split arguments, then you'll probably end up with something even less clear than a list of 15 arguments.
If you feel like creating a class to group parameters together is overkill, then you can simply use collections.namedtuple which can have default values as shown here.
Want to reiterate what a number of people have said. Theres nothing wrong with that amount of parameters. Especially when it comes to scientific computing/programming
Take for example, sklearn's KMeans++ clustering implementation which has 11 parameters you can init with. Like that, there are numerous examples and nothing wrong with them
I would say there is nothing wrong if make sure you need those params. If you really wanna make it more readable I would recommend following style.
I wouldn't say that a best practice or what, it just make others easily know what is necessary for this Object and what is option.
class LayerV(__Cell):
# author: {name, url} who made this info
def __init__(self, no_default_params, some_necessary_params):
self.necessary_param = some_necessary_params
self.no_default_param = no_default_params
self.something_else = "default"
self.some_option = "default"
def b_option(self, value):
self.some_option = value
return self
def b_else(self, value):
self.something_else = value
return self
I think the benefit for this style is:
You can easily know the params which is necessary in __init__ method
Unlike setter, you don't need two lines to construct the object if you need set an option value.
The disadvantage is, you created more methods in your class than before.
sample:
la = LayerV("no_default", "necessary").b_else("sample_else")
After all, if you have a lot of "necessary" and "no_default" params, always think about is this class(method) do too many things.
If your answer is not, just go ahead.

Categories