3d coordinates x,y,z to 3d numpy array - python

I have a 3d mask which is an ellipsoid. I have extracted the coordinates of the mask using np.argwhere. The coordinates can be assigned as x, y, z as in the example code. My question is how can I get my mask back (in the form of 3d numpy or boolean array of the same shape) from the coordinates x, y, z ?
import numpy as np
import scipy
import skimage
from skimage import draw
mask = skimage.draw.ellipsoid(10,12,18)
print mask.shape
coord = np.argwhere(mask)
x = coord[:,0]
y = coord[:,1]
z = coord[:,2]
The above code gives me boolean mask of the shape (23, 27, 39) and now I want to construct the same mask of exactly same shape using x, y, z coordinates. How can it be done?
I would like to modify the question above a bit. Now if I rotate my coordinates using quaternion which will give me new set of coordinates and then with new coordinates x1,y1,z1 I want to construct my boolean mask of shape (23,27,39) as that of original mask ? How can that be done ?
import quaternion
angle1 = 90
rotation = np.exp(quaternion.quaternion(0,0, 1) * angle1*(np.pi/180) / 2)
coord_rotd = quaternion.rotate_vectors(rotation, coord)
x1 = coord_rotd[:,0]
y1 = coord_rotd[:,1]
z1 = coord_rotd[:,2]

You can use directly x, y and z to reconstruct your mask. First, use a new array with the same shape as your mask. I pre-filled everything with zeros (i.e. False). Next, set each coordinate defined by x, y and z to True:
new_mask = np.zeros_like(mask)
new_mask[x,y,z] = True
# Check if mask and new_mask is the same
np.allclose(mask, new_mask)
# True
If you ask, if you can reconstruct your mask only knowing x, y and z, this is not possible. Because you loose information of what is not filled. Just imagine having your ellipsoid at a corner of a huge cube. How would you know (only knowing how the ellipsoid looks), how large the cube is?
Regarding your second question:
You have to fix your coordinates, because they can be out of your scenery. So I defined a function that takes care of this:
def fixCoordinates(coord, shape):
# move to the positive edge
# remove negative indices
# you can also add now +1 to
# have a margin around your ellipse
coord -= coord.min(0)
# trim coordinates outside of scene
for i, s in enumerate(shape):
coord[coord[:,i] >= s] = s-1
# Return coordinates and change dtype
return coord.astype(np.int)
And if you modify your code slightly, you can use the same strategy as before:
# your code
import quaternion
angle1 = 90
rotation = np.exp(quaternion.quaternion(0,0, 1) * angle1*(np.pi/180) / 2)
coord_rotd = quaternion.rotate_vectors(rotation, coord_rotd)
# Create new mask
new_mask2 = np.zeros_like(new_mask)
# Fix coordinates
coord_rotd = fixCoordinates(coord_rotd, mask.shape)
x1 = coord_rotd[:,0]
y1 = coord_rotd[:,1]
z1 = coord_rotd[:,2]
# create new mask, similar as before
new_mask2[x1, y1, z1] = True
Given your example rotation, you can now plot both masks (that have the same shape), side by side:

If you know the shape of your old mask, try this:
new_mask = np.full(old_mask_shape, True) # Fill new_mask with True everywhere
new_mask[x,y,z] = False # Set False for the ellipsoid part alone
Note:
old_mask_shape should be the same as shape of the image on which you intend to apply the mask.
If you want a True mask rather than a False one (if you want the ellipsoid part to be True and everywhere else False) just interchange True and False in the above two lines of code.

Related

Masked interpolation returns constant values

I want to interpolate a 3D array along the first dimension.
In terms of data, it means I want to interpolated missing times in a geographic value, in other terms smoothing a bit this animation:
I do this by calling:
new = ma.apply_along_axis(func1d=masked_interpolation, axis=0, arr=dst_data, x=missing_bands, xp=known_bands)
Where the interpolation function is the following:
def masked_interpolation(data, x, xp, propagate_mask=True):
import math
import numpy as np
import numpy.ma as ma
# The x-coordinates (missing times) at which to evaluate the interpolated values.
assert len(x) >= 1
# The x-coordinates (existing times) of the data points (where returns a tuple because each element of the tuple refers to a dimension.)
assert len(xp) >= 2
# The y-coordinates (value at existing times) of the data points, that is the valid entries
fp = np.take(data, xp)
assert len(fp) >= 2
# Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.
new_y = np.interp(x, xp, fp.filled(np.nan))
# interpolate mask & apply to interpolated data
if propagate_mask:
new_mask = data.mask[:]
new_mask[new_mask] = 1
new_mask[~new_mask] = 0
# the mask y values at existing times
new_fp = np.take(new_mask, xp)
new_mask = np.interp(x, xp, new_fp)
new_y = np.ma.masked_array(new_y, new_mask > 0.5)
print(new_y) # ----> that seems legit
data[x] = new_y # ----> from here it goes wrong
return data
When printing new_y, the interpolated values seem consistent (spread across [0,1] interval, what I want). However, when I print the final output (the new array), it's definitely smoother (more bands) but all the non-masked values are changed to -0.1 (what does not make any sense):
The code to write that to a raster file is:
# Writing the new raster
meta = source.meta
meta.update({'count' : dst_shape[0] })
meta.update({'nodata' : source.nodata})
meta.update(fill_value = source.nodata)
assert new.shape == (meta['count'],meta['height'],meta['width'])
with rasterio.open(outputFile, "w", **meta) as dst:
dst.write(new.filled(fill_value=source.nodata))
It was quite tricky to figure out. What happens is that the interpolation function has to fill with nans so the interpolation works, but then replace remaining nans (coming eg from when the whole fp vector is nan) with finite values. Then applying the interpolated mask will hide these values anyway. Here is how it goes:
def masked_interpolation(data, x, xp, propagate_mask=True):
import math
import numpy as np
import numpy.ma as ma
# The x-coordinates (missing times) at which to evaluate the interpolated values.
assert len(x) >= 1
# The x-coordinates (existing times) of the data points (where returns a tuple because each element of the tuple refers to a dimension.)
assert len(xp) >= 2
# The y-coordinates (value at existing times) of the data points, that is the valid entries
fp = np.take(data, xp)
assert len(fp) >= 2
# Returns the one-dimensional piecewise linear interpolant to a function with given discrete data points (xp, fp), evaluated at x.
new_y = np.interp(x, xp, fp.filled(np.nan))
np.nan_to_num(new_y, copy=False)
# interpolate mask & apply to interpolated data
if propagate_mask:
new_mask = data.mask[:]
new_mask[new_mask] = 1
new_mask[~new_mask] = 0
# the mask y values at existing times
new_fp = np.take(new_mask, xp)
new_mask = np.interp(x, xp, new_fp)
new_y = np.ma.masked_array(new_y, new_mask > 0.5)
data[x] = new_y
return data
Resulting in:

Shapley polygon to array for each pixel, not just boundaries

The shape of a shapely polygon can easily be converted to an array of points by using
x,y = polygon.exterior.xy
However, this returns only the actual points.
How can I convert a shapely polygon to an array, with a 0 for each pixel outside of the shape, and a 1 for each pixel inside the shape?
Thus, for an example, a polygon with width=100, height=100 should result in a (100,100) array.
I could do this by getting the exterior points, and then looping through each pixel and seeing if it's inside/on the shape, or outside. But I think there should be an easier method?
I don't know about your exact requirement, but the fastest to get the general result should be this:
width = int(shape.bounds[2] - shape.bounds[0])
height = int(shape.bounds[3] - shape.bounds[1])
points = MultiPoint( [(x,y) for x in range(width) for y in range(height)] )
zeroes = points.difference( shape )
ones = points.intersection( shape )
This could answer my question, but I'm wondering if there is a faster way.
data = []
width = int(shape.bounds[2] - shape.bounds[0])
height = int(shape.bounds[3] - shape.bounds[1])
for y in range(0,height):
row = []
for x in range(0,width):
val = 1 if shape.convex_hull.contains(Point(x,y)) else 0
row.append(val)
data.append(row)

Counterclockwise sorting of x, y data

I have a set of points in a text file: random_shape.dat.
The initial order of points in the file is random. I would like to sort these points in a counter-clockwise order as follows (the red dots are the xy data):
I tried to achieve that by using the polar coordinates: I calculate the polar angle of each point (x,y) then sort by the ascending angles, as follows:
"""
Script: format_file.py
Description: This script will format the xy data file accordingly to be used with a program expecting CCW order of data points, By soting the points in Counterclockwise order
Example: python format_file.py random_shape.dat
"""
import sys
import numpy as np
# Read the file name
filename = sys.argv[1]
# Get the header name from the first line of the file (without the newline character)
with open(filename, 'r') as f:
header = f.readline().rstrip('\n')
angles = []
# Read the data from the file
x, y = np.loadtxt(filename, skiprows=1, unpack=True)
for xi, yi in zip(x, y):
angle = np.arctan2(yi, xi)
if angle < 0:
angle += 2*np.pi # map the angle to 0,2pi interval
angles.append(angle)
# create a numpy array
angles = np.array(angles)
# Get the arguments of sorted 'angles' array
angles_argsort = np.argsort(angles)
# Sort x and y
new_x = x[angles_argsort]
new_y = y[angles_argsort]
print("Length of new x:", len(new_x))
print("Length of new y:", len(new_y))
with open(filename.split('.')[0] + '_formatted.dat', 'w') as f:
print(header, file=f)
for xi, yi in zip(new_x, new_y):
print(xi, yi, file=f)
print("Done!")
By running the script:
python format_file.py random_shape.dat
Unfortunately I don't get the expected results in random_shape_formated.dat! The points are not sorted in the desired order.
Any help is appreciated.
EDIT: The expected resutls:
Create a new file named: filename_formatted.dat that contains the sorted data according to the image above (The first line contains the starting point, the next lines contain the points as shown by the blue arrows in counterclockwise direction in the image).
EDIT 2: The xy data added here instead of using github gist:
random_shape
0.4919261070361315 0.0861956168831175
0.4860816807027076 -0.06601587301587264
0.5023029456281289 -0.18238249845392662
0.5194784026079869 0.24347943722943777
0.5395164357511545 -0.3140611471861465
0.5570497147514262 0.36010146103896146
0.6074231036252226 -0.4142604617604615
0.6397066014669927 0.48590810704447085
0.7048302091822873 -0.5173701298701294
0.7499157837544145 0.5698170011806378
0.8000108666123336 -0.6199254449254443
0.8601249660418364 0.6500974025974031
0.9002010323281716 -0.7196585989767801
0.9703341483292582 0.7299242424242429
1.0104102146155935 -0.7931355765446666
1.0805433306166803 0.8102046438410078
1.1206193969030154 -0.865251869342778
1.1907525129041021 0.8909386068476981
1.2308285791904374 -0.9360074773711129
1.300961695191524 0.971219008264463
1.3410377614778592 -1.0076702085792988
1.4111708774789458 1.051499409681228
1.451246943765281 -1.0788793781975592
1.5213800597663678 1.1317798110979933
1.561456126052703 -1.1509956709956706
1.6315892420537896 1.2120602125147582
1.671665308340125 -1.221751279024005
1.7417984243412115 1.2923406139315234
1.7818744906275468 -1.2943211334120424
1.8520076066286335 1.3726210153482883
1.8920836729149686 -1.3596340023612745
1.9622167889160553 1.4533549783549786
2.0022928552023904 -1.4086186540731989
2.072425971203477 1.5331818181818184
2.1125020374898122 -1.451707005116095
2.182635153490899 1.6134622195985833
2.2227112197772345 -1.4884454939000387
2.292844335778321 1.6937426210153486
2.3329204020646563 -1.5192876820149541
2.403053518065743 1.774476584022039
2.443129584352078 -1.5433264462809912
2.513262700353165 1.8547569854388037
2.5533387666395 -1.561015348288075
2.6234718826405867 1.9345838252656438
2.663547948926922 -1.5719008264462806
2.7336810649280086 1.9858362849271942
2.7737571312143436 -1.5750757575757568
2.8438902472154304 2.009421487603306
2.883966313501766 -1.5687258953168035
2.954099429502852 2.023481896890988
2.9941754957891877 -1.5564797323888229
3.0643086117902745 2.0243890200708385
3.1043846780766096 -1.536523022432113
3.1745177940776963 2.0085143644234558
3.2145938603640314 -1.5088557654466737
3.284726976365118 1.9749508067689887
3.324803042651453 -1.472570838252656
3.39493615865254 1.919162731208186
3.435012224938875 -1.4285753640299088
3.5051453409399618 1.8343467138921687
3.545221407226297 -1.3786835891381335
3.6053355066557997 1.7260966810966811
3.655430589513719 -1.3197205824478546
3.6854876392284703 1.6130086580086582
3.765639771801141 -1.2544077134986225
3.750611246943765 1.5024152236652237
3.805715838087476 1.3785173160173163
3.850244800627849 1.2787337662337666
3.875848954088563 -1.1827449822904361
3.919007794704616 1.1336638361638363
3.9860581363759846 -1.1074537583628485
3.9860581363759846 1.0004485329485333
4.058012891753723 0.876878197560016
4.096267318663407 -1.0303482880755608
4.15638141809291 0.7443374218374221
4.206476500950829 -0.9514285714285711
4.256571583808748 0.6491902794175526
4.3166856832382505 -0.8738695395513574
4.36678076609617 0.593855765446675
4.426894865525672 -0.7981247540338443
4.476989948383592 0.5802489177489183
4.537104047813094 -0.72918339236521
4.587199130671014 0.5902272727272733
4.647313230100516 -0.667045454545454
4.697408312958435 0.6246979535615904
4.757522412387939 -0.6148858717040526
4.807617495245857 0.6754968516332154
4.8677315946753605 -0.5754260133805582
4.917826677533279 0.7163173947264858
4.977940776962782 -0.5500265643447455
5.028035859820701 0.7448917748917752
5.088149959250204 -0.5373268398268394
5.138245042108123 0.7702912239275879
5.198359141537626 -0.5445838252656432
5.2484542243955445 0.7897943722943728
5.308568323825048 -0.5618191656828015
5.358663406682967 0.8052154663518301
5.41877750611247 -0.5844972451790631
5.468872588970389 0.8156473829201105
5.5289866883998915 -0.6067217630853987
5.579081771257811 0.8197294372294377
5.639195870687313 -0.6248642266824076
5.689290953545233 0.8197294372294377
5.749405052974735 -0.6398317591499403
5.799500135832655 0.8142866981503349
5.859614235262157 -0.6493565525383702
5.909709318120076 0.8006798504525783
5.969823417549579 -0.6570670995670991
6.019918500407498 0.7811767020857934
6.080032599837001 -0.6570670995670991
6.13012768269492 0.7562308146399057
6.190241782124423 -0.653438606847697
6.240336864982342 0.7217601338055886
6.300450964411845 -0.6420995670995664
6.350546047269764 0.6777646595828419
6.410660146699267 -0.6225964187327819
6.4607552295571855 0.6242443919716649
6.520869328986689 -0.5922077922077915
6.570964411844607 0.5548494687131056
6.631078511274111 -0.5495730027548205
6.681173594132029 0.4686727666273125
6.7412876935615325 -0.4860743801652889
6.781363759847868 0.3679316979316982
6.84147785927737 -0.39541245791245716
6.861515892420538 0.25880333951762546
6.926639500135833 -0.28237987012986965
6.917336127605076 0.14262677798392165
6.946677533279001 0.05098957832291173
6.967431210462995 -0.13605442176870675
6.965045730326905 -0.03674603174603108
I find that an easy way to sort points with x,y-coordinates like that is to sort them dependent on the angle between the line from the points and the center of mass of the whole polygon and the horizontal line which is called alpha in the example. The coordinates of the center of mass (x0 and y0) can easily be calculated by averaging the x,y coordinates of all points. Then you calculate the angle using numpy.arccos for instance. When y-y0 is larger than 0 you take the angle directly, otherwise you subtract the angle from 360° (2𝜋). I have used numpy.where for the calculation of the angle and then numpy.argsort to produce a mask for indexing the initial x,y-values. The following function sort_xy sorts all x and y coordinates with respect to this angle. If you want to start from any other point you could add an offset angle for that. In your case that would be zero though.
def sort_xy(x, y):
x0 = np.mean(x)
y0 = np.mean(y)
r = np.sqrt((x-x0)**2 + (y-y0)**2)
angles = np.where((y-y0) > 0, np.arccos((x-x0)/r), 2*np.pi-np.arccos((x-x0)/r))
mask = np.argsort(angles)
x_sorted = x[mask]
y_sorted = y[mask]
return x_sorted, y_sorted
Plotting x, y before sorting using matplotlib.pyplot.plot (points are obvisously not sorted):
Plotting x, y using matplotlib.pyplot.plot after sorting with this method:
If it is certain that the curve does not cross the same X coordinate (i.e. any vertical line) more than twice, then you could visit the points in X-sorted order and append a point to one of two tracks you follow: to the one whose last end point is the closest to the new one. One of these tracks will represent the "upper" part of the curve, and the other, the "lower" one.
The logic would be as follows:
dist2 = lambda a,b: (a[0]-b[0])*(a[0]-b[0]) + (a[1]-b[1])*(a[1]-b[1])
z = list(zip(x, y)) # get the list of coordinate pairs
z.sort() # sort by x coordinate
cw = z[0:1] # first point in clockwise direction
ccw = z[1:2] # first point in counter clockwise direction
# reverse the above assignment depending on how first 2 points relate
if z[1][1] > z[0][1]:
cw = z[1:2]
ccw = z[0:1]
for p in z[2:]:
# append to the list to which the next point is closest
if dist2(cw[-1], p) < dist2(ccw[-1], p):
cw.append(p)
else:
ccw.append(p)
cw.reverse()
result = cw + ccw
This would also work for a curve with steep fluctuations in the Y-coordinate, for which an angle-look-around from some central point would fail, like here:
No assumption is made about the range of the X nor of the Y coordinate: like for instance, the curve does not necessarily have to cross the X axis (Y = 0) for this to work.
Counter-clock-wise order depends on the choice of a pivot point. From your question, one good choice of the pivot point is the center of mass.
Something like this:
# Find the Center of Mass: data is a numpy array of shape (Npoints, 2)
mean = np.mean(data, axis=0)
# Compute angles
angles = np.arctan2((data-mean)[:, 1], (data-mean)[:, 0])
# Transform angles from [-pi,pi] -> [0, 2*pi]
angles[angles < 0] = angles[angles < 0] + 2 * np.pi
# Sort
sorting_indices = np.argsort(angles)
sorted_data = data[sorting_indices]
Not really a python question I think, but still I think you could try sorting by - sign(y) * x doing something like:
def counter_clockwise_sort(points):
return sorted(points, key=lambda point: point['x'] * (-1 if point['y'] >= 0 else 1))
should work fine, assuming you read your points properly into a list of dicts of format {'x': 0.12312, 'y': 0.912}
EDIT: This will work as long as you cross the X axis only twice, like in your example.
If:
the shape is arbitrarily complex and
the point spacing is ~random
then I think this is a really hard problem.
For what it's worth, I have faced a similar problem in the past, and I used a traveling salesman solver. In particular, I used the LKH solver. I see there is a Python repo for solving the problem, LKH-TSP. Once you have an order to the points, I don't think it will be too hard to decide on a clockwise vs clockwise ordering.
If we want to answer your specific problem, we need to pick a pivot point.
Since you want to sort according to the starting point you picked, I would take a pivot in the middle (x=4,y=0 will do).
Since we're sorting counterclockwise, we'll take arctan2(-(y-pivot_y),-(x-center_x)) (we're flipping the x axis).
We get the following, with a gradient colored scatter to prove correctness (fyi I removed the first line of the dat file after downloading):
import numpy as np
import matplotlib.pyplot as plt
points = np.loadtxt('points.dat')
#oneliner for ordering points (transform, adjust for 0 to 2pi, argsort, index at points)
ordered_points = points[np.argsort(np.apply_along_axis(lambda x: np.arctan2(-x[1],-x[0]+4) + np.pi*2, axis=1,arr=points)),:]
#color coding 0-1 as str for gray colormap in matplotlib
plt.scatter(ordered_points[:,0], ordered_points[:,1],c=[str(x) for x in np.arange(len(ordered_points)) / len(ordered_points)],cmap='gray')
Result (in the colormap 1 is white and 0 is black), they're numbered in the 0-1 range by order:
For points with comparable distances between their neighbouring pts, we can use KDTree to get two closest pts for each pt. Then draw lines connecting those to give us a closed shape contour. Then, we will make use of OpenCV's findContours to get contour traced always in counter-clockwise manner. Now, since OpenCV works on images, we need to sample data from the provided float format to uint8 image format. Given, comparable distances between two pts, that should be pretty safe. Also, OpenCV handles it well to make sure it traces even sharp corners in curvatures, i.e. smooth or not-smooth data would work just fine. And, there's no pivot requirement, etc. As such all kinds of shapes would be good to work with.
Here'e the implementation -
import numpy as np
import matplotlib.pyplot as plt
from scipy.spatial.distance import pdist
from scipy.spatial import cKDTree
import cv2
from scipy.ndimage.morphology import binary_fill_holes
def counter_clockwise_order(a, DEBUG_PLOT=False):
b = a-a.min(0)
d = pdist(b).min()
c = np.round(2*b/d).astype(int)
img = np.zeros(c.max(0)[::-1]+1, dtype=np.uint8)
d1,d2 = cKDTree(c).query(c,k=3)
b = c[d2]
p1,p2,p3 = b[:,0],b[:,1],b[:,2]
for i in range(len(b)):
cv2.line(img,tuple(p1[i]),tuple(p2[i]),255,1)
cv2.line(img,tuple(p1[i]),tuple(p3[i]),255,1)
img = (binary_fill_holes(img==255)*255).astype(np.uint8)
if int(cv2.__version__.split('.')[0])>=3:
_,contours,hierarchy = cv2.findContours(img.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
else:
contours,hierarchy = cv2.findContours(img.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cont = contours[0][:,0]
f1,f2 = cKDTree(cont).query(c,k=1)
ordered_points = a[f2.argsort()[::-1]]
if DEBUG_PLOT==1:
NPOINTS = len(ordered_points)
for i in range(NPOINTS):
plt.plot(ordered_points[i:i+2,0],ordered_points[i:i+2,1],alpha=float(i)/(NPOINTS-1),color='k')
plt.show()
return ordered_points
Sample run -
# Load data in a 2D array with 2 columns
a = np.loadtxt('random_shape.csv',delimiter=' ')
ordered_a = counter_clockwise_order(a, DEBUG_PLOT=1)
Output -

How to remove the red frame and white arrow in scalar_cut_plane when using mayavi?

Hi I want to use mayavi to visualize the data in structured grid in a cut plane.
To exemplify this, I have the following code obtained from http://docs.enthought.com/mayavi/mayavi/auto/example_structured_grid.html written by Eric Jones
#!/usr/bin/env python
import numpy as np
from numpy import cos, sin, pi
from tvtk.api import tvtk
from mayavi import mlab
def generate_annulus(r=None, theta=None, z=None):
# Find the x values and y values for each plane.
x_plane = (cos(theta)*r[:,None]).ravel()
y_plane = (sin(theta)*r[:,None]).ravel()
# Allocate an array for all the points. We'll have len(x_plane)
# points on each plane, and we have a plane for each z value, so
# we need len(x_plane)*len(z) points.
points = np.empty([len(x_plane)*len(z),3])
# Loop through the points for each plane and fill them with the
# correct x,y,z values.
start = 0
for z_plane in z:
end = start + len(x_plane)
# slice out a plane of the output points and fill it
# with the x,y, and z values for this plane. The x,y
# values are the same for every plane. The z value
# is set to the current z
plane_points = points[start:end]
plane_points[:,0] = x_plane
plane_points[:,1] = y_plane
plane_points[:,2] = z_plane
start = end
return points
# Make the data.
dims = (51, 25, 25)
# The coordinates
theta = np.linspace(0, 2*np.pi, dims[0])
# 'y' corresponds to varying 'r'
r = np.linspace(1, 10, dims[1])
z = np.linspace(0, 5, dims[2])
pts = generate_annulus(r, theta, z)
# Make the grid
sgrid = tvtk.StructuredGrid(dimensions=dims)
sgrid.points = pts
s = np.sqrt(pts[:,0]**2 + pts[:,1]**2 + pts[:,2]**2)
sgrid.point_data.scalars = np.ravel(s.copy())
sgrid.point_data.scalars.name = 'scalars'
d = mlab.pipeline.add_dataset(sgrid)
mlab.pipeline.scalar_cut_plane(d)
mlab.show()
However, I would like to get rid of the annoying red frame and the white arrow in when saving the plot. How do I do this?
I first tried to use the module mlab.pipeline.scalar_field to do this, but I got an error saying that I needed to specify the data as an array.
I've also searched the gui to see if there is somewhere I can turn this off, but i cannot seem to find it
You can simply disable the widget. Note however that this means that you cannot drag around your plane anymore (but it sounds like you do not want to have this functionality)
In last line, change
mlab.pipeline.scalar_cut_plane(d)
with
cut = mlab.pipeline.scalar_cut_plane(d)
cut.implicit_plane.widget.enabled = False
It is also possible to do this in the GUI.
Go to the ScalarCutPlane in the pipeline menu, then disable the widget by unchecking "enable" in the tab "ImplicitPlane".
...and there you go
You can make it nicer by adding:
cut = mlab.pipeline.scalar_cut_plane(d)
input('Press any key to snap in . . .')
cut.implicit_plane.widget.enabled = False
Now you can place in desired position first.

Nested for loop to numpy convolve

How can I improve the speed of this function?
def foo(mri_data, radius):
mask = mri_data.copy()
ny = len(mri_data[0,:])
nx = len(mri_data[:])
for y in xrange(0, ny):
for x in xrange(0, nx):
if (mri_data[x-radius:x+radius,y-radius:y+radius] != 1.0).all():
mask[x,y] = 0.0
return mask.copy()
It takes in image slices in the form of a numpy array. Iterates through each pixels and tests a bounding box around that pixel. If no values in the box are equal to 1 than we discard that pixel by setting it to 0.
I've been told I can use numpy.convolve but I am uncertain how this relates.
EDIT: The images values are in binary range so lowest value is 0.0 and max value is 1.0. With values in between ex: 0.767.
One of the cases where you can abuse convolution. I wouldn't use it, but the boundaries are otherwise tedious...
from scipy.ndimage import convolve
not_one = (mri_data != 1.0) # are you sure you want to compare with float like that?!
conv = convolve(not_one, np.ones((2*radius, 2*radius)))
all_not_one = (conv == (2*radius)**2)
mask[all_not_one] = 0
Should do the same thing really...
What you're doing is called a binary_dilation but there is a small bug in your code. Specifically you're getting negative indices when x, y are smaller than radius. These negative numbers are interpreted using numpy indexing rules, which is not what you want here more on indexing here, giving you the wrong result on two edges of your image.
Here is some code that uses binary dilation to accomplish the same thing, and fix the above mentioned bug.
import numpy as np
from scipy.ndimage import binary_dilation
def foo(mri_data, radius):
structure = np.ones((2*radius, 2*radius))
# I set the origin here to match your code
mask = binary_dilation(mri_data == 1, structure, origin=-1)
return np.where(mask, mri_data, 0)

Categories