I have plotted a global map of GPP using the code below:
( 'lon' and 'lat' are both netCDF4 attributes and have a shape of (144, ) and (90, ) respectively, whilst 'gpp_avg' is a numpy array with a shape of (90, 144) )
import numpy as np
import netCDF4 as n4
import matplotlib.pyplot as plt
import cartopy as cart
import cartopy.crs as ccrs
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
from mpl_toolkits.basemap import Basemap
>> gpp_avg = n4.Dataset('decadal_gpp.nc', 'r')
>> lon = gpp_avg.variables['lon'] # 144 grid cells every 2.5 degrees (east-west)
>> lat = gpp_avg.variables['lat'] # 90 grid cells every 2 degrees (north-south)
>> # Plotting data on a map with Cartopy
>> plt.figure()
>> ax = plt.axes(projection=ccrs.PlateCarree())
>> ax.coastlines() # Adding coastlines
>> ax.add_feature(cart.feature.OCEAN, zorder=100, edgecolor='k')
>> cs = ax.contourf(lon[:], lat[:], gpp_avg[:], cmap = 'Spectral')
>> cbar = plt.colorbar(cs, ax=ax) # Additional necessary information
>> cbar.set_label('g[C]/m^2/day')
>> gridl = ax.gridlines(color="black", linestyle="dotted",
draw_labels=True) # Adding axis labels - latitude & longitude
>> gridl.xformatter=LONGITUDE_FORMATTER
>> gridl.yformatter=LATITUDE_FORMATTER
>> gridl.xlabels_top = False
>> gridl.ylabels_right = False
>> plt.show()
I have a numpy array 'ci_95_gpp' which has the shape (90, 144) which contains the p-values for each grid cell of the global map. I want to plot points on top of the global contour map where the p-values are greater than 2.
How would I go about doing this? Many thanks.
I generate a set of data for contour plot on a Cartopy map. The data points for contouring are separated into 2 groups, with negative and positive z-values. Numpy maskedarray is used in that operation. I hope that this is useful for the general readers, including the OP.
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.ticker as mticker
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import pandas as pd
from numpy.random import uniform, seed
from matplotlib.mlab import griddata
# TODO, use newer scipy.interpolate() instead of `griddata`
import numpy.ma as ma
# make up some data around long,lat: (90, 18)
seed(0)
npts = 200
x0, y0 = 90, 18 # center of map in (long, lat), degrees
x = x0+uniform(-2, 2, npts)
y = y0+uniform(-2, 2, npts)
#z = x*np.exp(-x**2 - y**2)
z = (x-x0)*np.exp(-(x-x0)**2 - (y-y0)**2) # elevation in meters
# define grid, for points interpolation from the made-up data above
gridx, gridy = 50,50
xi = x0+np.linspace(-2.1, 2.1, gridx)
yi = y0+np.linspace(-2.1, 2.1, gridy)
# interpolate for gridded data of (gridx, gridy)
zi = griddata(x, y, z, xi, yi, interp='linear')
# xi.shape, yi.shape, zi.shape => ((50,), (50,), (50, 50))
xig,yig = np.meshgrid(xi, yi)
# projection
useproj = ccrs.PlateCarree()
fig = plt.figure(figsize = (9, 7))
rect = [0.05, 0.05, 0.95, 0.95] # for map extent
ax = fig.add_axes( rect, projection=useproj )
# contour the gridded data, plotting dots at the nonuniform data points.
CS = ax.contour(xig, yig, zi, 15, linewidths=0.5, colors='k')
CS = ax.contourf(xig, yig, zi, 15,
vmax=abs(zi).max(), vmin=-abs(zi).max())
plt.colorbar(CS) # draw colorbar
# prep points for scatterplot of the gridded points
# make 2 masked-arrays, based on `zi`
mag = ma.masked_greater(zi, 0) # mask points with +ve zi values
mal = ma.masked_less(zi, 0) # mask points with -ve zi values
# apply masking to xig,yig; borrowing mask from mag
xig_greater_masked = ma.MaskedArray(xig, mask=mag.mask) # must have compatible values
yig_greater_masked = ma.MaskedArray(yig, mask=mag.mask)
# apply masking to xig,yig; borrowing mask from mal
xig_less_masked = ma.MaskedArray(xig, mask=mal.mask)
yig_less_masked = ma.MaskedArray(yig, mask=mal.mask)
# for points with -ve z values (result of .masked_greater)
plt.scatter(xig_greater_masked, yig_greater_masked, s=3, color="w", \
alpha=1, zorder=15, label="masked_greater z")
# for points with +ve z values (result of .masked_less)
ax.scatter(xig_less_masked, yig_less_masked, s=3, color="r", alpha=1, \
zorder=15, label="masked_less z")
leg = ax.legend(title='Masked z', framealpha=1.0, facecolor="lightgray")
leg.set_zorder(20)
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True,
linewidth=2, color='gray', alpha=0.5, linestyle='--')
gl.xlabels_top = False
gl.ylabels_right = False
gl.xformatter = LONGITUDE_FORMATTER
gl.yformatter = LATITUDE_FORMATTER
gl.xlabel_style = {'size': 15, 'color': 'gray'}
#gl.xlabel_style = {'color': 'gray', 'weight': 'bold'}
plt.title('Masked data plot on contour')
plt.show()
The resulting plot:
Related
Can we plot a straight heatmap on a 3D axis? The heatmap is as follows:
I am able to get a 3D elevation map, but I am not looking for that. I just want this straight lying on a 3D axis.
Code:
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import interpolate
excel_data_df = pd.read_excel('test.xlsx')
X= excel_data_df['x'].tolist()
Y= excel_data_df['y'].tolist()
Z= excel_data_df['z'].tolist()
X = np.array(X)
Y = np.array(Y)
Z = np.array(Z)
# Flatten trial dataset to meet your requirement:
x = X.ravel()
y = Y.ravel()
z = Z.ravel()
# Resampling on as square grid with given resolution:
resolution = 8
xlin = np.linspace(min(x), max(x), resolution)
ylin = np.linspace(min(y), max(y), resolution)
Xlin, Ylin = np.meshgrid(xlin, ylin)
# Linear multi-dimensional interpolation:
interpolant = interpolate.NearestNDInterpolator([r for r in zip(x, y)], z)
Zhat = interpolant(Xlin.ravel(), Ylin.ravel()).reshape(Xlin.shape)
cmap = 'jet'
# Render and interpolate again if necessary:
fig, axe = plt.subplots()
axe.imshow(Zhat, origin="lower", cmap=cmap, interpolation='bicubic',extent=[min(x),max(x),min(y),max(y)])
plt.xticks(np.arange(min(x), max(x)+1, 1.0))
plt.yticks(np.arange(min(y), max(y)+1, 1.0))
axe.grid(True, linewidth=0.3, color='w')
norm = matplotlib.colors.Normalize(vmin = min(z), vmax = max(z), clip = False)
plt.colorbar(plt.cm.ScalarMappable(cmap = cmap, norm=norm))
plt.show()
I have a set of data with (lon, lat, temperature) that I have plotted with Cartopy. The minimum example that I can give is the code below (with only 30 data points)
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import matplotlib.colors as clr
import pandas as pd
import numpy as np
from metpy.interpolate import interpolate_to_grid, remove_nan_observations
from cartopy.io.shapereader import Reader
from cartopy.feature import ShapelyFeature
canada_east = -95
canada_west = -101.8
canada_north = 52.8
canada_south = 48.85
central_lon = (canada_east + canada_west)/2
central_lat = (canada_north + canada_south)/2
crs = ccrs.LambertConformal(central_longitude = central_lon, central_latitude = central_lat)
lat = np.array([49.8134 50.904 50.698 49.095 49.436 49.9607 49.9601 49.356 50.116
49.402 52.3472 50.411 49.24 49.876 49.591 49.905 49.498 49.088
49.118 50.5947 49.3776 49.148 49.1631 51.358 49.826 50.4324 49.96
49.68 49.875 50.829 51.572])
lon = np.array([-100.3721 -97.273 -99.068 -97.528 -100.308 -98.9054 -98.6367
-99.248 -96.434 -100.93 -101.1099 -100.893 -100.055 -99.909
-97.518 -99.354 -98.03 -99.325 -99.054 -98.0035 -100.5387
-100.491 -97.1454 -100.361 -96.776 -99.4392 -97.7463 -97.984
-95.92 -98.111 -100.488])
tem = np.array([-8.45 -4.026 -5.993 -3.68 -7.35 -7.421 -6.477 -8.03 -3.834
-13.04 -4.057 -8.79 -6.619 -10.89 -4.465 -8.41 -4.861 -9.93
-7.125 -4.424 -11.95 -9.56 -3.86 -7.17 -4.193 -7.653 -4.883
-5.631 -3.004 -4.738 -8.81])
xp, yp, _ = crs.transform_points(ccrs.PlateCarree(), lon, lat ).T
xp, yp, tem = remove_nan_observations(xp, yp, tem)
alt_x, alt_y, data = interpolate_to_grid( xp, yp, tem, minimum_neighbors=2, search_radius=240000, interp_type = 'barnes', hres = 1000)
# Create the figure and grid for subplots
fig = plt.figure(figsize=(17, 12))
# Main ax
ax = plt.subplot(111, projection=crs)
ax.set_extent([canada_west, canada_east, canada_south, canada_north], ccrs.PlateCarree())
# Ading province borders and country borders
provinces_bdr = cfeature.NaturalEarthFeature(category = 'cultural',
name = 'admin_1_states_provinces_lines',
scale = '50m',
linewidth = 0.6,
facecolor='none',
) # variable to add provinces border
country_bdr = cfeature.NaturalEarthFeature(category= 'cultural',
name = 'admin_0_boundary_lines_land',
scale = '50m',
linewidth = 1.5,
facecolor = 'none',
edgecolor = 'k')
ax.add_feature(provinces_bdr, linestyle='--')
ax.add_feature(country_bdr, linestyle='--')
ax.add_feature(cfeature.LAND)
ax.add_feature(cfeature.OCEAN)
ax.add_feature(cfeature.BORDERS)
cf = ax.pcolormesh(alt_x, alt_y, data, cmap=plt.cm.rainbow)
# Read the shape file and add it
shape_feature = ShapelyFeature(Reader('MB_AGregion_Perim_South.shp').geometries(), ccrs.epsg(26914), linewidth = 1, facecolor = (1, 1, 1, 0), edgecolor = (0.5, 0.5, 0.5, 1))
ax.add_feature(shape_feature)
plt.show()
which gives this result:
where the gray line inside is produced by the shape file. Now I want to limit the coloring to be only inside the shape file (so area that's outside of the gray line should not be colored by pcolormesh) but I can not find a way that work. I have read this example and this example but I cannot understand both of them. Is there a simple way to do this using geopandas and/or cartopy alone?
Sorry I cannot upload the shape file here, this is the best minimal example I could have done. If there are any improvements I should have done please tell me. I'm new to stack overflow and I'm open to critiques.
Edit1:
To clarify, the shape file I want the color to be limited to is the 'MB_AGregion_Perim_South.shp' that I read with ShapelyFeature (the last 4 lines of my code), and it draw the grey line that bounds most part of my coloring.
Edit 2:
As #Michael Delgado suggested, I have added this lines of code:
cat_gdf = geopandas.read_file('MB_AGregion_Perim_South.shp')
cat_gdf = cat_gdf.to_crs(epsg = 4326)
mask = shapely.vectorized.contains(cat_gdf.dissolve().geometry.item(), alt_x, alt_y)
where alt_x and alt_y is the interpolated result (please look at my example above). The shape file has epsg = 26914 originally, so I transform it into 4326.
The problem is that the mask contains all false values (which means it mask everything). I doubted that it's because alt_x and alt_y are coordinates that has been transformed with crs.transform_points(ccrs.PlateCarree(), lon, lat ).T (as my code showed above). I have search around and try to get the shape file into different epsg values but it doesn't work. Also, cat_gdf.geometry is a multi polygons. Could it be the cause here?
For anyone who's struggling with this in the future, here is a detailed explanation of the solution
Quick MRE:
import numpy as np, pandas as pd, geopandas as gpd
import matplotlib.pyplot as plt
x = np.arange(-126, -105, 0.1)
y = np.arange(25, 46, 0.1)
xx, yy = np.meshgrid(x, y)
xnorm = (xx - xx.min()) / (xx.max() - xx.min())
ynorm = (yy - yy.min()) / (yy.max() - yy.min())
v = np.cos((xnorm * 2 - 1) * np.pi) + np.sin((ynorm * 2 - 1) * np.pi)
gdf = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres'))
fig, ax = plt.subplots()
ax.pcolormesh(xx, yy, v)
xlim, ylim = ax.get_xlim(), ax.get_ylim()
gdf.plot(ax=ax, color='none', edgecolor='k')
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
You can use shapely.vectorized to mask a set of x, y points using a shapely.geometry object:
import shapely.vectorized
mask = shapely.vectorized.contains(gdf.dissolve().geometry.item(), xx, yy)
fig, ax = plt.subplots()
ax.pcolormesh(xx, yy, np.where(mask, v, np.nan))
xlim, ylim = ax.get_xlim(), ax.get_ylim()
gdf.plot(ax=ax, color='none', edgecolor='k')
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
I have 4 subplots with a different 3D plot with a colorbar.
I want to plot a XY view of my 3D plot, remove the x,y,z axis and resize my plot to use all the space available in the subplot such that the XY view has the same height as the colorbar. I can remove the axis but I do not know how to resize the image. I attached a working code to illustrate this.
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
import matplotlib
import numpy as np
# Create 3D function
n_radii = 8
n_angles = 36
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)[..., np.newaxis]
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
z = np.sin(-x*y)
fig = plt.figure()
for ii in range(1, 4):
#Plot
# ============================================================================
ax = fig.add_subplot(2,2, ii, projection='3d')
cs =ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
ax.view_init(90, 0)
plt.title(ii)
# ax.axis('off')
plt.grid(b=None)
# Create color bar
# ============================================================================
norm = matplotlib.colors.Normalize(vmin = 0, vmax = 1, clip = False)
m = plt.cm.ScalarMappable(norm=norm)
m.set_array([])
plt.colorbar(m)
plt.tight_layout()
plt.show()
#plt.savefig("test.pdf",bbox_inches='tight')
Any idea how can I do this?
I have added
plt.gca().set_axis_off()
plt.axis([0.6 * x for x in plt.axis()])
to your code which hides the axes and sets the view to 60% of its previous value. The result looks like this:
Full code:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
import matplotlib
import numpy as np
# Create 3D function
n_radii = 8
n_angles = 36
radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)[..., np.newaxis]
x = np.append(0, (radii*np.cos(angles)).flatten())
y = np.append(0, (radii*np.sin(angles)).flatten())
z = np.sin(-x*y)
fig = plt.figure()
for ii in range(1, 4):
#Plot
# ============================================================================
ax = fig.add_subplot(2,2, ii, projection='3d')
cs =ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
ax.view_init(90, 0)
plt.title(ii)
# ax.axis('off')
plt.grid(b=None)
# Create color bar
# ============================================================================
norm = matplotlib.colors.Normalize(vmin = 0, vmax = 1, clip = False)
m = plt.cm.ScalarMappable(norm=norm)
m.set_array([])
plt.colorbar(m)
plt.gca().set_axis_off()
plt.axis([0.6 * x for x in plt.axis()])
plt.tight_layout()
plt.show()
#plt.savefig("test.pdf",bbox_inches='tight')
I'm struggling with creating a quite complex 3d figure in python, specifically using iPython notebook. I can partition the content of the graph into two sections:
The (x,y) plane: Here a two-dimensional random walk is bobbing around, let's call it G(). I would like to plot part of this trajectory on the (x,y) plane. Say, 10% of all the data points of G(). As G() bobs around, it visits some (x,y) pairs more frequently than others. I would like to estimate this density of G() using a kernel estimation approach and draw it as contour lines on the (x,y) plane.
The (z) plane: Here, I would like to draw a mesh or (transparent) surface plot of the information theoretical surprise of a bivariate normal. Surprise is simply -log(p(i)) or the negative (base 2) logarithm of outcome i. Given the bivariate normal, each (x,y) pair has some probability p(x,y) and the surprise of this is simply -log(p(x,y)).
Essentially these two graphs are independent. Assume the interval of the random walk G() is [xmin,xmax],[ymin,ymax] and of size N. The bivariate normal in the z-plane should be drawn from the same interval, such that for each (x,y) pair in the random walk, I can draw a (dashed) line from some subset of the random walk n < N to the bivariate normal. Assume that G(10) = (5,5) then I would like to draw a dashed line from (5,5) up the Z-axes, until it hits the bivariate normal.
So far, I've managed to plot G() in a 3-d space, and estimate the density f(X,Y) using scipy.stats.gaussian_kde. In another (2d) graph, I have the sort of contour lines I want. What I don't have, is the contour lines in the 3d-plot using the estimated KDE density. I also don't have the bivariate normal plot, or the projection of a few random points from the random walk, to the surface of the bivariate normal. I've added a hand drawn figure, which might ease intuition (ignore the label on the z-axis and the fact that there is no mesh.. difficult to draw!)
Any input, even just partial, such as how to draw the contour lines in the (x,y) plane of the 3d graph, or a mesh of a bivariate normal would be much appreciated.
Thanks!
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(400):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
fig1 = plt.figure()
ax = fig1.gca(projection='3d')
ax.plot(x, y, label='Random walk')
sns.kdeplot(data[0,:], data[1,:], 0)
ax.scatter(x[-1], y[-1], c='b', marker='o') # End point
ax.legend()
fig2 = plt.figure()
sns.kdeplot(data[0,:], data[1,:])
Calling randomwalk() initialises and plots this:
Edit #1:
Made some progress, actually the only thing I need is to restrict the height of the dashed vertical lines to the bivariate. Any ideas?
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.mlab import bivariate_normal
%matplotlib inline
# Data for random walk
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(40):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
# Get density
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
# Data for bivariate gaussian
a = np.linspace(-7.5, 7.5, 20)
b = a
X,Y = np.meshgrid(a, b)
Z = bivariate_normal(X, Y)
surprise_Z = -np.log(Z)
# Get random points from walker and plot up z-axis to the gaussian
M = data[:,np.random.choice(20,5)].T
# Plot figure
fig = plt.figure(figsize=(10, 7))
ax = fig.gca(projection='3d')
ax.plot(x, y, 'grey', label='Random walk') # Walker
ax.scatter(x[-1], y[-1], c='k', marker='o') # End point
ax.legend()
surf = ax.plot_surface(X, Y, surprise_Z, rstride=1, cstride=1,
cmap = plt.cm.gist_heat_r, alpha=0.1, linewidth=0.1)
#fig.colorbar(surf, shrink=0.5, aspect=7, cmap=plt.cm.gray_r)
for i in range(5):
ax.plot([M[i,0], M[i,0]],[M[i,1], M[i,1]], [0,10],'k--',alpha=0.8, linewidth=0.5)
ax.set_zlim(0, 50)
ax.set_xlim(-10, 10)
ax.set_ylim(-10, 10)
Final code,
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.mlab import bivariate_normal
%matplotlib inline
# Data for random walk
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(50):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
# Get density
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
# Data for bivariate gaussian
a = np.linspace(-7.5, 7.5, 100)
b = a
X,Y = np.meshgrid(a, b)
Z = bivariate_normal(X, Y)
surprise_Z = -np.log(Z)
# Get random points from walker and plot up z-axis to the gaussian
M = data[:,np.random.choice(50,10)].T
# Plot figure
fig = plt.figure(figsize=(10, 7))
ax = fig.gca(projection='3d')
ax.plot(x, y, 'grey', label='Random walk') # Walker
ax.legend()
surf = ax.plot_surface(X, Y, surprise_Z, rstride=1, cstride=1,
cmap = plt.cm.gist_heat_r, alpha=0.1, linewidth=0.1)
#fig.colorbar(surf, shrink=0.5, aspect=7, cmap=plt.cm.gray_r)
for i in range(10):
x = [M[i,0], M[i,0]]
y = [M[i,1], M[i,1]]
z = [0,-np.log(bivariate_normal(M[i,0],M[i,1]))]
ax.plot(x,y,z,'k--',alpha=0.8, linewidth=0.5)
ax.scatter(x, y, z, c='k', marker='o')
I have a random walker in the (x,y) plane and a -log(bivariate gaussian) in the (x,y,z) plane. These two datasets are essentially independent.
I want to sample, say 5 (x,y) pairs of the random walker and draw vertical lines up the z-axis and terminate the vertical line when it "meets" the bivariate gaussian.
This is my code so far:
import matplotlib as mpl
import matplotlib.pyplot as plt
import random
import numpy as np
import seaborn as sns
import scipy
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.mlab import bivariate_normal
%matplotlib inline
# Data for random walk
def randomwalk():
mpl.rcParams['legend.fontsize'] = 10
xyz = []
cur = [0, 0]
for _ in range(40):
axis = random.randrange(0, 2)
cur[axis] += random.choice([-1, 1])
xyz.append(cur[:])
# Get density
x, y = zip(*xyz)
data = np.vstack([x,y])
kde = scipy.stats.gaussian_kde(data)
density = kde(data)
# Data for bivariate gaussian
a = np.linspace(-7.5, 7.5, 40)
b = a
X,Y = np.meshgrid(a, b)
Z = bivariate_normal(X, Y)
surprise_Z = -np.log(Z)
# Get random points from walker and plot up z-axis to the gaussian
M = data[:,np.random.choice(20,5)].T
# Plot figure
fig = plt.figure(figsize=(10, 7))
ax = fig.gca(projection='3d')
ax.plot(x, y, 'grey', label='Random walk') # Walker
ax.scatter(x[-1], y[-1], c='k', marker='o') # End point
ax.legend()
surf = ax.plot_surface(X, Y, surprise_Z, rstride=1, cstride=1,
cmap = plt.cm.gist_heat_r, alpha=0.1, linewidth=0.1)
#fig.colorbar(surf, shrink=0.5, aspect=7, cmap=plt.cm.gray_r)
for i in range(5):
ax.plot([M[i,0], M[i,0]],[M[i,1], M[i,1]], [0,10],'k--',alpha=0.8, linewidth=0.5)
ax.set_zlim(0, 50)
ax.set_xlim(-10, 10)
ax.set_ylim(-10, 10)
Which produces
As you can see the only thing I'm struggling with is how to terminate the vertical lines when they meet the appropriate Z-value. Any ideas are welcome!
You're currently only letting those lines get to a height of 10 by using [0,10] as the z coordinates. You can change your loop to the following:
for i in range(5):
x = [M[i,0], M[i,0]]
y = [M[i,1], M[i,1]]
z = [0,-np.log(bivariate_normal(M[i,0],M[i,1]))]
ax.plot(x,y,z,'k--',alpha=0.8, linewidth=0.5)
This takes the x and y coordinates for each point you loop over and calculates the height of overlying Gaussian for that point and plots to there. Here is a plot with the linestyle changed to emphasize the lines relevant to the question: