How to restore two graphs in Tensorflow? - python

I have LSTM training in tensorflow and the whole sess is saved with saver = tf.train.Saver().
The whole code is shown below.
def LSTM_RNN(_X, _weights, _biases):
# model architecture based on "guillaume-chevalier" and "aymericdamien" under the MIT license.
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
_X = tf.reshape(_X, [-1, n_input])
# Rectifies Linear Unit activation function used
_X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, n_steps, 0)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
# A single output is produced, in style of "many to one" classifier, refer to http://karpathy.github.io/2015/05/21/rnn-effectiveness/ for details
lstm_last_output = outputs[-1]
# Linear activation
return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']
# Graph input/output
x = tf.placeholder(tf.float32, [None, n_steps, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
# Graph weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([n_hidden, n_classes], mean=1.0))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
pred = LSTM_RNN(x, weights, biases)
# Loss, optimizer and evaluation
l2 = lambda_loss_amount * sum(
tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()
) # L2 loss prevents this overkill neural network to overfit the data
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred)) + l2 # Softmax loss
if decaying_learning_rate:
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step*batch_size, decay_steps, decay_rate, staircase=True)
#decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) #exponentially decayed learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost,global_step=global_step) # Adam Optimizer
while step * batch_size <= training_iters:
#print (sess.run(learning_rate)) #decaying learning rate
#print (sess.run(global_step)) # global number of iterations
if len(unsampled_indices) < batch_size:
unsampled_indices = list(range(0,len(X_train)))
batch_xs, raw_labels, unsampled_indicies = extract_batch_size(X_train, y_train, unsampled_indices, batch_size)
batch_ys = one_hot(raw_labels)
# check that encoded output is same length as num_classes, if not, pad it
if len(batch_ys[0]) < n_classes:
temp_ys = np.zeros((batch_size, n_classes))
temp_ys[:batch_ys.shape[0],:batch_ys.shape[1]] = batch_ys
batch_ys = temp_ys
# Fit training using batch data
_, loss, acc = sess.run(
[optimizer, cost, accuracy],
feed_dict={
x: batch_xs,
y: batch_ys
}
)
train_losses.append(loss)
train_accuracies.append(acc)
# Evaluate network only at some steps for faster training:
if (step*batch_size % display_iter == 0) or (step == 1) or (step * batch_size > training_iters):
# To not spam console, show training accuracy/loss in this "if"
print("Iter #" + str(step*batch_size) + ": Learning rate = " + "{:.6f}".format(sess.run(learning_rate)) + ": Batch Loss = " + "{:.6f}".format(loss) + ", Accuracy = {}".format(acc))
# Evaluation on the test set (no learning made here - just evaluation for diagnosis)
loss, acc = sess.run([cost, accuracy], feed_dict={x: X_test,y: one_hot(y_test)})
test_losses.append(loss)
test_accuracies.append(acc)
print("PERFORMANCE ON TEST SET: " + "Batch Loss = {}".format(loss) + ", Accuracy = {}".format(acc))
step += 1
print("Optimization Finished!")
save_path = saver.save(sess, "ActivityTrainedModels/model.ckpt")
Then I restore the model for deployment.
At that time, I need to use together with another human pose estimator model for Human pose estimation. Pose estimator is loaded with get_graph_path().
I can't load both. I can load either one only. If I load both I have error as
NotFoundError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:
Key smoothing/gauss_weight not found in checkpoint
[[node save/RestoreV2 (defined at ActivityDetection.py:219) = RestoreV2[dtypes=[DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]]
My deployment code is as follow.
n_steps = 32 # 32 timesteps per series
n_input = 36 # num input parameters per timestep
n_hidden = 34 # Hidden layer num of features
n_classes = 3
global_step = tf.Variable(0, trainable=False)
# Graph input/output
x = tf.placeholder(tf.float32, [None, n_steps, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
# Graph weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([n_hidden, n_classes], mean=1.0))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
pred = LSTM_RNN(x, weights, biases)
sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
init = tf.global_variables_initializer()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Activity Recognition')
parser.add_argument('--video', type=str, default='../../tf-openpose/TestVideos/2019_01-Feb Recording/C4-13.mp4')
parser.add_argument('--resolution', type=str, default='640x360', help='network input resolution. default=432x368')
parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin')
parser.add_argument('--resize', type=str, default='0x0',
help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ')
parser.add_argument('--resize-out-ratio', type=float, default=4.0,
help='if provided, resize heatmaps before they are post-processed. default=1.0')
parser.add_argument('--show-process', type=bool, default=False,
help='for debug purpose, if enabled, speed for inference is dropped.')
parser.add_argument('--showBG', type=bool, default=True, help='False to show skeleton only.')
parser.add_argument('--s', type=str, default='00:00', help='start time to crop')
parser.add_argument('--e', type=str, default='00:00', help='end time to crop')
args = parser.parse_args()
w, h = model_wh(args.resize)
if w > 0 and h > 0:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
else:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(img_w, img_h))
'''with tf.Session() as sess:
sess.run(init)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('/home/coie/venvp3/HumanActivityRecognition/HumanActivityRecognition/ActivityTrainedModels/'))
print("Model restored.")
all_vars = tf.trainable_variables()
for i in range(len(all_vars)):
name = all_vars[i].name
values = sess.run(name)
print('name', name)
#print('value', values)
print('shape',values.shape)'''
#result = sess.run(pred, feed_dict={x: X_test[24:27]})
#for r in range(len(result)):
#print("predicted activity:", LABELS[result[r].argmax(0)])
If I load TfPoseEstimator, I can't restore LSTM model.
How can I solve the problem?

I made a separate class for LSTM and LSTM graph is loaded with a sess in the class. So main python code has another sess with default graph. The default graph at main python load postestimator graph.
My LSTM class is defined as
class ActivityRecognition:
#Utility functions for training:
def LSTM_RNN(self,_X, _weights, _biases):
# model architecture based on "guillaume-chevalier" and "aymericdamien" under the MIT license.
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
_X = tf.reshape(_X, [-1, self.n_input])
# Rectifies Linear Unit activation function used
_X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, self.n_steps, 0)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
lstm_last_output = outputs[-1]
return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']
def __init__(self):
self.n_steps = 32 # 32 timesteps per series
self.n_input = 36 # num input parameters per timestep
self.n_hidden = 34 # Hidden layer num of features
self.n_classes = 3
self.global_step = tf.Variable(0, trainable=False)
# Graph input/output
self.x = tf.placeholder(tf.float32, [None, self.n_steps, self.n_input])
self.y = tf.placeholder(tf.float32, [None, self.n_classes])
# Graph weights
self.weights = {
'hidden': tf.Variable(tf.random_normal([self.n_input, self.n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes], mean=1.0))
}
self.biases = {
'hidden': tf.Variable(tf.random_normal([self.n_hidden])),
'out': tf.Variable(tf.random_normal([self.n_classes]))
}
self.pred = self.LSTM_RNN(self.x, self.weights, self.biases)
self.sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
self.init = tf.global_variables_initializer()
with tf.Session() as sess:
self.sess.run(self.init)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('ActivityTrainedModels/'))
print("Model restored.")
#all_vars = tf.trainable_variables()
#for i in range(len(all_vars)):
#name = all_vars[i].name
#values = sess.run(name)
#print('name', name)
#print('value', values)
#print('shape',values.shape)
def inference(self,test):
result = self.sess.run(selfpred, feed_dict={x: test})
for r in range(len(result)):
activity=LABELS[result[r].argmax(0)]
return activity
if __name__ == "__main__":
ActivityRecognition()

Related

Loading the CNN model and predict the CSV file

I'm learning the basic CNN model by using tensorflow. After training my model, I want to load it and use the model to predict the hand-written digital img (CSV file).
Here is my CNN model:
import random
import os
import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.ERROR)
class CNNLogisticClassification:
def __init__(self, shape_picture, n_labels,
learning_rate=0.5, dropout_ratio=0.5, alpha=0.0):
self.shape_picture = shape_picture
self.n_labels = n_labels
self.weights = None
self.biases = None
self.graph = tf.Graph() # initialize new grap
self.build(learning_rate, dropout_ratio, alpha) # building graph
self.sess = tf.Session(graph=self.graph) # create session by the graph
def build(self, learning_rate, dropout_ratio, alpha):
with self.graph.as_default():
### Input
self.train_pictures = tf.placeholder(tf.float32,
shape=[None]+self.shape_picture,name="Input")
self.train_labels = tf.placeholder(tf.int32,
shape=(None, self.n_labels),name="Output")
### Optimalization
# build neurel network structure and get their predictions and loss
self.y_, self.original_loss = self.structure(pictures=self.train_pictures,
labels=self.train_labels,
dropout_ratio=dropout_ratio,
train=True, )
# regularization loss
self.regularization = \
tf.reduce_sum([tf.nn.l2_loss(w) for w in self.weights.values()]) \
/ tf.reduce_sum([tf.size(w, out_type=tf.float32) for w in self.weights.values()])
# total loss
self.loss = self.original_loss + alpha * self.regularization
# define training operation
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
self.train_op = optimizer.minimize(self.loss)
### Prediction
self.new_pictures = tf.placeholder(tf.float32,
shape=[None]+self.shape_picture,name="Input")
self.new_labels = tf.placeholder(tf.int32,
shape=(None, self.n_labels),name="Output")
self.new_y_, self.new_original_loss = self.structure(pictures=self.new_pictures,
labels=self.new_labels)
self.new_loss = self.new_original_loss + alpha * self.regularization
### Initialization
self.init_op = tf.global_variables_initializer()
### save model
self.saver=tf.train.Saver()
def structure(self, pictures, labels, dropout_ratio=None, train=False):
### Variable
## LeNet5 Architecture(http://yann.lecun.com/exdb/lenet/)
# input:(batch,28,28,1) => conv1[5x5,6] => (batch,24,24,6)
# pool2 => (batch,12,12,6) => conv2[5x5,16] => (batch,8,8,16)
# pool4 => fatten5 => (batch,4x4x16) => fc6 => (batch,120)
# (batch,120) => fc7 => (batch,84)
# (batch,84) => fc8 => (batch,10) => softmax
if (not self.weights) and (not self.biases):
self.weights = {
'conv1': tf.Variable(tf.truncated_normal(shape=(5, 5, 1, 6),
stddev=0.1)),
'conv3': tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16),
stddev=0.1)),
'fc6': tf.Variable(tf.truncated_normal(shape=(4*4*16, 120),
stddev=0.1)),
'fc7': tf.Variable(tf.truncated_normal(shape=(120, 84),
stddev=0.1)),
'fc8': tf.Variable(tf.truncated_normal(shape=(84, self.n_labels),
stddev=0.1)),
}
self.biases = {
'conv1': tf.Variable(tf.zeros(shape=(6))),
'conv3': tf.Variable(tf.zeros(shape=(16))),
'fc6': tf.Variable(tf.zeros(shape=(120))),
'fc7': tf.Variable(tf.zeros(shape=(84))),
'fc8': tf.Variable(tf.zeros(shape=(self.n_labels))),
}
### Structure
conv1 = self.get_conv_2d_layer(pictures,
self.weights['conv1'], self.biases['conv1'],
activation=tf.nn.relu)
pool2 = tf.nn.max_pool(conv1,
ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
conv3 = self.get_conv_2d_layer(pool2,
self.weights['conv3'], self.biases['conv3'],
activation=tf.nn.relu)
pool4 = tf.nn.max_pool(conv3,
ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')
fatten5 = self.get_flatten_layer(pool4)
if train:
fatten5 = tf.nn.dropout(fatten5, keep_prob=1-dropout_ratio[0])
fc6 = self.get_dense_layer(fatten5,
self.weights['fc6'], self.biases['fc6'],
activation=tf.nn.relu)
if train:
fc6 = tf.nn.dropout(fc6, keep_prob=1-dropout_ratio[1])
fc7 = self.get_dense_layer(fc6,
self.weights['fc7'], self.biases['fc7'],
activation=tf.nn.relu)
logits = self.get_dense_layer(fc7, self.weights['fc8'], self.biases['fc8'])
y_ = tf.nn.softmax(logits)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=labels,
logits=logits))
return (y_, loss)
def get_dense_layer(self, input_layer, weight, bias, activation=None):
x = tf.add(tf.matmul(input_layer, weight), bias)
if activation:
x = activation(x)
return x
def get_conv_2d_layer(self, input_layer,
weight, bias,
strides=(1, 1), padding='VALID', activation=None):
x = tf.add(
tf.nn.conv2d(input_layer,
weight,
[1, strides[0], strides[1], 1],
padding=padding), bias)
if activation:
x = activation(x)
return x
def get_flatten_layer(self, input_layer):
shape = input_layer.get_shape().as_list()
n = 1
for s in shape[1:]:
n *= s
x = tf.reshape(input_layer, [-1, n])
return x
def fit(self, X, y, epochs=10,
validation_data=None, test_data=None, batch_size=None):
X = self._check_array(X)
y = self._check_array(y)
N = X.shape[0]
random.seed(9000)
if not batch_size:
batch_size = N
self.sess.run(self.init_op)
for epoch in range(epochs):
print('Epoch %2d/%2d: ' % (epoch+1, epochs))
# mini-batch gradient descent
index = [i for i in range(N)]
random.shuffle(index)
while len(index) > 0:
index_size = len(index)
batch_index = [index.pop() for _ in range(min(batch_size, index_size))]
feed_dict = {
self.train_pictures: X[batch_index, :],
self.train_labels: y[batch_index],
}
_, loss = self.sess.run([self.train_op, self.loss],
feed_dict=feed_dict)
print('[%d/%d] loss = %.4f ' % (N-len(index), N, loss), end='\r')
# evaluate at the end of this epoch
y_ = self.predict(X)
train_loss = self.evaluate(X, y)
train_acc = self.accuracy(y_, y)
msg = '[%d/%d] loss = %8.4f, acc = %3.2f%%' % (N, N, train_loss, train_acc*100)
if validation_data:
val_loss = self.evaluate(validation_data[0], validation_data[1])
val_acc = self.accuracy(self.predict(validation_data[0]), validation_data[1])
msg += ', val_loss = %8.4f, val_acc = %3.2f%%' % (val_loss, val_acc*100)
print(msg)
if test_data:
test_acc = self.accuracy(self.predict(test_data[0]), test_data[1])
print('test_acc = %3.2f%%' % (test_acc*100))
def accuracy(self, predictions, labels):
return (np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))/predictions.shape[0])
def predict(self, X):
X = self._check_array(X)
return self.sess.run(self.new_y_, feed_dict={self.new_pictures: X})
def evaluate(self, X, y):
X = self._check_array(X)
y = self._check_array(y)
return self.sess.run(self.new_loss, feed_dict={self.new_pictures: X,
self.new_labels: y})
def _check_array(self, ndarray):
ndarray = np.array(ndarray)
if len(ndarray.shape) == 1:
ndarray = np.reshape(ndarray, (1, ndarray.shape[0]))
return ndarray
if __name__ == '__main__':
print('Extract MNIST Dataset ...')
mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
train_data = mnist.train
valid_data = mnist.validation
test_data = mnist.test
train_img = np.reshape(train_data.images, [-1, 28, 28, 1])
valid_img = np.reshape(valid_data.images, [-1, 28, 28, 1])
test_img = np.reshape(test_data.images, [-1, 28, 28, 1])
model = CNNLogisticClassification(
shape_picture=[28, 28, 1],
n_labels=10,
learning_rate=0.07,
dropout_ratio=[0.2, 0.1],
alpha=0.1,
)
model.fit(
X=train_img,
y=train_data.labels,
epochs=10,
validation_data=(valid_img, valid_data.labels),
test_data=(test_img, test_data.labels),
batch_size=32,
)
saver = model.saver.save(model.sess, "test_model")
print("Model saved in path: %s" % saver)
And I create another py file to load my model:
import tensorflow as tf
saver = tf.train.import_meta_graph('./my_model/test_model.meta')
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('./my_model/test_model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./my_model'))
sess.run(tf.global_variables_initializer())
saver.predict('D:\python\number_data\3.csv')
This is the error I'm getting:
AttributeError: 'Saver' object has no attribute 'predict'
How do I fix it and let the trained model predict my CSV file?
Thanks in advance for your help!
Edit:
I change my second py file as below:
import numpy as np
import tensorflow as tf
import pandas as pd
X=pd.read_csv('D:/PYTHON/cnn_data/7.csv', index_col=None, header=None).values
X1=X/255
X3=tf.convert_to_tensor(
X1,
dtype=None,
dtype_hint=None,
name=None
)
saver = tf.train.import_meta_graph('./my_model/test_model.meta')
with tf.Session() as sess:
new_saver = tf.train.import_meta_graph('./my_model/test_model.meta')
new_saver.restore(sess, tf.train.latest_checkpoint('./my_model'))
graph=tf.get_default_graph()
xs0=graph.get_tensor_by_name("Input:0")
prediction=graph.get_tensor_by_name("Output:0")
sess.run(prediction,feed_dict={xs0:X3})
print(prediction)
I only try to predict one digital img data(CSV file with one row), I transfer it into tensor type and name my two placeholder "Input" , "Output", but get another error:
TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, numpy ndarrays, or TensorHandles. For reference, the tensor object was Tensor("Const:0", shape=(1, 784), dtype=float64) which was passed to
the feed with key Tensor("Input:0", shape=(?, 28, 28, 1), dtype=float32).
>
First of all, the obvious error here is that you are trying to call a function that doesn't exist. Evidently, the saver object does not have a predict function.
Second, if you want Tensorflow to make predictions, you need to provide it with "Tensorflow" input, and sadly, CSVs are not one of them.
All you need to do is transform your CSV inputs into tensors, with a function like this for instance:
filename = 'D:\python\number_data\3.csv'
def csv_to_tensor(filename):
...
return tensors
I cannot tell you how to implement the function exactly since I don't know the exact format of your data, but I am assuming that each row in your file is an input. So you most likely just need to loop through the lines in your file and convert each line to a tensor, which can then be used by a Tensorflow model.

Training CNN model by using activation function Selu

I am training my own model using Tensorflow. However, I got some trouble when I change my activation function from Relu to Selu.
This is what happened. Learning curve drops accidentally and I have no idea about what's going on.
my learning curve
like this.
For what I have known, Selu can prevent overfitting, so I try to implement it in my model. Is there any tips, or any condition when I want to use Selu?
This is my code:
this is the place where I change my activation function
-----
def conv2d_maxpool(x_tensor, conv_num_outputs, conv_ksize, conv_strides, pool_ksize, pool_strides, layer_name):
conv_layer = tf.layers.conv2d(x_tensor, conv_num_outputs, kernel_size=conv_ksize, strides=conv_strides, activation=tf.nn.selu, name = layer_name)
conv_layer = tf.layers.max_pooling2d(conv_layer, pool_size=pool_ksize, strides=pool_strides)
return conv_layer
-----
graph
tf.reset_default_graph()
#### placeholder ####
input_img = tf.placeholder(dtype=tf.float32, shape=(None, img_size, img_size, 3))
y_true = tf.placeholder(dtype=tf.float32, shape=(None, num_class))
keep_prob = tf.placeholder(tf.float32, name="keep_prob")
lr_in = tf.placeholder(dtype = tf.float32, name = 'learning_rate')
conv_ksize = (3,3)
conv_strides = (1,1)
pool_ksize = (2,2)
pool_strides = (2,2)
n_filters_1 = 32
n_filters_2 = 64
n_filters_3 = 128
n_filters_4 = 256
onebyone_ksize = (1,1)
#CNN
conv_1 = conv2d_maxpool(input_img, n_filters_1, conv_ksize, conv_strides, pool_ksize, pool_strides, layer_name = "conv1")
# conv_1 = tf.layers.conv2d(conv_1, conv_num_outputs, kernel_size=conv_ksize, strides=conv_strides, activation=tf.nn.relu)
# conv_1_norm = tf.layers.batch_normalization(conv_1, name = "batch_norm1")
# conv_1_dropout = tf.layers.dropout(conv_1_norm, rate = keep_prob, training = True, name = "dropout1")
conv_2 = conv2d_maxpool(conv_1, n_filters_2, conv_ksize, conv_strides, pool_ksize, pool_strides, layer_name = "conv2")
# conv_2_norm = tf.layers.batch_normalization(conv_2)
conv_3 = conv2d_maxpool(conv_2, n_filters_3, conv_ksize, conv_strides, pool_ksize, pool_strides, layer_name = "conv3")
# conv_3_norm = tf.layers.batch_normalization(conv_3, name = "batch_norm3")
# conv_3_dropout = tf.layers.dropout(conv_3_norm, rate = keep_prob, training = True, name = "dropout3")
conv_4 = conv2d_maxpool(conv_3, n_filters_4, conv_ksize, conv_strides, pool_ksize, pool_strides, layer_name = "conv4")
flatten = tf.layers.flatten(conv_4)
fc1 = tf.layers.dense(flatten, 256, activation = tf.nn.relu)
out = tf.layers.dense(fc1, 6, activation=None, name= "logits") #logit
predict = tf.nn.softmax(out)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = out, labels = y_true))
optimizer = tf.train.AdamOptimizer(lr).minimize(cost)
##accuracy
correct_pred = tf.equal(tf.argmax(out, 1), tf.argmax(y_true, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name='accuracy')
Training
#history/record
train_loss, train_acc = [], []
valid_loss, valid_acc = [], []
update_per_epoch = int(np.floor(X_train.shape[0] / batch_size))
## early stopping and learning rate congig
es_patience = 10
es_n = 0
lr_patience = 3
lr_n = 0
save_model_path = './save'
saver = tf.train.Saver()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
# Initializing the variables
batch_gen = img_gen.flow(generator_input(X_train), y_train, batch_size = 32)
val_batch_gen = img_gen.flow(generator_input(X_valid), y_valid, batch_size = len(X_valid))
for i in range(epoch):
epoch_loss = 0
epoch_acc = 0
for j in range(update_per_epoch):
image, label = next(batch_gen)
_, this_loss, this_acc = sess.run([optimizer, cost, accuracy], feed_dict={
input_img : image,
y_true : label,
lr_in: lr,
keep_prob : keep_probability
})
epoch_loss += this_loss
epoch_acc += this_acc
## end of epoch
epoch_loss /= update_per_epoch
epoch_acc /= update_per_epoch
train_loss.append(epoch_loss)
train_acc.append(epoch_acc)
print('Epoch {:>2} Loss: {:>4.4f} Training Accuracy: {:.6f}'.format(i + 1, epoch_loss, epoch_acc))
valid_image, valid_label = next(val_batch_gen)
valid_this_loss, valid_this_acc = sess.run([cost, accuracy], feed_dict = {
input_img: valid_image,
y_true: valid_label,
lr_in: lr,
keep_prob: 1.
})
valid_loss.append(valid_this_loss)
valid_acc.append(valid_this_acc)
print('Epoch {:>2} Loss: {:>4.4f} Validation Accuracy: {:.6f}'.format(i + 1,valid_this_loss, valid_this_acc))
# early stop
if valid_this_loss > np.min(valid_loss):
es_n += 1
lr_n += 1
else:
es_n = 0
lr_n = 0
saver.save(sess, os.path.join(os.getcwd(), 'bestsession.ckpt'))
# early stop
if es_n >= es_patience:
print("-----------early stopping-------------")
break
# adaptive learning rate
if lr_n >= lr_patience:
lr *= lr_decay_rate
lr_n = 0
print("-----------adjust learning rate------------")
# Save Model
save_path = saver.save(sess, save_model_path)
print('-----model save ------')
----------- 18/09/07------------
I can always reproduce the same result.
And this is my code, I wrote it in Jupyter. But sorry I can't upload the training data:
https://drive.google.com/open?id=1uUE32KrNmWnhLbV8z-fyHSMu6zGCCG_e

Fit and predict in Tensorflow : Session restore for multiple functions

I started learning tensorflow one week ago and i am struggling a bit with the possibility of restoring a model.
I am constructing a class for a CNN (from stanford course code) where i want to have a run and a test function (first one to train the model, second one to make a prediction on another set of datas).
The function run is working correctly, mais i have a hard time restoring the model to make the prediction in function test (here i have a problem shape and i guess it comes from the way I get the operation).
import os
import tensorflow as tf
from time import time
class Cnn:
def __init__(self, batch_size=128, skip_step=10, epochs=1, dropout_ratio=0.75):
self.batch_size = batch_size
self.skip_step = skip_step
self.epochs = epochs
self.dropout_ratio = dropout_ratio
self.x = tf.placeholder(tf.float32, [None, 784], name="X_placeholder")
self.images = tf.reshape(self.x, shape=[-1, 28, 28, 1])
self.y = tf.placeholder(tf.float32, [None, 10], name="Y_placeholder")
self.dropout = tf.placeholder(tf.float32, name="dropout")
self.global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
self.layers = [self.images]
self.n_layers = 0
def convolution(self, kernel_size, n_output, strides, scope_name):
previous_layer = self.layers[self.n_layers]
with tf.variable_scope(scope_name) as scope:
kernel_shape = [kernel_size[0], kernel_size[1], previous_layer.get_shape()[3], n_output]
kernel = tf.get_variable("kernels", kernel_shape,
initializer=tf.truncated_normal_initializer())
biases = tf.get_variable("biases", [n_output],
initializer=tf.random_normal_initializer())
convolution_2d = tf.nn.conv2d(previous_layer, kernel, strides=strides,
padding="SAME")
convolution = tf.nn.relu(convolution_2d + biases, name=scope.name)
self.layers.append(convolution)
self.n_layers += 1
return convolution
def pool(self, size, strides, scope_name, padding="SAME"):
previous_layer = self.layers[self.n_layers]
with tf.variable_scope(scope_name):
pool = tf.nn.max_pool(previous_layer, ksize=size, strides=strides,
padding=padding)
self.layers.append(pool)
self.n_layers += 1
return pool
def fully_connected(self, n_input, n_output, scope_name, relu=False, dropout=True):
previous_layer = self.layers[self.n_layers]
with tf.variable_scope(scope_name):
weights = tf.get_variable("weights", [n_input, n_output],
initializer=tf.truncated_normal_initializer())
biases = tf.get_variable("biases", [n_output],
initializer=tf.random_normal_initializer())
pool_reshaped = tf.reshape(previous_layer, [-1, n_input])
logits = tf.add(tf.matmul(pool_reshaped, weights), biases, name="logits")
fc = logits
if relu:
fc = tf.nn.relu(fc, name="relu")
if dropout:
fc = tf.nn.dropout(fc, self.dropout, name="dropout")
self.layers.append(fc)
self.n_layers += 1
if relu is False and dropout is False:
self.logits = tf.add(tf.matmul(pool_reshaped, weights), biases, name="logits")
self.predictions = tf.nn.softmax(logits, name="predictions")
return fc
def set_loss(self, scope_name):
previous_layer = self.layers[self.n_layers]
with tf.name_scope(scope_name):
entropy = tf.nn.softmax_cross_entropy_with_logits(logits=previous_layer, labels=self.y)
loss = tf.reduce_mean(entropy, name='loss')
self.layers.append(loss)
self.n_layers += 1
self.loss = loss
def set_optimizer(self):
previous_layer = self.layers[self.n_layers]
optimizer = tf.train.AdamOptimizer(0.001).minimize(previous_layer, global_step=self.global_step)
self.layers.append(optimizer)
self.n_layers += 1
self.optimizer = optimizer
def run(self, train_x, train_y):
sess = tf.Session()
with sess.as_default():
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
writer = tf.summary.FileWriter('./my_graph/mnist', sess.graph)
ckpt = tf.train.get_checkpoint_state(os.path.dirname('results/checkpoint'))
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
initial_step = self.global_step.eval()
start_time = time()
n_batches = int(train_x.shape[0] / self.batch_size)
total_correct_preds = 0
total_loss = 0.0
current_position = 0
for index in range(initial_step, int(n_batches * self.epochs)): # train the model n_epochs times
x_batch = train_x[current_position: current_position + self.batch_size, :]
y_batch = train_y[current_position: current_position + self.batch_size, :]
feed_dict = {self.x: x_batch, self.y: y_batch, self.dropout: self.dropout_ratio}
_, loss_batch, logits_batch = sess.run([self.optimizer, self.loss, self.logits],
feed_dict=feed_dict)
print(logits_batch.shape)
total_loss += loss_batch
preds = tf.nn.softmax(logits_batch)
correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(y_batch, 1))
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
total_correct_preds += sess.run(accuracy)
if (index + 1) % self.skip_step == 0:
print('Average loss at step {}: {:5.1f}'.format(index + 1, total_loss / self.skip_step))
total_loss = 0.0
saver.save(sess, 'results/mnist-convnet', index)
current_position += self.batch_size
print("Optimization Finished!") # should be around 0.35 after 25 epochs
print("Total time: {0} seconds".format(time() - start_time))
print("Accuracy {0}".format(total_correct_preds / train_x.shape[0]))
def test(self, val_x, val_y):
checkpoint_file = tf.train.latest_checkpoint("results/")
graph = tf.Graph()
with graph.as_default():
sess = tf.Session()
with sess.as_default():
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
self.x = graph.get_operation_by_name("X_placeholder").outputs[0]
self.y = graph.get_operation_by_name("Y_placeholder").outputs[0]
self.dropout = graph.get_operation_by_name("dropout").outputs[0]
self.global_step = graph.get_operation_by_name("global_step").outputs[0]
self.logits = graph.get_operation_by_name("logits").outputs[0]
current_position = 0
n_batches = int(val_x.shape[0] / self.batch_size)
total_correct_preds = 0
for i in range(n_batches):
x_batch = val_x[current_position: current_position + self.batch_size]
y_batch = val_y[current_position: current_position + self.batch_size]
feed_dict = {self.x: x_batch, self.y: y_batch, self.dropout: self.dropout_ratio}
logits_batch = sess.run([self.logits], feed_dict=feed_dict)
preds = tf.nn.softmax(logits_batch)
# correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(y_batch, 1))
"""
accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32))
total_correct_preds += sess.run(accuracy)
current_position += self.batch_size
print("Accuracy {0}".format(total_correct_preds / val_x.shape[0]))
"""
and testing it like this (sorry if there is a lot of code) :
from cnn import Cnn
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(1)
N_CLASSES = 10
# load datas
mnist = input_data.read_data_sets("mnist", one_hot=True)
train_x, train_y = mnist.train.images, mnist.train.labels
val_x, val_y = mnist.test.images, mnist.test.labels
model = Cnn(batch_size=128, skip_step=10, epochs=0.25, dropout_ratio=0.75)
model.convolution(kernel_size=[5, 5], strides=[1, 1, 1, 1], n_output=32, scope_name="conv1")
model.pool(size=[1, 2, 2, 1], strides=[1, 2, 2, 1], scope_name="pool1")
model.convolution(kernel_size=[5, 5], strides=[1, 1, 1, 1], n_output=64, scope_name="conv2")
model.pool(size=[1, 2, 2, 1], strides=[1, 2, 2, 1], scope_name="pool2")
input_features = 7 * 7 * 64
model.fully_connected(n_input=input_features, n_output=1024, scope_name="fc", relu=True, dropout=True)
model.fully_connected(n_input=1024, n_output=N_CLASSES, scope_name="softmax_linear", dropout=False)
model.set_loss(scope_name="loss")
model.set_optimizer()
model.run(train_x=train_x, train_y=train_y)
model.test(val_x, val_y)
I would also appreciate any comments regarding the better way to create a class like this (in particular the handling of the placeholders and the sessions)
Thanks !
Nicolas

How to prepare data for training and data for predict?

I'm new in TensorFlow and Machine Learning (python also).
In first step to create an image recognition program, i was hit the wall of confusion in feeding data preparation. Can someone please help me on this?
I was look into this tutorial, but the data preparation is obfuscated.
mnis softmax for beginner
I didn't expect to get a whole perfect program from this question, instead i would love to hear if you can tell me how TensorFlow work on feed_dict. For now in my mind, it is: "Work like a [for] loop, go though imageHolder, get the data of 2352 byte/ 1 image and put in the training op, in there it's perform predict base on current model and compare with data from labelHolder of same index then perform correction on model." so i was expect to put in a set of 2352 byte data (another image with same size) and get the prediction. I will also put the code here, in case my idea is correct and the error come from bad implementation.
Said: i have a set off data for 5 classes, with 3670 images in total.
When load the data to feed_dict for training, i have converted all image to 28x28 pixels, with 3 channels. it result me a tensor of (3670, 2352) for image holder in the feed_dict. After that, i managed to prepare a tensor of (3670,) for label holder in the feed_dict.
The training code is look like this:
for step in xrange(FLAGS.max_steps):
feed_dict = {
imageHolder: imageTrain,
labelHolder: labelTrain,
}
_, loss_rate = sess.run([train_op, loss_op], feed_dict=feed_dict)
Then i have my code to predict a new image with the model above:
testing_dataset = do_get_file_list(FLAGS.guess_dir)
x = tf.placeholder(tf.float32, shape=(IMAGE_PIXELS))
for data in testing_dataset:
image = Image.open(data)
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
image = np.array(image).reshape(IMAGE_PIXELS)
prediction = session.run(tf.argmax(logits, 1), feed_dict={x: image})
But the problem is the predict line always raise an error of "Can not feed value of shape...." no matter what shape my testing data is (2352,), (1, 2352) (it's ask for (3670, 2352) shape, but no way)
This is some flag i have used
IMAGE_SIZE = 28
CHANNELS = 3
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE * CHANNELS
The training op and loss computing:
def do_get_op_compute_loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def do_get_op_training(loss_op, training_rate):
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss_op, global_step=global_step)
return train_op
Variables
imageHolder = tf.placeholder(tf.float32, [data_count, IMAGE_PIXELS])
labelHolder = tf.placeholder(tf.int32, [data_count])
For complete program:
import os
import math
import tensorflow as tf
from PIL import Image
import numpy as np
from six.moves import xrange
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 200, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 4, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
flags.DEFINE_string('save_file', '.\\data\\model.ckpt', 'Directory to put the training data.')
flags.DEFINE_string('guess_dir', 'work', 'Directory to put the testing data.')
#flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
# 'for unit testing.')
IMAGE_SIZE = 28
CHANNELS = 3
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE * CHANNELS
def do_inference(images, hidden1_units, hidden2_units, class_count):
#HIDDEN LAYER 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units], stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
#HIDDEN LAYER 2
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units], stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]), name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
#LINEAR
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, class_count], stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([class_count]), name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def do_get_op_compute_loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def do_get_op_training(loss_op, training_rate):
optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss_op, global_step=global_step)
return train_op
def do_get_op_evaluate(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def do_evaluate(session, eval_correct_op, imageset_holder, labelset_holder, train_images, train_labels):
true_count = 0
num_examples = FLAGS.batch_size * FLAGS.batch_size
for step in xrange(FLAGS.batch_size):
feed_dict = {imageset_holder: train_images, labelset_holder: train_labels,}
true_count += session.run(eval_correct_op, feed_dict=feed_dict)
precision = true_count / num_examples
# print(' Num examples: %d Num correct: %d Precision # 1: %0.04f' %
# (num_examples, true_count, precision))
def do_init_param(data_count, class_count):
# Generate placeholder
imageHolder = tf.placeholder(tf.float32, shape=(data_count, IMAGE_PIXELS))
labelHolder = tf.placeholder(tf.int32, shape=(data_count))
# Build a graph for prediction from inference model
logits = do_inference(imageHolder, FLAGS.hidden1, FLAGS.hidden2, class_count)
# Add loss calculating op
loss_op = do_get_op_compute_loss(logits, labelHolder)
# Add training op
train_op = do_get_op_training(loss_op, FLAGS.learning_rate)
# Add evaluate correction op
evaluate_op = do_get_op_evaluate(logits, labelHolder)
# Create session for op operating
sess = tf.Session()
# Init param
init = tf.initialize_all_variables()
sess.run(init)
return sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, logits
def do_get_class_list():
return [{'name': name, 'path': os.path.join(FLAGS.train_dir, name)} for name in os.listdir(FLAGS.train_dir)
if os.path.isdir(os.path.join(FLAGS.train_dir, name))]
def do_get_file_list(folderName):
return [os.path.join(folderName, name) for name in os.listdir(folderName)
if (os.path.isdir(os.path.join(folderName, name)) == False)]
def do_init_data_list():
file_list = []
for classItem in do_get_class_list():
for dataItem in do_get_file_list(classItem['path']):
file_list.append({'name': classItem['name'], 'path': dataItem})
# Renew data feeding dictionary
imageTrainList, labelTrainList = do_seperate_data(file_list)
imageTrain = []
for imagePath in imageTrainList:
image = Image.open(imagePath)
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
imageTrain.append(np.array(image))
imageCount = len(imageTrain)
imageTrain = np.array(imageTrain)
imageTrain = imageTrain.reshape(imageCount, IMAGE_PIXELS)
id_list, id_map = do_generate_id_label(labelTrainList)
labelTrain = np.array(id_list)
return imageTrain, labelTrain, id_map
def do_init():
imageTrain, labelTrain, id_map = do_init_data_list()
sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, logits = do_init_param(len(imageTrain), len(id_map))
return sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, imageTrain, labelTrain, id_map, logits
def do_seperate_data(data):
images = [item['path'] for item in data]
labels = [item['name'] for item in data]
return images, labels
def do_generate_id_label(label_list):
trimmed_label_list = list(set(label_list))
id_map = {trimmed_label_list.index(label): label for label in trimmed_label_list}
reversed_id_map = {label: trimmed_label_list.index(label) for label in trimmed_label_list}
id_list = [reversed_id_map.get(item) for item in label_list]
return id_list, id_map
def do_training(sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, imageTrain, labelTrain):
# Training state checkpoint saver
saver = tf.train.Saver()
# feed_dict = {
# imageHolder: imageTrain,
# labelHolder: labelTrain,
# }
for step in xrange(FLAGS.max_steps):
feed_dict = {
imageHolder: imageTrain,
labelHolder: labelTrain,
}
_, loss_rate = sess.run([train_op, loss_op], feed_dict=feed_dict)
if step % 100 == 0:
print('Step {0}: loss = {1}'.format(step, loss_rate))
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, FLAGS.save_file, global_step=step)
print('Evaluate training data')
do_evaluate(sess, evaluate_op, imageHolder, labelHolder, imageTrain, labelTrain)
def do_predict(session, logits):
# xentropy
testing_dataset = do_get_file_list(FLAGS.guess_dir)
x = tf.placeholder(tf.float32, shape=(IMAGE_PIXELS))
print('Perform predict')
print('==================================================================================')
# TEMPORARY CODE
for data in testing_dataset:
image = Image.open(data)
image = image.resize((IMAGE_SIZE, IMAGE_SIZE))
image = np.array(image).reshape(IMAGE_PIXELS)
print(image.shape)
prediction = session.run(logits, {x: image})
print('{0}: {1}'.format(data, prediction))
def main(_):
# TF notice default graph
with tf.Graph().as_default():
sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, imageTrain, labelTrain, id_map, logits = do_init()
print("done init")
do_training(sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, imageTrain, labelTrain)
print("done training")
do_predict(sess, logits)
# NO IDEA
if __name__ == '__main__':
tf.app.run()
It's important to understand the error, you say
But the problem is the predict line always raise an error of "Can not
feed value of shape...." no matter what shape my testing data is
(2352,), (1, 2352) (it's ask for (3670, 2352) shape, but no way)
Oh yes way my friend, yes way. It says there's a problem with your shape, you need to inspect that. It asks for 3670, why?
Because your model accepts inputs with shape (data_count, IMAGE_PIXELS), which you declare in the below:
def do_init_param(data_count, class_count):
# Generate placeholder
imageHolder = tf.placeholder(tf.float32, shape=(data_count, IMAGE_PIXELS))
labelHolder = tf.placeholder(tf.int32, shape=(data_count))
This function is called here:
sess, train_op, loss_op, evaluate_op, imageHolder, labelHolder, logits = do_init_param(len(imageTrain), len(id_map))
len(imageTrain) is the length of your dataset, probably 3670 images.
Then you have your prediction function:
def do_predict(session, logits):
# xentropy
testing_dataset = do_get_file_list(FLAGS.guess_dir)
x = tf.placeholder(tf.float32, shape=(IMAGE_PIXELS))
...
prediction = session.run(logits, {x: image})
Note x here is useless. You are feeding your image to predict to your model which does not expect that shape, it expects the original placeholder shape of (3670, 2352), because that's what you said.
The solution is to declare x as a placeholder with non-specific first dimension such as:
imageHolder = tf.placeholder(tf.float32, shape=(None, IMAGE_PIXELS))
When you predict the label of your image, you can have a single image or multiple images (a mini-batch), but always must be of shape [number_images, IMAGE_PIXELS].
Makes sense?

TensorFlow image classification

I am very new to TensorFlow. I am doing the image classification using my own training database.
However, after I trained my own dataset, I have no idea on how to classify the input image.
Here is my code for preparing my own dataset
filenames = ['01.jpg', '02.jpg', '03.jpg', '04.jpg']
label = [0,1,1,1]
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
filename, content = reader.read(filename_queue)
image = tf.image.decode_jpeg(content, channels=3)
image = tf.cast(image, tf.float32)
resized_image = tf.image.resize_images(image, 224, 224)
image_batch , label_batch= tf.train.batch([resized_image,label], batch_size=8, num_threads = 3, capacity=5000)
Is this a correct code for training the dataset?
Afterwards, I try to use it to classify the input images with the following code.
test = ['test.jpg', 'test2.jpg']
test_queue=tf.train.string_input_producer(test)
reader = tf.WholeFileReader()
testname, test_content = reader.read(test_queue)
test = tf.image.decode_jpeg(test_content, channels=3)
test = tf.cast(test, tf.float32)
resized_image = tf.image.resize_images(test, 224,224)
with tf.Session() as sess:
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
res = sess.run(resized_image)
coord.request_stop()
coord.join(threads)
However, it does not return the predicted label for the input images.
I am looking for someone to teach me how to classify the images by using my own dataset.
Thank you.
maybe you could try this after you have install PIL python lib:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import math
import numpy
import numpy as np
import random
from PIL import Image
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('max_steps', 2000, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden1', 128, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 32, 'Number of units in hidden layer 2.')
flags.DEFINE_integer('batch_size', 4, 'Batch size. '
'Must divide evenly into the dataset sizes.')
flags.DEFINE_string('train_dir', 'data', 'Directory to put the training data.')
flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
'for unit testing.')
NUM_CLASSES = 2
IMAGE_SIZE = 28
CHANNELS = 3
IMAGE_PIXELS = IMAGE_SIZE * IMAGE_SIZE * CHANNELS
def inference(images, hidden1_units, hidden2_units):
# Hidden 1
with tf.name_scope('hidden1'):
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))),
name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]),
name='biases')
hidden1 = tf.nn.relu(tf.matmul(images, weights) + biases)
# Hidden 2
with tf.name_scope('hidden2'):
weights = tf.Variable(
tf.truncated_normal([hidden1_units, hidden2_units],
stddev=1.0 / math.sqrt(float(hidden1_units))),
name='weights')
biases = tf.Variable(tf.zeros([hidden2_units]),
name='biases')
hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases)
# Linear
with tf.name_scope('softmax_linear'):
weights = tf.Variable(
tf.truncated_normal([hidden2_units, NUM_CLASSES],
stddev=1.0 / math.sqrt(float(hidden2_units))),
name='weights')
biases = tf.Variable(tf.zeros([NUM_CLASSES]),
name='biases')
logits = tf.matmul(hidden2, weights) + biases
return logits
def cal_loss(logits, labels):
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss
def training(loss, learning_rate):
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def placeholder_inputs(batch_size):
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size,IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
return images_placeholder, labels_placeholder
def fill_feed_dict(images_feed,labels_feed, images_pl, labels_pl):
feed_dict = {
images_pl: images_feed,
labels_pl: labels_feed,
}
return feed_dict
def do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
data_set):
# And run one epoch of eval.
true_count = 0 # Counts the number of correct predictions.
steps_per_epoch = 4 // FLAGS.batch_size
num_examples = steps_per_epoch * FLAGS.batch_size
for step in xrange(steps_per_epoch):
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
true_count += sess.run(eval_correct, feed_dict=feed_dict)
precision = true_count / num_examples
print(' Num examples: %d Num correct: %d Precision # 1: %0.04f' %
(num_examples, true_count, precision))
# Get the sets of images and labels for training, validation, and
train_images = []
for filename in ['01.jpg', '02.jpg', '03.jpg', '04.jpg']:
image = Image.open(filename)
image = image.resize((IMAGE_SIZE,IMAGE_SIZE))
train_images.append(np.array(image))
train_images = np.array(train_images)
train_images = train_images.reshape(4,IMAGE_PIXELS)
label = [0,1,1,1]
train_labels = np.array(label)
def run_training():
# Tell TensorFlow that the model will be built into the default Graph.
with tf.Graph().as_default():
# Generate placeholders for the images and labels.
images_placeholder, labels_placeholder = placeholder_inputs(4)
# Build a Graph that computes predictions from the inference model.
logits = inference(images_placeholder,
FLAGS.hidden1,
FLAGS.hidden2)
# Add to the Graph the Ops for loss calculation.
loss = cal_loss(logits, labels_placeholder)
# Add to the Graph the Ops that calculate and apply gradients.
train_op = training(loss, FLAGS.learning_rate)
# Add the Op to compare the logits to the labels during evaluation.
eval_correct = evaluation(logits, labels_placeholder)
# Create a saver for writing training checkpoints.
saver = tf.train.Saver()
# Create a session for running Ops on the Graph.
sess = tf.Session()
# Run the Op to initialize the variables.
init = tf.initialize_all_variables()
sess.run(init)
# And then after everything is built, start the training loop.
for step in xrange(FLAGS.max_steps):
start_time = time.time()
feed_dict = fill_feed_dict(train_images,train_labels,
images_placeholder,
labels_placeholder)
_, loss_value = sess.run([train_op, loss],
feed_dict=feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
# Print status to stdout.
print('Step %d: loss = %.2f (%.3f sec)' % (step, loss_value, duration))
if (step + 1) % 1000 == 0 or (step + 1) == FLAGS.max_steps:
saver.save(sess, FLAGS.train_dir, global_step=step)
print('Training Data Eval:')
do_eval(sess,
eval_correct,
images_placeholder,
labels_placeholder,
train_images)
def main(_):
run_training()
if __name__ == '__main__':
tf.app.run()

Categories